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Abstract

Specialization maps for Scholze’s category of diamonds

by

Ian Andrei Gleason Freidberg

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Sug Woo Shin, Chair

The purpose of this thesis is to introduce and study the specialization map in the context
of Scholze’s category of diamonds and to prove some basic results on its behavior. Our
specialization map generalizes the classical specialization map that appears in the theory of
formal schemes. Afterwards, as an example of interest, we study the specialization map for
p-adic Beilinson-Drinfeld Grassmanians and moduli spaces of mixed-characteristic shtukas
associated to reductive groups over Zp. Finally, as an application of our theory, we describe
the geometric connected components of some moduli spaces of mixed-characteristic shtukas
and local Shimura varieties at infinite level. This confirms and generalizes conjecture 4.26
of [46] in the unramified case.
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Introduction

The purpose of this thesis is threefold, and each goal corresponds to a chapter. In the
first chapter we construct the specialization map in the context of Scholze’s category of di-
amonds, and we study abstract properties and related constructions in a very theoretical
framework. In the second chapter, we apply the theory developed in the first chapter to
study the specialization map for the p-adic Beilinson-Drinfeld Grassmanians and moduli
spaces of mixed-characteristic (or p-adic) shtukas. These moduli spaces were introduced in
the Berkeley notes ([53]) as some of the most important examples that motivated the devel-
opment of the theory of diamonds. In the final chapter we use our finding from the second
chapter to explicitly describe the structure of the set of connected components of a big class
of local Shimura varieties and moduli spaces of mixed-characteristic shtukas at infinite level.

To fix ideas let us recall the specialization map in a more classical setup. Let X be a
separated formal scheme topologically of finite type over Zp. One can associate to X a rigid
analytic space over Qp, that we will denote by Xη := X ×Zp Qp. We can also associate to X
a finite type reduced scheme over Fp, that we denote by X := (X ×Zp Fp)red. Now, Huber’s
theory of adic spaces allows us to consider Xη as an adic space and in particular assign to
it a locally spectral topological space |Xη|. Moreover, one can construct a continuous and
spectral map of locally spectral spaces spX : |Xη| → |X|, where |X| is the usual Zariski
space underlying X (See [4] 7.4.12 or [36] 6.4). It is this specialization map that our work
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generalizes, we elaborate below.

In [51] Scholze sets foundations for the theory of diamonds which can be defined as certain
sheaves on the category of characteristic p perfectoid spaces endowed with a Grothendieck
topology called the v-topology. He associates to any pre-adic space X over Zp (not necessar-
ily analytic) a v-sheaf X♦, and whenever X is analytic he proves that X♦ is a (locally spatial)
diamond. Moreover, Scholze assigns to any v-sheaf F an underlying topological space |F|
and whenever F = X♦ he constructs a functorial surjective and continuous map |F| → |X|.
When X is analytic it is proven in [53] that this map is a homeomorphism, but as we will
discuss below this fails for non-analytic pre-adic spaces.

In the first chapter, we take as input what we call below a specializing v-sheaf F and
we assign to it: a scheme-theoretic v-sheaf F red which is the analogue of the reduced special
fiber of a formal scheme, and a continuous map of topological spaces spF : |F| → |F red|
that we call the specialization map of F . If X is a separated formal scheme over Zp, we
can prove that X ♦ is a specializing v-sheaf, and in this case we have natural identifications
|Xη| = |X ♦ ×Z♦

p
Q♦p | and |X| = |(X ♦)red| together with a commutative diagram:

| X ♦ ×Z♦
p
Q♦p | | Xη |

| (X ♦)red | | X |

∼=

spX♦ spX

∼=

It is in this sense that our specialization map generalizes the classical one.

The advantage of working in this broader context is that the categories of diamonds and
v-sheaves are much more flexible than those of formal schemes and rigid analytic spaces.
This allows us to construct interesting spaces that do not come from applying the ♦-functor
to pre-adic spaces. Actually, the main reason the author found the specialization map for
diamonds interesting is that it has applications to the study of moduli spaces of mixed-
characteristic shtukas. Typically, these moduli spaces are locally spatial diamonds that do
not come from a pre-adic space. In forthcoming work of the author, we use the tools devel-
oped here to describe the profinite set of geometric connected components of some moduli
spaces of p-adic shtukas at any chosen level (including infinite level). This work builds on
and generalizes the work of Chen on the geometric connected components of unramified
Rapoport-Zink spaces (See [8]).

To describe the main results of our second chapter, we fix some notation. Let G be a
reductive group over Zp, and denote by G the generic fiber of G over Qp. Fix T ⊆ B ⊆ G a
maximal Qp-rationally defined torus and a Borel respectively, and let f be an algebraically
closed field extension of Fp. We let X+

∗ denote the subset of dominant cocharacters in
X∗(TQp), fix a µ ∈ X+

∗ and an element b ∈ G(W (f)[1
p
]). Let E := E(µ) be the reflex field
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of µ. Since G is reductive over Zp this is an unramified extension of Qp. Let Jb denote the
σ-centralizer of b appearing in Kottwitz’ theory of isocrystals with G-structure [33]. Let F1

denote a complete non-Archimedean field extension of E, with ring of integers of OF1 and
residue field kF1 . Let F2 be a complete non-Archimedean field extension of W (f)[1

p
] with

residue field kF2 . To this data one can associate the following objects:

a.- A spatial diamond GrG,≤µ
F1

♦ proper over F1
♦, parametrizing µ-bounded B+

dR-lattices with

G-structure. Here B+
dR is the de Rham period ring of Fontaine, and this moduli is the

BdR-Grassmanian of the Berkeley notes [53].

b.- A perfect scheme GrG ,≤µ
W,kF1

proper and perfectly finitely presented over Spec(kF1) which

parametrizes µ-bounded Witt-vector lattices with G -structure. This is Zhu’s Witt-
vector Grassmanian [59], [5].

c.- A locally spatial diamond Sht(G ,b,µ),F♦
2

partially proper over F ♦2 , parametrizing mixed-
characteristic shtukas with G-structure that have relative position bounded by µ, and
with level structure G (Zp). This is the moduli space of mixed-characteristic shtukas
at hyperspecial level that appears in the Berkeley notes [53]. It comes endowed with a
continuous Jb(Qp)-action.

d.- A perfect scheme XG
≤µ(b) locally perfectly finitely presented over kF2 , which on geo-

metric points evaluates to affine Deligne-Lusztig sets of Rapoport [45]. This space also
comes equipped with a continuous Jb(Qp)-action.

Fix an algebraically closed non-Archimedean field C over F1 with ring of integers OC

and let kC denote the residue field of OC . In [1], Anschűtz constructs a map going from
GrG,≤µ

F1
♦ (C,OC) to GrG ,≤µ

W,kF1
(kC) which for now we denote spAns. Before this work, the map was

only known as a map of sets. Building on the work of Anschűtz we upgrade that specialization
map to construct a specialization map of topological spaces sp

GrG ,≤µ
O♦
F1

: |GrG,≤µ
F1

♦ | → |GrG ,≤µ
W,kF1

|

making the following diagram commute:

GrG,≤µ
F1

♦ (C,OC) | GrG,≤µ
F1

♦ |

GrG ,≤µ
W,kF1

(kC) | GrG ,≤µ
W,kF1

|

ι

spAns
sp

Gr
G ,≤µ
O♦
F1

ι

Here ι associates to a Spa(C,OC)-valued point (kC-valued point respectively) its underlying
topological point. We prove the following properties about our specialization map.

Theorem 1. a) The specialization map

sp
GrG ,≤µ

O♦
F1

: |GrG,≤µ
F1

♦ | → |GrG ,≤µ
W,kF1

|

is a closed and spectral map of spectral topological spaces.
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b) Given a closed point x ∈ |GrG ,≤µ
W,kF1

| let Tx := sp
GrG ,≤µ

O♦
F1

−1(x), then the interior T ◦x of Tx

in |GrG,≤µ
F1

♦ | is a dense subset of Tx.

c) Tx and T ◦x are non-empty and connected.

Using a technique that we learned from reading [53] together with the work of Anschűtz,
we construct a second specialization map but now its source is a moduli space of mixed-
characteristic shtukas at hyperspecial level and the target is the affine Deligne-Lusztig variety
associated to (G , b, µ).

Theorem 2. a) There is a continuous specialization map

sp
Sht

Gb,≤µ
OF2

: |Sht(G ,b,µ),F♦
2
| → |XG

≤µ(b)|,

this map is a specializing and spectral map of locally spectral topological spaces. It is a
quotient map and it is Jb(Qp)-equivariant.

b) Given a closed point x ∈ |XG
≤µ(b)| let Sx = sp

Sht
Gb,≤µ
OF2

−1(x), then the interior S◦x of Sx

as a subspace of |Sht(G ,b,µ),F♦
2
| is dense in Sx.

c) Sx and S◦x are non-empty and connected.

d) The specialization map induces a Jb(Qp)-equivariant bijection of connected components

sp
Sht

Gb,≤µ
OF2

: π0(Sht(G ,b,µ),F♦
2

)→ π0(XG
≤µ(b))

The work of Scholze and Weinstein identifies the diamond associated to moduli spaces
of p-divisible groups as special instances of moduli spaces of mixed-characteristic shtukas
(See [53] 24.3.5). Under this light, the last part of theorem 2 is a generalization of Theorem
5.1.5.(i) of [9] that describes the connected components of unramified Rapoport-Zink spaces
at hyperspecial level. The study of the set of connected components of affine Deligne-Lusztig
varieties had a lot of progress in the past 10 years. In the case of unramified groups at hy-
perspecial level the problem is very well understood, and the refer the reader to §3.4, to [41]
theorem 1.1, to [9] theorem 1.1, or to [21] theorem 0.1, 0.2 for a concrete descriptions of
these sets.

Another of our main results compares the preimages of the specialization map of Grass-
manians to those of moduli spaces of shtukas. Before stating our result we mention a con-
jecture. The conjectural statement is philosophically aligned with Grothendieck-Messing’s
deformation theory of p-divisible groups and a weaker form of it is one of the key inputs in
the proof of theorem 2. The statement is:

Conjecture 1. If we let F1 = F2, then for a closed point x ∈ |XG
≤µ(b)| there is a closed point

y ∈ |GrG ,≤µ
W,kF2

| such that S◦x considered as an open subdiamond of Sht(G ,b,µ),F♦
2

is isomorphic
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to T ◦y when considered as an open subdiamond of GrG,≤µ
F♦

2

. Here Sx and Ty are as in theorems

2 and 1 respectively.

The weaker version that we are able to prove is as follows.

Theorem 3. With the notation as in conjecture 1 there is a local model diagram

M

S◦x T ◦y

f

g

and a v-sheaf in groups L̂G such that the maps f and g are L̂G-bundles.

Before we describe our results on connected components at infinite level, we give a short
summary of the theory of specialization of the first chapter and provide sketches of the proves
of the main results of the second chapter.

Given a Tate Huber pair (A,A+) with pseudo-uniformizer $ ∈ A+ the specialization
map spA : Spa(A,A+) → Spec(A+/$) assigns to x ∈ Spa(A,A+) the prime ideal px of
those elements a ∈ A+ for which |a|x < 1. This is a continuous and closed map of spectral
topological spaces and the construction is functorial in the category of Tate Huber pairs.
The central idea of our theory is that, regardless of the definition, the specialization map for
more general objects should also be functorial and should agree with the case of Tate Huber
pairs. This desideratum naturally leads to defining the specialization map as the only map
(if such a thing exists) that could be functorial. One is then forced to change perspective
and to look for hypotheses that would prove that a functorial map exists and for conditions
that would make this map unique.

The first question one needs to answer is what should the target and source of the spe-
cialization map be? The case of Tate Huber pairs may be a little bit misleading in that
Tate Huber pairs come, by design, with a canonical “integral model”. Namely, the integral
model for Spa(A,A+) is simply given by Spa(A+, A+). For more general spaces there is
not a canonical “integral model” and one is forced to attach specialization maps to models
rather than to the objects that one makes models of. In the case of Tate Huber pairs the
specialization map can be extended to a map spA+ : Spa(A+, A+) → Spec(A+/$) with the
same formula. In the general case, one has to find an integral model for the diamond that
one wishes to study. The integral models we will consider will be a subcategory of v-sheaves
that satisfy some axioms.

An important result of the Berkeley notes proves that the ♦-functor is a fully-faithful
embedding of the category of characteristic p perfect schemes to Scholze’s category of v-
sheaves. Our observation is that, with the correct setup, this functor admits a right adjoint
which we call suggestively the reduction functor. Moreover, we compute directly that if B is
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a topological ring over Zp endowed with the I-adic topology for some finitely generated ideal
I, then (Spd(B,B))red is given by the perfection of Spec(B/I). In particular, if (A,A+) is a
uniform Tate Huber pair, then (Spd(A+, A+))red is given by the perfection of Spec(A+/$).
Recall that the underlying topological space of a scheme remains the same after taking its
perfection. This suggests that one can define the target of our specialization to be the result
of applying the reduction functor to the integral models that we want to associate a spe-
cialization map to. In general, the objects obtained in this way will not be perfect schemes
but they will be what we call below scheme theoretic v-sheaves. These scheme theoretic
v-sheaves come equipped with an underlying topological space that agrees with the Zariski
topology whenever the sheaf is represented by a perfect scheme.

Once we have established the source and target, the next step is to construct the map.
The key aspect that makes the specialization map for Tate Huber pairs functorial is that
every map of Tate Huber pairs Spa(A,A+)→ Spa(B,B+) automatically upgrades to a map
of “integral models” Spa(A+, A+)→ Spa(B+, B+). This motivates the following definition:
given a v-sheaf F , an affinoid perfectoid space Spa(A,A+) and a map ι : Spa(A,A+) → F ,
we say that F formalizes ι whenever it factors through a map f : Spd(A+, A+)→ F . We say
that F is v-formalizing if for every ι as above there is a v-cover g : Spa(B,B+)→ Spa(A,A+)
such that F formalizes ι ◦ g. Given a v-formalizing sheaf F one can try to define the
specialization map spF : |F| → |F red| so that for any “formalized” map f : Spd(A+, A+)→
F the following diagram is commutative:

| Spa(A,A+) | | Spd(A+, A+) | | F |

| Spec(A+/$) | | F red |

spA

f

spF

f red

The recipe to compute the specialization map would then be the following: given x ∈ |F| for
F v-formalizing we find an algebraically closed perfectoid field C and an open and bounded
valuation ring C+ together with a map ιx : Spa(C,C+) → F such that the closed point of
Spa(C,C+) maps to x under ιx. After replacing Spa(C,C+) by a v-cover, we find a formal-
ization fx : Spd(C+, C+)→ F of ιx. We apply the reduction functor to fx and obtain a map
f red
x : Spec(C+/$) → F red. Finally, we look at the topological image of the unique closed

point of Spec(C+/$) under f red
x . We define spF(x) to be this image.

The natural question becomes whether or not this construction is well defined. The
problem being that the map ιx : Spa(C,C+)→ F might have more than one formalization.
The naive guess would be that this doesn’t happen when F is separated as a v-sheaf. Un-
fortunately, this is false. At the heart of the problem is the following pathology: although
|Spa(C,C+)| is dense within |Spa(C+, C+)| it is not true that |Spd(C,C+)| is dense within
|Spd(C+, C+)| whenever the valuation ring C+ has rank larger than 1.

Resolving this problem forces us to understand better the topological spaces of the form
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|Spd(A,A+)|. To do so, we introduce what we call below the olivine spectrum of a Huber
pair. The careful reader will notice that our work on the olivine spectrum of Huber pairs
is a technification of Scholze and Weinstein’s original approach to study perfect schemes as
a full subcategory of the category of v-sheaves. Our work allow us to improve Scholze and
Weinstein’s full faithfulness result to the following statement:

Theorem 4. Let Y be a perfect non-analytic adic space over Fp and let X be a pre-adic
space over Zp. The natural map

Hom
PreAd

(Y,X)→ Hom(Y ♦, X♦)

is bijective. In particular, ♦ is fully faithful when restricted to the category of perfect non-
analytic adic spaces over Fp.

After this rather subtle and long topological detour, we manage to identify a stronger
notion of separatedness that we call formal separatedness. The main feature of a formally
separated v-sheaf F is that a map ι : Spa(A,A+)→ F has at most one formalization (if any).

Combining the two inputs we say that a v-sheaf is specializing if it is v-formalizing and
formally separated. We prove that specializing v-sheaves have a unique map that satisfies
the commutative diagrams as above for any formalizable map. We prove that this special-
ization map is functorial in the full subcategory of specializing v-sheaves and that these
specialization maps are continuous.

Although specializing v-sheaves produce the specialization maps that we are interested
in, they are too general for practical purposes. For this reason, we focus our attention on
a more restrictive class of v-sheaves that will have better behaved specialization maps. The
central objects of our study is what we call below kimberlites (and smelted kimberlites).
These will be specific kinds of specializing v-sheaves that satisfy other pleasant properties.
For example, kimberlites come equipped with a good notion of “analytic locus” that is, by
definition, an open subsheaf and a locally spatial diamond. The main advantage of kimber-
lites over more general specializing v-sheaves is that the specialization map of a kimberlite
(when we restrict to the analytic locus) is a spectral maps of locally spectral spaces (i.e.
continuous for the constructible topology). The author thinks of kimberlites as a first step
towards the goal of formulating the notion of an “integral model” for diamonds. This is in
the sense that if we wish to regard a v-sheaf as a “good” integral model for some (locally
spatial) diamond, then it should at least satisfy the axioms to be a kimberlite.

Let us move on and discuss the content of the second chapter.

The construction of the specialization maps for the moduli spaces that we study follows
from the general formalism that we discuss in the first chapter. To apply the theory one has
to find a specializing v-sheaf “interpolating” the source and target of the desired specializa-
tion map. The candidates are already provided in the Berkeley notes [53]. More precisely,
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with the setup as in the beginning, Scholze and Weinstein describe what we call here the
p-adic Beilinson-Drinfeld Grassmanians GrG ,≤µ

OF1
as a v-sheaf over O♦F1

whose generic fiber is

GrG,≤µ
F♦

1

. Also, they describe a v-sheaf ShtGb,≤µ
OF2

over O♦F2
whose generic fiber is Sht(G ,b,µ),F♦

2
.

We still call this v-sheaf the moduli space of mixed characteristic shtukas at hyperspecial
level.

The proof that these v-sheaves are specializing uses all the machinery of modern p-adic
Hodge theory as it is discussed in the Berkeley notes. Some key technical inputs are Kedlaya’s
work [29] and Anschűtz’ work (theorem 1.2 of [1]) on extending vector bundles and torsors
over the punctured spectrum of Ainf . Once we know these v-sheaves are specializing, our
theory produces the specialization maps. With more work, we prove that these specializing
v-sheaves are even nicer. Namely, we prove that p-adic Beilinson-Drinfeld Grassmanians are
kimberlites, and that moduli spaces of shtukas at hyperspecial level are smelted kimberlites.
We also prove the identities: (GrG ,≤µ

OF1
)red = GrG ,≤µ

W,kF1
and (ShtGb,≤µ

OF2
)red = XG

≤µ(b) which tell us

that the targets of the specialization maps that our formalism constructs are the desired ones.

After that work, the difficulty becomes to understand the preimages of the specialization
map. To tackle this difficulty we introduce some theoretical tools. In the first chapter, to a
kimberlite (or a smelted kimberlite) F and a chosen closed point x ∈ |F red| we attach the

tubular neighborhood of F at x which we denote by F̂/x. Intuitively speaking, these tubular

neighborhoods are the subsheaves of points that specialize to x. In general it is true that F̂/x
is a subsheaf of F and that |F̂/x| ⊆ spF

−1(x), but the equality usually doesn’t hold. One has
to explore carefully the relation between these two sets. We identify a class of kimberlites
(respectively smelted kimberlites), which we call rich kimberlites (respectively rich smelted
kimberlites), for which tubular neighborhoods behave as nicely as possible. We prove that
p-adic Beilinson-Drinfeld Grassmanians and moduli spaces of shtukas at hyperspecial level
are rich kimberlites and rich smelted kimberlites, respectively. Being rich implies that |F̂/x|
is dense within spF

−1(x), which proves the density part of theorems 1 and 2.

Once we know that these v-sheaves are rich kimberlites most of the work required to
prove theorem 1 and theorem 2 is subsumed by our formalism. The last thing that remains
to be proved is that the preimages of the specialization map are non-empty and connected.
As we have briefly mentioned, one can apply theorem 3 to reduce the non-empty and con-
nected part of theorem 2 to the similar claim of theorem 1.

To better understand the preimages of the specialization map in the case of theorem 1 we
construct a “Demazure resolution” in the spirit of [53] §19.3. Contrary to the case of GLn,
for other reductive groups, the subset of dominant minuscule cocharacters doesn’t generate
the monoid of dominant cocharacters. This failure turns out to be a rather subtle matter and
forces us to discuss what we call below “parahoric loop groups” for Chevalley groups. These
groups are attached to points in the (Bruhat-Tits) apartment of G associated to T . They
are subsheaves of the usual loop group given by the condition that their value on geometric
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points Spa(C], C]+) is precisely the corresponding parahoric subgroup of G(BdR) that the
Bruhat-Tits theory attaches to the same point in the apartment and the (discrete valuation)
period ring B+

dR.

The construction that we discuss relies on a group-theoretic construction of Pappas and
Zhu and on theorem 3.1 of [42]. The tradeoff to using parahoric loop groups is that now the
“Schubert varieties” are indexed by elements of the Iwahori-Weyl group, and they can all be
resolved using simple reflections in the affine Weyl group. Functoriality of the specialization
map will allow us to reduce questions on the target of the resolution to questions on the
source of the resolution. The v-sheaves that serve as source of this resolution, which we call
Demazure kimberlites, are easier to understand.

Let us describe the content of the third chapter. In [46] Rapoport and Viehmann pro-
pose that there should be a theory of p-adic local Shimura varieties. They conjectured that
there should exist towers of rigid-analytic spaces whose cohomology “understands” the local
Langlands correspondence for general p-adic reductive groups. In this way, these towers of
rigid-analytic varieties would “interact” with the local Langlands correspondence in a sim-
ilar fashion to how Shimura varieties “interact” with the global Langlands correspondence.
Moreover, they conjectured many properties and compatibilities that these towers should
satisfy.

In the last decade, the theory of local Shimura varieties went through a drastic trans-
formation with Scholze’s introduction of perfectoid spaces and the theory of diamonds. In
[53] Scholze and Weinstein construct the sought for towers of rigid analytic spaces and gen-
eralized them to what are now known as moduli spaces of p-adic shtukas. Moreover, since
then, many of the expected properties and compatibilities for local Shimura varieties have
been verified and generalized to moduli spaces of p-adic shtukas. The study of the geometry
and cohomology of local Shimura varieties and moduli spaces of p-adic shtukas is still a very
active area of research due to their connection to the local Langlands correspondence. The
main aim of this chapter is to study the locally profinite set of connected components, and
prove new cases of conjecture 4.26 in [46].

Let us recall the formalism of local Shimura varieties and moduli of p-adic shtukas. Local
p-adic shtuka datum over Qp is a triple (G, [b], [µ]) where G is a reductive group over Qp, [µ]
is a conjugacy class of geometric cocharacters µ : Gm → G and [b] is an element of Kottwitz
set B(G, [µ]). Whenever [µ] is minuscule we say that (G, [b], [µ]) is local Shimura datum. We
let E/Qp denote the reflex field of [µ]. Associated to (G, [b], [µ]) there is a tower of diamonds

over Spd(Ĕ, OĔ), denoted (ShtG,[b],[µ],K)K, where K ⊆ G(Qp) ranges over compact subgroup
of G(Qp). Moreover, whenever [µ] is minuscule and K is a compact open subgroup, then
(ShtG,[b],[µ],K)K is represented by the diamond associated to a unique smooth rigid-analytic

space MK over Ĕ. The tower (MK)K is the local Shimura variety. Moreover if K = G (Zp)
for a reducitve group G over Zp then ShtG,[b],[µ],K = Sht(G ,b,µ), in the notation of theorem 2.

After basechange to a completed algebraic closure, each individual space (ShtG,[b],[µ],K ×
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Cp)K comes equipped with continuous and commuting right actions by Jb(Qp) and the
Weil group WE. Moreover, the tower receives a right action by the group G(Qp) by us-
ing correspondances. When we let K = {e} we obtain the space at infinite level, de-
noted ShtG,[b],[µ],∞ × Cp, which overall comes equipped with a continuous right action by
G(Qp)× Jb(Qp)×WE.

This formalism is functorial on the group G in the following way. Whenever we are given
a morphism of algebraic groups f : G→ H over Qp we obtain a morphism of towers

(ShtG,[b],[µ],K × Cp)K → (ShtH,[f(b)],[f◦µ],f(K) × Cp)f(K)

and these maps are equivariant with respect to the action induced by the map

G(Qp)× Jb(Qp)×WE → H(Qp)× Jf(b)(Qp)×WE.

Since the actions are continuous the groups G(Qp) × Jb(Qp) ×WE act continuously on
π0(ShtG,[b],[µ],∞ × Cp) and our main theorem of chapter 3 describes explicitly this action
whenever G is an unramified reductive group over Qp and ([b], [µ]) is HN-irreducible. It is
very likely that the methods of this thesis could be combined with those of [19] and [17] to
remove the HN-irreducible condition. We do not pursue this generality.

Before stating this theorem we need to set more notation. Let (G, [b], [µ]) be local p-adic
shtuka datum with G an unramified reductive group over Qp. Let Gder denote the derived
subgroup of G and Gsc denote the simply connected cover of Gder, let N denote the image
of Gsc(Qp) in G(Qp) and let G◦ = G(Qp)/N . This is a locally profinite topological group
and it is the maximal abelian quotient of G(Qp) when this later is considered as an abstract
group.

Let E ⊆ Cp be the field of definition of [µ], let ArtE : WE → E× be Artin’s reciprocity
character from local class field theory. In §4 we associate to [µ] a continuous map of topo-
logical groups Nm◦[µ] : E× → G◦ and we associate to [b] a map det◦ : Jb(Qp)→ G◦.

The general construction of Nm◦[µ] and det◦ uses z-extensions and we do not review it

in this introduction. Nevertheless, whenever Gsc = Gder we can construct these maps as
follows. In this case G◦ = Gab(Qp) where Gab is the co-center of G, which is an algebraic
group of multiplicative type (or a torus). If we let det : G → Gab be the quotient map we
can consider the induced data µab = det◦ [µ] and [bab] = [det(b)]. Then Nm◦[µ] can be defined
as the following composition:

E×
µab−−→ Gab(E)

NmG
ab

E/Qp−−−−−→ Gab(Qp) = G◦.

Here for a torus T over Qp, like Gab, we are letting NmT
E/Qp : T ab(E)→ T ab(Qp) denote the

usual norm map

t 7→
∏

γ∈Gal(E/Qp)

γ(t).

On the other hand, det◦ : Jb(Qp) → Gab(Qp) can be obtained as the composition det =
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jbab ◦ detb where the maps detb : Jb(Qp) → Jbab(Qp) and jbab : Jbab(Qp) → G◦ can be
described as follows. The map detb is obtained from functoriality of the formation of Jb,
and jbab is the isomorphism jbab : Jbab(Qp) ∼= Gab(Qp) obtained from regarding Jbab(Qp) and
Gab(Qp) as subgroups of Gab(K0) and exploiting that Gab is commutative.

Theorem 5. Let (G, [b], [µ]) be local shtuka datum with G an unramified reductive group
over Qp and ([b], [µ]) HN-irreducible. The following hold:

1. The right G(Qp) action on π0(ShtG,b,[µ],∞×Cp) is trivial on N = Im(Gsc(Qp)) and the
induced G◦-action is simply-transitive.

2. If s ∈ π0(ShtG,b,[µ],∞ × Cp) and j ∈ Jb(Qp) then

s ·Jb(Qp) j = s ·Gab(Qp) det
◦(j−1))

3. If s ∈ π0(ShtG,b,[µ],∞ × Cp) and γ ∈ WE then

s ·WE
γ = s ·Gab(Qp) [Nm◦[µ] ◦ ArtE(γ)].

Let us comment on previous results in the literature. Before a full theory of local Shimura
varieties was available the main example of local Shimura varieties one could work with
were the ones obtained as the generic fiber of a Rapoport-Zink space studied in [44]. The
most celebrated examples of Rapoport-Zink spaces are of course the Lubin-Tate tower and
the tower of covers of Drinfeld’s upper half space. In [12] de Jong introduces his version
of the fundamental group in rigid-analytic geometry to describe the Grothendieck-Messing
period morphism. As an application of his theory of fundamental groups he computes the
connected components of the Lubin-Tate tower for GLn(Qp). In [58] Strauch computes by
a very different method the connected components of the Lubin-Tate tower for GLn(F ) and
an arbitrary finite extension F of Qp (including ramification).

In [7] M. Chen constructs 0-dimensional local Shimura varieties and studies their ge-
ometry. These are the local Shimura varieties associated to tori. In a later paper [8] she
constructs her “determinant” map and uses these 0-dimensional local Shimura varieties to
describe connected components of Rapoport-Zink spaces of EL and PEL type associated to
more general unramified reductive groups. We also use the determinant map, but in our
case it is automatically constructed for us from the functoriality (with respect to group mor-
phisms) of moduli spaces of p-adic shtukas. The central strategy of Chen’s result builds on
and improves the central strategy used by de Jong. Many steps in de Jong’s original strategy
fail or become technically more challenging when one passes from the Lubin-Tate tower to
more general Rapoport-Zink spaces and M. Chen introduces many new ideas to tackle those
cases. Two key inputs of Chen’s work to the strategy is the use of her “generic” crystalline
representations and her collaboration with Kisin and Viehmann on computing the connected
components of affine Deligne-Lusztig varieties [9].

Our central strategy builds on the central strategy of de Jong and Chen, but the versa-
tility of Scholze’s theory of diamonds and the fully functorial construction of local Shimura
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varieties allow us to make many simplifications and streamline the proof. This is of course
up to the fact that our arguments use Scholze’s theory of diamonds rather than rigid analytic
spaces. Our new main input to the central strategy is the use of specialization maps. To
be able to use specialization maps in a rigorous way we had to develop a formalism that
would allow us to use them. The details of this formalism are worked out in detail in the
first two chapters. Originally, our formalism of specialization maps was developed to address
a missing step in our efforts to adapt de Jong and Chen’s strategy to the context of diamonds.

Let us sketch the central strategy to prove theorem 5. Once one knows that π0(ShtG,b,[µ],∞×
Cp) is a right G◦-torsor, computing the actions by WE and Jb(Qp) in terms of the G◦ action
can be reduced to the tori case using functoriality, z-extensions and the determinant map.
These uses mainly group theoretic methods and down to earth diagram chases. In the tori
case the Jb(Qp) action is easy to compute and the WE action can be bootstrapped to an
easier case as follows. For tori T , by the work of Kottwitz, we know that the set B(T, µ) has
a unique element so that the data of b is redundant. We can consider the category of pairs
(T, µ) where T is a torus over Qp and µ is a geometric cocharacter whose field of definition is
E. The construction of moduli spaces of shtukas is functorial with respect to this category.
Moreover, this category has an initial object given by (ResE/Qp(Gm), µu) where

µu : Gm → ResE/Qp(Gm)E

is the unique map of tori that on E-points is given by the formula

f 7→ f ⊗Qp f.

After more diagram chasing one can again reduce the tori case to the “universal” case.
Finally, this case can be done explicitly using the theory of Lubin-Tate groups and their
relation to class field theory. As we have mentioned, the tori case was already handled by M.
Chen in [7], but for the convenience of the readers we recall the story in a different language.

Let us sketch how to prove that π0(ShtG,b,[µ],∞×Cp) is a G◦ torsor in the simplest case. For
this let G be semisimple and simply connected. Our theorem then says that ShtG,b,[µ],∞×Cp

is connected.
The first step is to prove that G(Qp) acts transitively on π0(ShtG,b,[µ],∞ × Cp). Using

the Grothendieck-Messing period map one realizes that these is equivalent to proving that
the b-admissible locus of Scholze’s BdR-Grassmanian is connected. This fact is a result of
Hansen and Weinstein to which we give an alternative proof.

For the next step, let x ∈ π0(ShtG,b,[µ],∞×Cp) and let Gx ⊆ G(Qp) denote the stabilizer of
x. Let K ⊆ G(Qp) be a hyperspecial subgroup of G. We claim that it is enough to prove that
Gx is open and that G(Qp) = K ·Gx. Indeed, K surjects onto G(Qp)/Gx so that this space
is discrete and compact therefore finite. By a theorem of Margulis [39], since we assumed G
to be simply connected, the only open subgroup of finite index is the whole group so that
Gx = G(Qp).
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The proof that Gx is open relies heavily on M. Chen’s main technical result on her
“generic” crystalline representations. To be able to apply her result in our context one uses
that for suitable p-adic fields K, every crystalline representation is realized as a Spd(K,OK)-
valued point in Scholze’s BdR-Grassmanian. For the convenience of the reader we include
a discussion on how to think of crystalline representations as Spd(K,OK)-valued points.
Finally, proving that G(Qp) = K · Gx is equivalent to proving that ShtG,b,[µ],K × Cp, the K-
level moduli space of shtukas, is connected. This is where our theory of specialization maps
gets used. Indeed, theorem 2 proves that the specialization map identifies the connected
components of moduli spaces of shtukas with the connected components of affine Deligne-
Lusztig varieties. To conclude we only need to know that these varieties are connected.

Fortunately for us, the connected components of affine Deligne-Lusztig varieties are now
very well understood by the work of many authors [9], [41] [22]. In the HN-irreducible case
they can be identified with certain subset of π1(G). Since we assumed G to be simply con-
nected π1(G) = {e} which finishes the sketch of the proof for the simply connected case.
The central strategy used for general unramified groups G is not very different in spirit and
only requires more patience.

Finally, let us comment on the organization of this thesis.

§1.1 We give a short review of the theory of diamonds, the v-topology and some facts about
spectral topological spaces. We also review Scholze’s ♦ functor that takes as input a
pre-adic space over Zp and returns as output a v-sheaf.

§1.2 We introduce and study what we call the olivine spectrum of a Huber pair (B,B+)
which we denote by Spo(B,B+). As we have mentioned already, for a pre-adic space
X over Zp Scholze and Weinstein construct a surjective map of topological spaces
|X♦| → |X|. This map is a homeomorphism whenever X is analytic, but the map
will not be injective whenever X is not analytic, and in pathological cases not even a
quotient map. The olivine spectrum is a very concrete topological space that one can
associate to any Huber pair without any mention to the theory of perfectoid spaces or
diamonds. We can summarize the results as follows:

1. If (B,B+) is any complete Huber pair over Zp we construct a continuous and
bijective map |Spd(B,B+)| → Spo(B,B+).

2. Whenever this map is a homeomorphism we say that (B,B+) is olivine.

3. Being olivine can be verified locally in the usual topology of Spa(B,B+) and it is
compatible with rational localization.

4. Affinoid fields (i.e. (K,K+) with K a field and K+ an open bounded valuation
subring) are olivine.

5. If (B,B+) is uniform (i.e. B◦ is bounded) and B is a finite type B+-algebra then
it is olivine.

Using the olivine spectrum we prove theorem 4.
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§1.3 We introduce and study a reduction functor that takes as input a small v-sheaf in
the category of characteristic p perfectoid spaces, and returns a small v-sheaf in the
category of perfect schemes in characteristic p. This functor generalizes the construc-
tion that assigns to a formal scheme topologically of finite type over Zp the perfection
of its reduced special fiber. To the author’s knowledge, although this construction is
simple, it had not been considered in the literature before. As we have mentioned, this
reduction functor will construct the target of our specialization map.

§1.4 We develop the theoretical framework to study the specialization map. We introduce
specializing v-sheaves, kimberlites, and smelted kimberlites. We introduce tubular
neighborhoods and relate them with preimages of the specialization map. We define
rich kimberlites which incorporate some “finiteness” conditions that are tailored to
control the behavior of the preimages of the specialization map.

§2.1 We review the main geometric objects of modern p-adic Hodge theory. We review
Kedlaya and Liu’s theory of vector bundles on adic spaces, and the theorems of Kedlaya
and Anschűtz’ on extending vector bundles and G-torsors on the punctured spectrum
of Ainf . One may think of Anschűtz’ result as a statement over a point, and Scholze
and Weinstein prove in [53] a small improvement to this theorem by considering what
we call here a product of points. We review Scholze and Weinstein’s proof with our
application in mind.

§2.2 We study the specialization map for p-adic Beilinson-Drinfeld Grassmanians. We con-
struct parahoric loop groups and construct Demazure kimberlites, which are the source
of our “Demazure resolution”. We prove that Demazure kimberlites are rich kimber-
lites which allows us to prove that p-adic Beilinson-Drinfeld Grassmanians are also rich
kimberlites with non-empty connected tubular neighborhoods. We prove theorem 1.

§2.3 We study the specialization map for moduli spaces of mixed-characteristic shtukas. We
prove that moduli spaces of mixed characteristic shtukas at hyperspecial level are rich
smelted kimberlites. We prove theorems 2 and 3.

§3.1 Since the logic of chapter 3 is mostly independent of the previous chapters we reset
the notation for that chapter. This is done in the first section.

§3.2 We recall the relation between crystalline representations, Scholze’s theory of dia-
monds, and other geometric constructions that appear in modern p-adic Hodge theory.
This part of the thesis is mainly expository, but we consider it important for the rest
or the argument to have these relations in mind. We also include a discussion of Weil
descent data and the action of Jb(Qp) since the author found some of the details in
this part of the theory harder to grasp.

§3.3 We reprove M. Chen’s results for tori. We do this for several reasons. On one hand, it
was a very instructive exercise for the author to do this computation concretely, on the
other hand the 0-dimensional local Shimura varieties that appear in Chen’s work are
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constructed in a very different way. It is not clear to the author if proving that Chen’s
local Shimura varieties agree with Scholze and Weinstein’s moduli spaces of shtukas is
or not essentially equivalent to doing this computation.

§3.4 We provide the details of the proof of theorem 5.
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A note on the terminology

The author would like to use this paragraph to make a small comment on the terminology.
Some of the terms introduced below come with a metaphor. The incorporation of these
metaphors into the text is nothing but a playful manner in which the author decided to
interact with the mineralogical history of the field. In particular, they shouldn’t be taken
seriously for any scientific or mathematical purposes.

The first term is the “olivine spectrum of a Huber pair”. Olivine minerals are a series of
mineralogical structures that can be found most commonly in mafic and ultramafic igneous
rocks, they are characteristic by their green olive like color. During the formation of a
diamond small minerals like olivine, garnet, and chromite among others get surrounded by a
host diamond. When these minerals get included in diamonds their morphology changes to
resemble the structure that is found in diamonds. Similarly, the olivine spectrum of a Huber
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pair is a very small variation of the usual adic spectrum that has a subtle diamond-like
change.

The second term that deserves an explanation is “kimberlite”. In mineralogy, kimberlites
are hybrid rocks that are known to contain diamonds. The formation of diamonds happens
in the depths of Earth and through geological processes, kimberlite magma pipes bring the
diamonds to the surface. The interest in mining kimberlites comes from the hope of finding
diamonds within. Similarly, the author thinks of kimberlites as a natural category for finding
integral models of diamonds.
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Chapter 1

Theoretical aspects of the
specialization map

Throughout this thesis we assume that the reader is familiar with the basic theory of per-
fectoid spaces as discussed in ([53] §7) or ([51] §3). In most of our proofs we ignore the
set-theoretic subtleties that arise from the theory, but we inherit the usage of the term
“small” that is used to address such issues. We provide some indications on how to proceed
when set-theoretic carefulness is absolutely necessary.

1.1 The v-topology

1.1.1 Diamonds and small v-sheaves

We let Perfd denote the category of perfectoid spaces and Perf the subcategory of perfectoid
spaces in characteristic p. The following definition is taken from ([51] 7.8).

Definition 1.1.1. Given a map of perfectoid spaces f : Y → X we say:

1. f is affinoid pro-étale if Y = Spa(S, S+), X = Spa(R,R+) and the map f is a small
cofiltered limit of maps fi : Spa(Si, Si

+)→ Spa(R,R+) where each fi is étale.

2. f is pro-étale if for every y ∈ Y , there is an open neighborhood V ⊆ Y containing y
and an open U ⊆ X satisfying f(V ) ⊆ U and f |V : V → U is affinoid pro-étale.

We can endow Perfd with two Grothendieck topologies, called the pro-étale topology and
v-topology respectively, as follows:

Definition 1.1.2. (See ([51] 8.1))

1. A family {fi : Yi → X}i∈I of maps in Perfd is a cover for the pro-étale topology if each
fi is pro-étale and for every quasi-compact open U ⊆ X there is a finite subset IU ⊆ I
and quasi-compact open subsets Vi ⊆ Yi for all i ∈ IU , such that U =

⋃
fi(Vi)
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2. A family {fi : Yi → X}i∈I of maps in Perfd is a cover for the v-topology if for every
quasi-compact open U ⊆ X there is a finite subset IU ⊆ I and quasi-compact open
subsets Vi ⊆ Yi for all i ∈ IU , such that U =

⋃
fi(Vi)

Remark 1.1.3. To make the pro-étale and v topologies useful, it is important to add the
quasi-compactness hypothesis. Indeed, since open embeddings are étale the inclusion of points
are pro-étale, but we do not want to consider the collection of inclusions of points as a cover.

The following example of a cover for the v-topology will be used repeatedly.

Example 1.1.4. Let Spa(A,A+) be an affinoid perfectoid space $ ∈ A+ and a choice
of a pseudo-uniformizer, we consider the following construction. For every point x ∈
|Spa(A,A+)| consider the inclusion of affinoid residue field

ιx : Spa(k(x), k(x)+)→ Spa(A,A+).

Note that by ([49] 6.7) each Spa(k(x), k(x)+) is perfectoid. We now consider

R+ :=
∏

x∈|Spa(A,A+)|

k(x)+

as a topological ring with the $-adic topology and let R = R+[ 1
$

]. We have that Spa(R,R+) is
perfectoid and that the natural map Spa(R,R+)→ Spa(A,A+) is a cover for the v-topology.

Definition 1.1.5. Given a set I and a collection of tuples {(Ci, Ci+), $i}i∈I we construct an
adic space Spa(R,R+). Here each Ci is an algebraically closed non-Archimedean field, the
C+
i are open and bounded valuation subrings of Ci, and $i is a choice of pseudo-uniformizer.

We let R+ :=
∏

i∈I C
+
i , we let $ = ($i)i∈I , we endow R+ with the $-adic topology and we

let R := R+[ 1
$

]. Any space constructed in this way will be called a product of points.

Remark 1.1.6. We point out that different choices of pseudo-uniformizers ($i)i∈I will give
rise to different adic spaces. Indeed, in general R ⊆

∏
i∈I Ci but if I is infinite this is a proper

inclusion and the image of this inclusion depends of the choice of pseudo-uniformizers.

Example 1.1.4 proves that products of points form a basis for the v-topology in the
category of perfectoid spaces. Recall the notion of totally disconnected spaces.

Definition 1.1.7. (See [51] 7.1, 7.15, 7.5) An affinoid perfectoid space Spa(R,R+) is totally
disconnected if it splits every open cover. Moreover, it is strictly totally disconnected if it
splits every étale cover.

We have the following useful criterion:

Proposition 1.1.8. (See [51] 7.3, 7.16, 11.27) Let Y be an affinoid perfectoid space. Y is
represented by a strictly totally disconnected space if and only if every connected component
of Y is represented by Spa(C,C+) for C an algebraically closed field and C+ an open and
bounded valuation subring.
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Proposition 1.1.9. Product of points as in definition 1.1.5 are strictly totally disconnected
perfectoid space.

Proof. Take R+ :=
∏

i∈I C
+
i and pseudo-uniformizers $ = ($i)i∈I as in definition 1.1.5.

The closed-opens subsets of Spa(R,R+) are given by idempotents in R+, which in turn
are given by subsets of I. A connected component π ∈ π0(Spa(R,R+)) is computed by
intersecting

⋂
U∈U U for some ultrafilter and it is a Zariski closed subsets cut out by the

ideal, Iπ = 〈1V 〉V /∈U , where the idempotents are indexed by the sets that do not belong
to the ultrafilter. To compute the structure sheaf of this connected component we have to
consider the $-completion of R+/Iπ. Let V = R+/Iπ and V ′ be the completion of V with
respect to $.

To prove that Spa(R,R+) is a strictly totally disconnected perfectoid space it is enough,
by proposition 1.1.8, to prove that V ′ is a valuation ring with algebraically closed fraction
field. In general, if W is a valuation ring with algebraically closed fraction field and if a ∈ W
is not a unit, then the (a)-adic completion of W is also a valuation ring with algebraically
closed fraction field. Applying this reasoning to V and V ′, we see that it is enough to prove
V is a valuation ring with algebraically closed fraction field.

To prove that V is a domain take two elements in v1, v2 ∈ R+ with v1 · v2 = 0. If we let
Ij ⊆ I with j ∈ {1, 2} be the subsets of i ∈ I such that vj = 0 in C+

i then I1 ∪ I2 = I and
one of I1 or I2 \I1 is in the ultrafilter, this implies that one of v1 or v2 equals 0 in V . Take an
element of v ∈ Frac(V ), this element may be represented by an element of

∏
i∈I Ci. Since

each entry of the product defining R+ is a valuation ring one of the sets {i ∈ I | vi ∈ C+
i }

or {i ∈ I | v−1
i ∈ C+

i } is in the ultrafilter, this implies v ∈ V or v−1 ∈ V and that V is a
valuation ring. One can prove in a similar way that Frac(V ) =

∏
i∈I Ci/Iπ. In particular,

it is an ultraproduct of algebraically closed fields, so Frac(V ) is algebraically closed.

Scholze proves that the v-topology (and consequently the pro-étale topology) on Perfd
is subcanonical ([51] 8.6). To simplify notation, we denote a perfectoid space and the sheaf
it represents with the same letter. In case we need to make a distinction, whenever X is a
perfectoid space the sheaf it represents will be denoted by hX . From now on we will focus
most of our attention to the site Perf endowed with either the pro-étale or the v-topology.
Let us recall Scholze’s category of diamonds.

Definition 1.1.10. (See [51] 11.1) A pro-étale sheaf Y on Perf is a diamond if it can be
written as X/R where X and R are representable by perfectoid spaces and R ⊆ X × X is
an equivalence relation for which the two projections to X are pro-étale maps of perfectoid
spaces.

Given a diamond Y we can associate to it a topological space, denoted |Y |, as follows:

Definition 1.1.11. We say that a map p : Spa(K,K+)→ Y is a point if K is a perfectoid
field in characteristic p and K+ is an open and bounded valuation subring of K. Two points
pi : Spa(Ki, Ki

+)→ Y , i ∈ {1, 2}, are equivalent if there is a third point p3 : Spa(K3, K3
+)→
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Y , and surjective maps qi : Spa(K3, K3
+)→ Spa(Ki, Ki

+) making the following commutative
diagram:

Spa(K1, K1
+)

Spa(K3, K3
+) Y

Spa(K2, K2
+)

p1
q1

q2

p3

p2

We let |Y | denote the set of equivalence classes of points of Y .

Scholze proves that if Y has a presentation X/R, then there is canonical bijection of sets
between |Y | and |X|/|R| (where |X| and |R| are the topological space corresponding to the
perfectoid spaces X and R). This gives a surjective map |X| → |Y | and we give |Y | the
quotient topology for such a map.

Proposition 1.1.12. (See [51] 11.13) Let Y be a diamond. The topology on |Y | is indepen-
dent of the presentation of Y as a quotient Y = X/R, with X and R perfectoid spaces.

We remark that if X is a perfectoid space, then the sheaf hX represented by X is a
diamond and that |hX | is canonically homeomorphic to |X|.

We refer to sheaves on Perf for the v-topology as v-sheaves and we say that a v-sheaf
X is small if it admits a surjective map from a representable sheaf. This is a set theoretic
condition.

Proposition 1.1.13. (See [51] 11.9) Every diamond is a small v-sheaf.

Recall that any Grothendieck site has an intrinsic notion of quasi-compactness. Quasi-
compact v-sheaves are other important examples of small v-sheaves.

We denote by P̃erf the category of small v-sheaves, it may be constructed as follows.
Given a cut-off cardinal κ (see [51] §4 and §8 for details) we denote by Perfκ the category

of κ-small perfectoid spaces in characteristic p and by P̃erfκ the topos of sheaves for the
v-topology on this category. Objects in this topos will be called κ-small v-sheaves. We have
natural fully-faithful embeddings P̃erfκ ⊆ P̃erfλ for κ < λ and we define P̃erf =

⋃
κ P̃erfκ as

a big filtered colimit over all cut-off cardinals κ.

Scholze associates to any small v-sheaf a topological space. The definition is almost
identical to 1.1.11, the key point being that if X → Y is a map of small v-sheaves with X
a diamond then R = X ×Y X is also a diamond and Y = X/R ([51] 12.3). Scholze then
defines |Y | as |X|/|R| with the quotient topology.
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Proposition 1.1.14. (See [51] 12.7) Let Y be a small v-sheaf. The set of equivalence classes
of points of Y is in canonical bijection with |X|/|R| for any presentation Y = X/R with X
and R diamonds. Moreover, the topology induced this way is independent of the presentation.

Given a topological space T we can consider a presheaf on Perf, denoted T , defined as

T (R,R+) = {f : |Spa(R,R+)| → T | f is continuous}

This forms a v-sheaf but we warn the reader that it might not be small. There is a natural
transformation:

X → |X|

A morphism of small v-sheaves j : U → X is said to be open if it is relatively representable in
perfectoid spaces and after basechange by a perfectoid space it becomes an open embedding
of perfectoid spaces. The following proposition shows that this is a purely topological notion.

Proposition 1.1.15. (See [51] 11.15 and 12.9) Let Y be a small v-sheaf and let |V |′ ⊆ |Y |
be an open subset. Define V as the Cartesian product:

V |V |′

Y |Y |

The following assertions hold:

1. The map V → Y is an open embedding of small v-sheaves.

2. The induced map |V | → |Y | is an open embedding of topological spaces and factors
through a homeomorphism to |V |′.

3. Every open embedding of small v-sheaves is isomorphic to one constructed in this way.

4. If Y is a diamond then V is also a diamond.

The concept of closed immersion is a little more subtle. It is not a purely topological
condition in the sense that closed subsheaves of F are not in one to one bijection with closed
subsets of |F|.

Definition 1.1.16. (See [51] 10.7, 10.11, 5.6) A map of sheaves F → G is a closed immer-
sion if for every X = Spa(R,R+) a strictly totally disconnected space and a map X → G the
pullback X ×F G ⊆ X is representable by a closed immersion.

The following result of Johanes Anschűtz, João Lourenço and Timo Richarz, that will
appear in [26], characterizes closed immersions.
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Proposition 1.1.17. (See [26]) For a v-sheaf F we say a subset X ⊆ |F| is weakly gener-
alizing if for any geometric point f : Spa(C,C+)→ F we have that f−1(X) ⊆ |Spa(C,C+)|
is stable under generization. For any v-sheaf F the rule

X 7→ F ×|F| X ⊆ F

gives a bijection between weakly generalizing closed subsets of |F| and closed subsheaves of
F .

1.1.2 Spectral spaces and locally spatial diamonds

The category of diamonds is too general for some purposes and one can construct many
“pathological” examples of diamonds that do not arise from an algebro-geometric context.
To control this flexibility Scholze considers some restrictions on the underlying topological
space of a diamond.

We begin by recalling the basic theory of spectral topological spaces. This material is taken
from section §2 of [51] where most of the proves can be found.

Definition 1.1.18. For topological spaces S, T and a continuous map f : S → T we say
that:

1. T is spectral if it is quasi-compact, quasi-separated, and it has a basis of open neigh-
borhoods stable under intersection that consists of quasi-compact and quasi-separated
subsets.

2. T is locally spectral if it admits an open cover by spectral spaces.

3. f is a spectral map of spectral spaces if S and T is are spectral and f is quasi-compact.

4. f is a spectral map of locally spectral spaces if S and T are locally spectral and for
every quasi-compact open U ⊆ S and quasi-compact open V ⊆ T with f(U) ⊆ V the
function f |U : U → V is spectral.

Theorem 1.1.19. (Hochsteter) For a topological space T the following conditions are equiv-
alent:

1. T is spectral.

2. T is homeomorphic to the spectrum of a ring.

3. T is a projective limit of finite T0 topological spaces.

Moreover, the category of spectral topological spaces with spectral maps is equivalent to the
pro-category of finite T0 topological spaces.
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Given a spectral space T , we say that a subset S is constructible if it lies in the Boolean
algebra formed by quasi-compact open subsets of T . For a locally spectral space T , a subset S
is constructible if for every quasi-compact open subset U ⊆ T the subset S∩U is constructible
in U . The patch (or constructible) topology on T is the one in which constructible subsets
form a basis for the topology. A spectral space is Hausdorff and profinite for its patch
topology and a locally spectral space is Hausdorff and locally profinite for the patch topology.

Proposition 1.1.20. A continuous map of locally spectral spaces f : S → T is spectral if
and only if it is continuous for the patch topology.

Definition 1.1.21. 1. A map of topological spaces f : S → T is generalizing if for ele-
ments t1, t2 ∈ T and s1 ∈ S such that f(s1) = t1 and t2 generalizes t1, there exists an
element s2 generalizing s1 with f(s2) = t2.

2. A map of topological spaces f : S → T is specializing if for elements t1, t2 ∈ T and
s1 ∈ S such that f(s1) = t1 and t2 specializes from t1, there exists an element s2

specializing from s1 with f(s2) = t2.

For a locally spectral space T we say that a subset is pro-constructible if it is closed for
the patch topology, or equivalently if it is an arbitrary intersection of constructible subsets.
The following will be really useful for our purposes.

Proposition 1.1.22. (See [51] 2.4) Let T be a spectral space and S ⊆ T a pro-constructible
subset. The closure S of S in T consists of the points that specialize from a point in S.

Corollary 1.1.23. Let f : S → T be a spectral map of spectral spaces. If f is specializing
then it is also a closed map.

We warn the reader that the analogue of 1.1.23 for locally spectral spaces does not hold.

Proposition 1.1.24. (See [51] 2.5) Let f : S → T be a spectral map of spectral topological
spaces. Assume f is surjective and generalizing, then it is a quotient map.

One can think of spectral spaces as the topological spaces that arise from an algebro-
geometric situation. For this reason we will restrict our attention to diamonds that have this
behavior.

Definition 1.1.25. (See [51] 11.17) Let X be a diamond. We say that X is a spatial
diamond if it is quasi-compact, quasi-separated and |X| has a basis of open neighborhoods
of the form |U | where U ⊆ X is a quasi-compact open embedding. We say that X is locally
spatial if it has an open cover by spatial diamonds.

As promised, the topology of spatial diamonds is spectral. Nevertheless, we remark
that a diamond that has a spectral underlying topological space might not necessarily be
spatial since the quasi-compactness and quasi-separatedness conditions of definition 1.1.25
are imposed on the topos-theoretic sense.
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Proposition 1.1.26. (See [51] 11.18, 11.19) Let X and Y a be locally spatial diamonds and
f : X → Y a morphism of v-sheaves. The following assertions hold:

1. |X| is a locally spectral topological space.

2. Any open subfunctor U ⊆ X is a locally spatial diamond.

3. |X| is quasi-compact (respectively quasi-separated) as a topological space if and only if
X is quasi-compact (respectively quasi-separated) as a v-sheaf.

4. The topological map |f | is spectral and generalizing. In particular, if |X| is quasi-
compact and |f | is surjective then by proposition 1.1.24 it is also a quotient map.

1.1.3 Pre-adic spaces as v-sheaves

The theory of diamonds is mainly of “analytic” nature. On the other hand, we will need
to consider some spaces that have a scheme-theoretic and formal-scheme-theoretic flavor
instead. The category of v-sheaves allows us to consider these three types of spaces at the
same time. In what follows, we show (following the Berkeley notes) how to consider any
pre-adic space over Zp as a v-sheaf. Interestingly, this functor is by construction far from
being fully-faithful, but we will justify below why the new morphisms are mostly of analytic
nature.

Let us give a quick recollection of the appendix to lecture 3 of [53]. Let Caffop denote the
opposite category to the category of complete Huber pairs. This category can be regarded as
a site when we consider the topology generated by rational covers. Although the topology in
this site is not subcanonical any Huber pair (A,A+) ∈ Caffop defines a sheaf Spa(A,A+)Y :
Caffop → Sets by taking sheafification of the functor (B,B+) 7→ HomCaff((A,A+), (B,B+)).
Scholze and Weinstein define the category of Yoneda-adic spaces as sheaves F : Caffop → Sets
that are locally isomorphic to Spa(A,A+)Y for a suitable notion of open immersion of sheaves.
Recall the category (V )ind whose objects are triples (X,OindX , (| · (x)|)x∈X) where X is a
topological space, OindX is a sheaf of ind-topological rings and | · (x)| is an equivalence class of
valuations on OX,x. For a Huber pair (A,A+) Scholze and Weinstein define Spaind(A,A+) to
be the object in (V ind) with underlying topological space Spa(A,A+) and with OindX defined
as the sheafification of the structure presheaf of Spa(A,A+) in the category of ind-topological
rings. A pre-adic space is an object X ∈ (V ind) that is locally of the form Spaind(A,A+).

Proposition 1.1.27. (See [53] 3.5.3) For a pre-adic space X, the functor

hX = ((A,A+) 7→ Hom(V ind)(Spaind(A,A+), X))

is a Yoneda adic space. The functor X 7→ hX is an equivalence of categories between pre-adic
spaces and Yoneda-adic spaces. This equivalence preserves the notions of open immersions
and the functor associated to Spaind(A,A+) gets identified with SpaY (A,A+).
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Certain things are easier to think in one perspective than in the other. An important
aspect is that every pre-adic space X has an underlying topological space, and we can define
the open analytic locus |X|an and the non-analytic locus |X|na in the naive way. That is,
a point x ∈ |X| is analytic if for every open affinoid x ∈ Spaind(A,A+) ⊆ |X| (equivalently
one affinoid) x is analytic in Spa(A,A+).

Proposition 1.1.28. Given a pre-adic space X there is a reduced non-analytic adic space
Xna and a map Xna → X which is final in the category of maps Y → X with Y a reduced
non-analytic adic space. Moreover, the map |Xna| → |X|na is a homeomorphism.

Proof. In the affinoid case we have that Spaind(A,A+)na is given by

Spa(A/A◦◦ · A,A+/A◦◦ · A+).

Observe that since A/A◦◦ · A is discrete it is sheafy. Moreover if (B,B+) has the dis-
crete topology then Hom(Spaind(B,B+)), Spaind(A,A+)) are given by maps of Huber pairs
(A,A+)→ (B,B+) and all topological nilpotents must map to 0 in B proving the universal
property. The claim of topological spaces is clear.

For general pre-adic space X we define Xna to have underlying topological space |X|na
and if V ⊆ |Xna| is of the form U∩|X|na for U ⊆ |X| open and of the form U = Spaind(A,A+)
we let

OindXna(V ) := OindX (U)/A◦◦ · OindX (U).

Since the construction A 7→ A/A◦◦ is compatible with rational localization OindXna(V ) is well-
defined and glues to a sheaf of ind-topological rings on Xna. Moreover, locally the ind-
topological rings are constant because A/A◦◦ is sheafy. This implies Xna is an adic space.

Definition 1.1.29. 1. We define the presheaf Z♦p on Perf as the moduli of untilts, more
precisely:

Z♦p (Y ) = {(Y ], ι)}/ ∼=

Where Y ] is a perfectoid space in Perfd and ι : (Y ])[ → Y is an isomorphism of
perfectoid spaces in characteristic p.

2. Given a pre-adic space X/Spa(Zp,Zp) we define the presheaf X♦ on Perf as:

X♦(Y ) = {(Y ], ι, f)}/ ∼=

Where Y ] ∈ Perfd, ι : (Y ])[ → Y is an isomorphism of perfectoid spaces in character-
istic p, and f : Y ] → X is a morphism of pre-adic spaces.

Notice that there is a canonical morphism X♦ → Z♦p given by forgetting the last entry of
data.

Proposition 1.1.30. (See [53] 18.1.1) For any pre-adic space X (not necessarily analytic)
over Zp, the presheaf X♦ is a small v-sheaf.
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From now on, given a Huber pair (A,A+) we will denote the v-sheaf (Spa(A,A+)Y )♦

by Spd(A,A+) and we will also drop the decoration (·)Y when referring to affinoid pre-adic
spaces. If R is a base ring whose underlying topology (and ring of integral elements) is
understood from the context we will abbreviate Spd(R,R+) by R♦. For example, F♦p , Z♦p ,
Q♦p , etc.

Proposition 1.1.31. Let us collect some facts about ♦, that are either in the literature or
are easy to prove:

1. For any perfectoid space X we have that X♦ ∼= hX[ as v-sheaves. (See [51] 15.2).

2. For any analytic pre-adic space X over Zp, the functor X♦ is a locally spatial diamond
and |X♦| ∼= |X|. (See [51] 15.6).

3. For any pre-adic space over Zp there is a surjective map of topological spaces |X♦| →
|X| (See [53] 18.2.2).

4. If PreAdZp denotes the category of pre-adic spaces over Zp then ♦ : PreAdZp → P̃erf
commutes with limits and colimits. More precisely, if Xi is a family of pre-adic spaces
indexed by a small category I and the functor lim−→i∈I Xi (respectively lim←−i∈I Xi) is rep-

resented by a pre-adic space X then X♦ = lim−→i∈I X
♦
i (respectively X♦ = lim←−i∈I X

♦
i ).

Indeed, both computations are done in the category of sheaves of a Grothendieck site.
The only difference in the computations is the topology that one has to use to sheafify.
But if a colimit is represented by a pre-adic space by proposition 1.1.30 it is already a
v-sheaf.

5. For any complete Huber pair (B,B+) over Zp the v-sheaf Spd(B,B+) is separated
over Z♦p . Indeed, the basechange of the diagonal map Spd(B,B+) → Spd(B,B+) ×Z♦

p

Spd(B,B+) by any map Spa(R,R+) → Spd(B,B+) ×Z♦
p

Spd(B,B+) is given by the

Zariski closed immersion defined by the ideal R]·I∆ with I∆ the image of ker(B⊗ZpB →
B) in R].

6. For any pre-adic space X the map of v-sheaves (Xna)♦ → X♦ is a closed immersion
of v-sheaves and X♦ \ (Xna)♦ = (Xan)♦. Indeed, this can be verified locally so we may
assume X = Spa(A,A+). If Y = Spa(R,R+) is a strictly totally disconnected space
then Y ×X♦ (Xna)♦ is a Zariski closed immersion defined by the image ideal of A◦◦ in
R].

1.2 The olivine spectrum

As we will see below, given a pre-adic space X over Zp the map |X♦| → |X| of remark 1.1.31
will usually not be injective when X has non-analytic points. Although the map is always
surjective, it might not be a quotient map in pathological cases. To develop our theory
of specialization map we need better understanding of the topological spaces of the form
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|Spd(A,A)| for I-adic rings A over Zp. To tackle this difficulty we introduce below what we
call the olivine spectrum of a Huber pair, which is a very small variation of Huber’s adic
spectrum. The interest in studying the olivine spectrum is that if (B,B+) is a complete
Huber pair over Zp subject to some mild “finiteness” conditions then the topological space
|Spd(B,B+)| is homeomorphic to the olivine spectrum of (B,B+).

For the following fix (B,B+) a Huber pair (not necessarily over Zp and not necessarily
complete).

1.2.1 Review, terminology and conventions

We assume the reader to be familiar with the construction of Huber’s adic spectrum,
Spa(B,B+), but we review some key aspects and definitions. We also fix some terminology.

1. Given x ∈ Spa(B,B+) we define the support supp(x) ⊆ B as the set of elements b ∈ B
for which |b|x = 0. This is a prime ideal of B.

2. We say that a point x ∈ Spa(B,B+) is non-analytic if supp(x) is an open ideal of B,
we say it is analytic otherwise.

3. Given an equivalence class of valuations on B, say represented by | · |x : B → Γx ∪{0},
and a convex subgroup H ⊆ Γx, we define a second equivalence class of valuations
represented by | · |y : B → (Γx/H) ∪ {0} with |b|y = |b|x + H ∈ Γx/H when |b|x 6= 0
and |b|y = 0 when |b|x = 0. Any equivalence class of valuations constructed in this way
is called a vertical generization of x.

4. Given a complete Huber pair (B,B+) and a point x ∈ Spa(B,B+) there is a residue
field map of complete Huber pairs ι∗x : (B,B+)→ (Kx, Kx

+). In this case Kx is either
a discrete field or a complete non-Archimedean field. In both cases, K+

x is an open and
bounded valuation subring of Kx. The induced map ιx : Spa(Kx, Kx

+)→ Spa(B,B+)
is a homeomorphism onto the subspace of Spa(B,B+) consisting of continuous vertical
generizations of x. The map satisfies the following universal property: For any map of
complete Huber pairs f ∗ : (B,B+)→ (A,A+) such that f(Spa(A,A+)) ⊆ Spa(B,B+)
consists of vertical generizations of x, there is a unique factorization f ∗ = g∗ ◦ ι∗x.

5. Vertical generizations and residue field maps have the following compatibility. Fix
x ∈ Spa(B,B+) with residue field (Kx, Kx

+), and consider K◦x the subring of power-
bounded elements. Given y a continuous vertical generizations of x we can associate
a valuation subring K+

y by letting K+
y = {b ∈ Kx | |b|y ≤ 1}. This association gives

a bijection between the set of continuous vertical generizations of x and valuation
subrings of K◦x containing K+

x . Moreover, in this case the residue field at y is (Kx, K
+
y ).

6. We say that a valuation x is trivial if it is equivalent to some valuation for which
Γx = {1}. The residue field of a trivial valuation is discrete.

7. We say that a valuation is microbial if it has a non-trivial rank 1 vertical generization.
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8. For technical reasons that will become clear to the reader below, we take the convention
of considering trivial valuations as rank 1 valuations.

9. Given a valuation | · |x of B we define the characteristic subgroup of | · |x, denoted by
cΓx, as the smallest convex subgroup of Γx containing all elements of the form γ = |b|x
for b ∈ B with 1 ≤ γ.

10. Given an equivalence class of valuations | · |x and a convex subgroup H ⊆ Γx containing
cΓx, we define a second equivalence class of valuations | · |y with | · |y : B → H ∪ {0}.
We let |b|y = |b|x if |b|x ∈ H and we let |b|y = 0 otherwise. Any equivalence class
of valuations constructed in this way is continuous if | · |x is continuous. Equivalence
classes of valuations constructed in this way are called horizontal specialization of x.

11. Horizontal specializations and residue field maps have the following compatibility. Fix
x ∈ Spa(B,B+) with residue field (Kx, Kx

+). We let KB be the smallest valuation
subring of Kx containing K+

x and the image of B in Kx. We get a natural map of Huber
pairs (B,B+) → (KB, K

+
x ), we consider the induced map f : Spec(KB) → Spec(B).

Horizontal specializations of x are in bijection with prime ideals of B that are in the
image of f . Given a convex subgroup H containing cΓx we can describe the prime
ideal py associated to y as the set of elements of B with |b|x < γ for all γ ∈ H. We
will denote | · |y as | · |x/py.

12. Given a topological space T we construct a partial order on elements of T by letting
t1 ≤ t2 whenever t1 ∈ {t2}. We call this partial order the generization pattern of T .

13. Vertical generizations and horizontal specializations completely describe the generiza-
tion pattern of Spa(B,B+). More precisely, if y is a vertical generization of x then
x ∈ {y} and we let xRy. If z is a horizontal specialization of x then z ∈ {x} and we let
zRx. The generization pattern of Spa(B,B+) is the transitive closure of the relation
R.

1.2.2 Definitions and basic properties

Definition 1.2.1. 1. We let Spo(B,B+), denote the subset of Spa(B,B+)×Spa(B,B+)
consisting of pairs x = (| · |hx, | · |ax) such that | · |ax is a rank 1 valuation and a vertical
generization of | · |hx.

2. Given two elements b1, b2 ∈ B we let Ub1≤b2 6=0 be the set

{x ∈ Spo(B,B+) | |b1|hx ≤ |b2|hx 6= 0},

we call such subsets classical localizations.

3. Given two elements b1, b2 ∈ B we let Nb1<<b2 to be the set

{x ∈ Spo(B,B+) | |b1|ax < |b2|ax 6= 0},

13



we call such subsets analytic localizations.

4. We give Spo(B,B+) the topology generated by classical and analytic localizations, and
we call the resulting topological space the olivine spectrum of (B,B+).

We will denote by h : Spo(B,B+)→ Spa(B,B+) the projection onto the first coordinate.
This map is continuous and both Spo(−,−+) and h are functorial in the category of Huber
pairs.

Definition 1.2.2. Let x ∈ Spo(B,B+).

1. We say that x is non-analytic if | · |ax is trivial. We say that a non-analytic point is
microbial if h(x) is microbial. We say that a non-analytic point is algebraic if | · |hx is
trivial.

2. We say that x is d-analytic if | · |ax is non-trivial. Suppose that x is d-analytic, we say
that it is analytic if h(x) is analytic and we say it is meromorphic otherwise.

3. We say that x is bounded if |B|ax ≤ 1.

4. We say that x is formal if it is bounded and d-analytic.

Notice that for any point x ∈ Spo(B,B+) the set h−1(h(x)) has at most one d-analytic
point and at most one non-analytic point. The cardinality of h−1(h(x)) is either one or two.
If x is d-analytic then h−1(h(x)) has cardinality one only when x is analytic. We warn the
reader that although the definitions are designed so that x ∈ Spo(B,B+) is analytic if and
only if h(x) ∈ Spa(B,B+) is analytic this is not the case for non-analytic points. Indeed, if
x is meromorphic it is d-analytic but h(x) is non-analytic. Meromorphic points behave as
analytic points but they are not fully detached from their algebraic nature.

Definition 1.2.3. We define the support ideal, supp(x) ⊆ B, as supp(h(x)). We define the
specialization ideal, sp(x) ⊆ B+ as the set of elements of B+ with |b|hx < 1. Whenever x is
bounded we define the deformation ideal, denoted def(x), as the prime ideal of elements of
B for which |b|ax < 1.

Notice that x is bounded if and only if cΓxa = {1}. Moreover, this only happens if x is
either non-analytic or formal. When x is bounded it is non-analytic when supp(x) = def(x)

and formal otherwise. We can define the bounded locus, denoted Spo(B,B+)
†
, to be the

subset of points that are bounded. This is a closed subset since it is the complement of
∪b∈BN1<<b.

Definition 1.2.4. Let x and y be two points in Spo(B,B+).

1. We say that y is a vertical generization of x (x is a vertical specialization respectively)
if | · |ax = | · |ay and | · |hy is a vertical generization of | · |hx in Spa(B,B+).

2. We say that y is a meromorphic generization of x (meromorphic specialization respec-
tively) if y is meromorphic, x is non-analytic and h(x) = h(y).
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3. We say that y is a formal generization of x (formal specialization respectively) if y is
formal, x is non-analytic def(y) = supp(x) and | · |hx = | · |hy/def(y).

Given x ∈ Spo(B,B+) let I≤(x) denote the set of generizations of x in Spo(B,B+)
and let I≤ver(x) denote the set of vertical generizations of x. If the context is clear, for a
point y ∈ Spa(B,B+) we will also use I≤ver(y) to denote the vertical generizations of y in
Spa(B,B+). Let us make some easy observations and set some convenient notation:

1. If x is non-analytic it has a meromorphic generization (necessarily unique) if and only
if x is a microbial. We denote this generization by xmer.

2. If x is meromorphic it has a unique meromorphic specialization, we denote it by xmer.

3. If x is formal it has a unique formal specialization, we denote it by xfor. If x is
non-analytic, we let xFor denote the set of formal generizations of x.

Example 1.2.5. If B = Fp[[t]], the ring of formal power series over Fp endowed with the
discrete topology, then Spa(B,B) consists of 3 points:{

η = | · |η, s = | · |s, t = | · |t
}

Here | · |η is the trivial valuation with residue field Fp ((t)), | · |s is the trivial valuation
with residue field Fp and | · |t is the (t)-adic valuation on Fp[[t]] with residue affinoid field
(Fp ((t)) ,Fp [[t]]). All three valuations have rank 1. The only non-trivial vertical generization
in Spa(B,B) goes from | · |t to | · |η.

On the other hand Spo(B) has 4 points:{
η = (| · |η, | · |η), s = (| · |s, | · |s), ta = (| · |t, | · |t), th = (| · |t, | · |η)

}
One can verify directly from the definition that {η} = U1≤t6=0, {η, th, ta} = U0≤t6=0, {ta} =
Nt2<<t and {ta, s} = Nt<<1, and that these are the only proper open subsets.

In this example s, η and th are non-analytic. Moreover, th is microbial, and ta is both
a meromorphic and formal d-analytic point. The generization pattern is as follows: η is a
vertical generization of th, th is the meromorphic specialization of ta, and s is the formal
specialization of ta. We have that Spo(Fp[[t]],Fp[[t]])† = Spo(Fp[[t]],Fp[[t]]).

The following proposition shows that vertical generizations, formal specializations and
meromorphic specializations completely describe the generization pattern in Spo(B,B+).

Proposition 1.2.6. Let x ∈ Spo(B,B+).

1. If x is d-analytic then I≤(x) = I≤ver(x).

2. If x is non-analytic then I≤(x) = I≤ver(x) ∪ I≤ver(xmer) ∪ (
⋃
z∈I≤ver(x)

zFor).
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Proof. We start by proving the right to left inclusion. Let y ∈ I≤ver(x) ∪ I≤ver(xmer) ∪
(
⋃
z∈I≤ver(x)

zFor) if x is non-analytic and let y ∈ I≤ver(x) otherwise. Since h is continuous

and h(y) is a generization of h(x) in Spa(B,B+) we have that y is contained in every clas-
sical localization containing x, so it is enough to check on analytic localizations. Suppose
that x ∈ Nb1<<b2 , if y is a vertical generization we have that | · |ay = | · |ax so y ∈ Nb1<<b2 .
If x is non-analytic then |b1|ax = 0 and |b2|ax = 1, this implies that |b1|axmer = 0 and that
|b2|axmer 6= 0, so xmer ∈ Nb1<<b2 whenever xmer exists. Moreover, for y ∈ xFor, we have that
def(y) = supp(x) which gives |b1|ay < 1, |b2|ay = 1, and xFor ∈ Nb1<<b2 .

Now we prove the left to right inclusion, for this take y ∈ I≤(x). Using classical lo-
calizations one can deduce that supp(y) ⊆ supp(x), and if x is d-analytic we claim that
supp(y) = supp(x). Indeed, let b ∈ B such that |b|ax /∈ {0, 1}, and let b1 ∈ supp(x). If
|b|ax < 1 then |b|ay < 1, which implies that y is d-analytic. Additionally, the inequalities
|b1|ay < |bn|ay must hold for all n since x ∈ Nb1<<bn and y ∈ I≤(x). In a similar way, if 1 < |b|ax
then 1 < |b|ay and we may look at the inequalities |b1 · bn|ay < |b|ay instead. In both cases the
Archimedean property of rank 1 valuations imply that b1 ∈ supp(y). Since the only gener-
izations of h(x) in Spa(B,B+) that have the same support as h(x) are vertical generizations
we must have h(y) ∈ I≤ver(h(x)). Consequently, y ∈ I≤ver(x) holds in the d-analytic case.

Suppose now that x is non-analytic, if supp(x) = supp(y) then we can reason as above
to conclude y ∈ I≤ver(x) ∪ I≤ver(xmer). Let us assume there is b ∈ supp(x) \ supp(y). Since
x ∈ Nb<<1 we have 0 < |b|ay < 1 and that y is d-analytic. By similar reasoning for all b1 ∈ B
we have |b · bn1 |ay < 1 which implies that y is formal, we also have that supp(x) ⊆ def(y).
Moreover, for elements b2 /∈ supp(x) we have x ∈ Ub≤bn2 6=0 for all n, this implies that |b2|ay = 1
so def(y) = supp(x). If we let z = yfor then supp(z) = supp(x) and one can check from the
construction of horizontal specializations that z is also a generization of x. As above, we may
conclude that h(z) is a vertical generization of h(x), and since both z and x are non-analytic
then z is a vertical generization of x. In other words, z ∈ I≤ver(x) and y ∈ zFor.

The olivine spectrum is compatible with completion and rational localization.

Proposition 1.2.7. Let (B̂, B̂+) denote the completion of (B,B+), the map Spo(B̂, B̂+)→
Spo(B,B+) is a homeomorphism.

Proof. The map Spo(B̂, B̂+) → Spo(B,B+) is a bijection of sets since Spa(B̂, B̂+) →
Spa(B,B+) is. Since Spa(B̂, B̂+) ∼= Spa(B,B+) classical localizations of Spa(B̂, B̂+) are
open in Spa(B,B+). It is enough to prove that if f, g ∈ B̂ then Ng<<f is open in Spo(B,B+).
Let x ∈ Ng<<f and let fx ∈ B with |fx|hx = |f |hx. We have that

Ufx≤f 6=0 ∩ Uf≤fx 6=0 ∩Ng<<f = Ufx≤f 6=0 ∩ Uf≤fx 6=0 ∩Ng<<fx ,

so we can reduce to the case in which f ∈ B. Take a ring of definition B0 ⊆ B and an ideal
of definition I ⊆ B0 with |i|hx ≤ |f |hx for a finite set of generators i ∈ I. Let gx ∈ B such that
g − gx ∈ I2 · B̂0. Then

(
⋂
i

Ui≤f 6=0) ∩Ngx<<f = (
⋂
i

Ui≤f 6=0) ∩Ng<<f
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which proves that the left hand side is also open in Spo(B,B+). Indeed, we have the
inequalities |g|ax ≤ max(|gx|ax, |g − gx|ax), |gx|ax ≤ max(|g|ax, |g − gx|ax) and |g − gx|ax < |f |ax by
the construction of gx.

Proposition 1.2.8. Let s, t1, . . . , tn ∈ B such that the ti generate an open ideal in B and
consider the map of Huber pairs (B,B+) → (R,R+) associated to the rational localization
U( t1,...,tn

s
) ⊆ Spa(B,B+). The induced map Spo(R,R+)→ Spo(B,B+) is a homeomorphism

onto h−1(U( t1,...,tn
s

)).

Proof. The only thing to verify is that for every r1, r2 ∈ R the analytic localization Nr1<<r2 ⊆
Spo(R,R+) is also open in Spo(B,B+). By proposition 1.2.7 and the construction of R
as a rational localization we may assume that r1, r2 ∈ B[1

s
] ⊆ R since R is defined as

the completion of B[1
s
] under certain linear topology. Let r1 = b1

sn1
and r2 = b2

sn2
and

let m = n1 − n2. Then Nr1<<r2 = Nb1<<b2·sm ∩ Spo(R,R+) when m is non-negative and
Nr1<<r2 = Nb1·sm<<b2 ∩ Spo(R,R+) otherwise.

The following example generalizes example 1.2.5. We encourage the reader to understand
this example carefully before moving on. This will also be used in the proof of lemma 1.2.33
and theorem 4.

Example 1.2.9. Suppose that B and B+ are valuation rings with the same fraction field and
suppose that B has the discrete topology. To describe Spo(B,B+) it is enough to realize that
Spo(B,B+) ⊆ Spo(B+, B+) and that it acquires the subspace topology. Indeed, it corresponds
to the intersection of the classical localizations ∩b∈B\B+U0≤b 6=0 ⊆ Spo(B,B+) (often times
only one of the terms in this intersection is needed). To simplify notation we only describe
explicitly Spo(B+, B+), the advantage of this case is that all points are bounded and the
deformation ideal def makes sense.

Consider the map Spo(B+, B+)→ Spec(B+)3 given by

q 7→ (supp(q), def(q), sp(q)).

The map is injective and the image consists of the set of triples (q1, q2, q3) such that q1 ⊆
q2 ⊆ q3, and such that the closed interval [q1, q2] (in the sense of ordered sets) has cardinality
one or two. A triple q = (q1, q2, q3) is d-analytic (necessarily meromorphic) if and only if
q1 6= q2, in this case there exists an element b ∈ B+ with b ∈ q2 \q1. We have that q ∈ I≤ver(r)
if q1 = r1, q2 = r2 and q3 ⊆ r3. Also, q = rmer if r1 = q1 = r2, q2 6= q1 and r3 = q3. With this
setup formal generizations are unique and r is the formal specialization of q (i.e. r = qfor)
if q1 6= q2, r1 = q2 = r2 and r3 = q3.

To each element 0 6= g ∈ B+ \ (B+)× we can associate two ideals q+
g and q−g where q+

g is
the largest prime ideal not containing g and q−g is the smallest prime ideal containing g. We
have that q+

g ⊆ q−g and that the interval [q+
g , q

−
g ] has cardinality two.

When f
g
∈ B+ then Uf≤g 6=0 = U0≤g 6=0 and consists of triples (q1, q2, q3) with q1 ≤ q−g . On

the other hand if g
f
∈ B+ we can let b = g

f
then Uf≤g 6=0 = U1≤b 6=0 and it consists of triples

with q3 ≤ q−b . Notice that the two families of open sets U1≤b 6=0 and U0≤g 6=0 are nested (i.e.
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one of U1≤b2 6=0 ⊆ U1≤b1 6=0 or U1≤b1 6=0 ⊆ U1≤b2 6=0 holds). In particular, finite intersections of
classical localizations are all of the form U1≤b 6=0 ∩ U0≤g 6=0 for some b, g ∈ B+.

When n = f
g
∈ B+ then Ng<<f is empty and Nf<<g = U0≤g 6=0 ∩ Nn<<1. The set Nn<<1

consists of the triples q = (q1, q2, q3) such that q+
n ≤ q2. The family of sets Nn<<1 is again

nested.
In summary, if x ∈ U ⊆ Spo(B+, B+) for U an open subset there are elements g, b, n ∈

B+ with x ∈ U0≤g 6=0 ∩ U1≤b6=0 ∩ Nn<<1 ⊆ U and elements of U0≤g 6=0 ∩ U1≤b 6=0 ∩ Nn<<1 ⊆ U
correspond to triples (q1, q2, q3) satisfying: q+

n , q1 ⊆ q2 ⊆ q3 ⊆ q−b and q1 ⊆ q−g .

1.2.3 Olivine Huber pairs

For the rest of the section (B,B+) will denote a complete Huber pair over Zp.

Proposition 1.2.10. If R is a Tate Huber pair the projection map h : Spo(R,R+) →
Spa(R,R+) is a homeomorphism.

Proof. Since (R,R+) is Tate there are no trivial continuous valuations in Spa(R,R+). In
particular every point in Spo(R,R+) is d-analytic and h is injective. If xa is the maxi-
mal generization of x in Spa(R,R+) then h−1(x) = {(x, xa)}. It is enough to prove that
h(Nr1<<r2) is open. If $ ∈ R is a topologically nilpotent unit, then

h(Nr1<<r2) =
⋃
0<n

{z ∈ Spa(R,R+) | |rn1 |z ≤ |rn2$|z 6= 0}

Indeed, a point x ∈ Spa(R,R+) is in h(Nr1<<r2) if |r1|xa < |r2|xa . By the Archimedean

property of rank 1 valuations there is n ∈ N such that ( |r1|xa|r2|xa
)n ≤ |$|xa since $ is a unit and

|$|xa > 0. On the other hand, if |rn1 |x ≤ |rn2 · $|x we also have |rn1 |xa ≤ |rn2 · $|xa < |rn2 |xa
since $ is topologically nilpotent.

If m : (B,B+)→ (R,R+) is a map of Huber pairs, we denote by Spo(m) : Spo(R,R+)→
Spo(B,B+) the corresponding map of olivine spectra. In case (R,R+) is Tate we have a
continuous map Spo(m) ◦ h−1 : Spa(R,R+) → Spo(B,B+). When the context is clear, we
also abbreviate Spo(m) ◦ h−1 by Spo(m).

Remark 1.2.11. The topological considerations in what follows can be done purely in the
context of adic spaces without any reference to perfectoid spaces. To do this one substitutes
|Spd(B,B+)| by Spo(B,B+)

′
where this second space has Spo(B,B+) as underlying set but

has the strongest topology making Spo(m) continuous for maps m : (B,B+) → (R,R+)
ranging over all Tate Huber pairs. We do not pursue this.

We define a map π : |Spd(B,B+)| → Spo(B,B+) as follows. Let [x] ∈ |Spd(B,B+)| be
represented by a geometric point x : Spa(Cx, Cx

+)→ Spd(B,B+), and let s ∈ Spa(Cx, Cx
+)

denote the unique closed point. Recall that the map is given by an untilt C]
x and a map

of Huber pairs f ∗x : (B,B+) → (C]
x, C

]
x

+
). We define π([x]) to be Spo(fx)([

−1(s)) where

[ : Spa(C]
x, C

]
x

+
) → Spa(Cx, Cx

+) is the tilting homeomorphism. This map doesn’t depend
of the representative picked.
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Proposition 1.2.12. The map π : |Spd(B,B+)| → Spo(B,B+) defined above is continuous
and bijective.

Proof. To prove π is continuous one has to show that for any map f : Spa(R,R+) →
Spd(B,B+) with (R,R+) perfectoid, the composition

|Spa(R,R+)| → |Spd(B,B+)| → Spo(B,B+)

is continuous. But if f ] : (B,B+) → (R], R]+) is the map of Huber pairs associated to f
then π ◦ |f | is given by Spo(f ]) ◦ [−1. Let us prove injectivity, take two geometric points
yi : Spa(Ci, Ci

+) → Spd(B,B+) and suppose that π(y1) = π(y2). We need to show that
[y1] = [y2]. Let x be the common image in Spo(B,B+) and let (Kh(x), Kh(x)

+) be the

affinoid residue field of h(x) in Spa(B,B+). The map (B,B+) → (C]
i , C

]
i

+
) factor through

(B,B+)→ (Kh(x), Kh(x)
+). We split our analysis in three cases.

Case 1: Suppose that x is analytic. In this case the closed point si of Spa(C]
i , C

]
i

+
) maps

to h(π(x)) which is in the analytic locus Spa(B,B+)an. This case follows from the bijectivity
of |X♦| → |X| for analytic pre-adic spaces (See remark 1.1.31).

Case 2: Suppose that x is meromorphic, we have that h(x) is non-analytic in Spa(B,B+).
Let K◦h(x) := {k ∈ Kh(x) | |k|ax ≤ 1} since | · |ax is non-trivial K◦h(x) is a proper valuation

subring of Kh(x). Choose b ∈ B such that either 0 < |b|ax < 1 or |b|ax > 1, then the subspace
topology on (K◦h(x)) ⊆y∗i OC]i

coincides with the (b)-adic topology or, respectively, the (1
b
)-

adic topology. Taking the completion with respect to this topology we get a commutative
diagram:

Spa(C1, C1
+)

Spa(C2, C2
+) Spd(K̂h(x), K̂

+
h(x))

Spd(Kh(x), Kh(x)
+)

p′1
y1p′2

y2

ιx

The maps p′i, map the respective closed points to the same underlying topological point of
Spd(K̂h(x), K̂

+
h(x)). Since Spa(K̂h(x), K̂

+
h(x)) is analytic we can conclude as in the first case.

Case 3: Suppose that x is non-analytic, in this case h(x) is non-analytic in Spa(B,B+).
We have that (Kh(x), Kh(x)

+) is given the discrete topology. Since | · |ax is trivial we have that

yi(Kh(x)) ⊆ O],×
Ci

. After choosing pseudo-uniformizers $i ∈ OC]i
we may extend the yi to

continuous adic maps of topological rings p′∗i : Kh(x)[[t]] → OC]i
where Kh(x)[[t]] is given the

(t)-adic topology. These induce the following commutative diagram:
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Spa(C1, C1
+)

Spa(C2, C2
+) Spd(Kh(x) ((t)) , K+

h(x) + t ·Kh(x) [[t]])

Spd(Kh(x), Kh(x)
+)

p′1
y1p′2

y2

ιx

The maps p′i again send the closed point to the same point in Spd(Kh(x) ((t)) , K+
h(x) + t ·

Kh(x) [[t]]) and this space is again the diamond associated to an analytic space so we may con-
clude as above. This finishes the proof of injectivity. The argument given above also explains
how to construct a geometric point of px : Spa(C,C+) → Spa(B,B+) with Spo(px)(s) = x.
Indeed, we can take a completed algebraic closure of Kh(x) (K̂h(x), or Kh(x) ((t)) respectively)
when x is analytic (meromorphic or non-analytic respectively).

Definition 1.2.13. Whenever x is d-analytic we let (Kx, Kx
+) denote (K̂h(x), K̂

+
h(x)), and if

x is non-analytic we let (Kx, Kx
+) denote (Kh(x) ((t)) , K+

h(x) + t ·Kh(x) [[t]]) as in the proof

of proposition 1.2.12. In both cases we call (Kx, Kx
+) the pseudo-residue field at x.

Remark 1.2.14. The pseudo-residue field map Spo(Kx, Kx
+) → Spo(B,B+) is a home-

omorphism onto its image. The functor Spd(Kx, Kx
+) → Spd(B,B+) surjects onto the

subsheaf of Spd(B,B+) consisting of maps that factor through I≤ver(x), but when x is non-
analytic the map Spd(Kx, Kx

+) → Spd(B,B+) is not injective. Actually, when x is non-
analytic and | · |hx is non-trivial the subsheaf of points that factor through I≤ver(x) is not
representable by an adic space.

Corollary 1.2.15. For any map of Huber pairs m∗ : (B1, B1
+)→ (B2, B2

+) the map Spo(m)
is compatible with vertical generization. More precisely, if x ∈ Spo(B2, B2

+), y = Spo(m)(x)
and y′ is a vertical generization of y then there exist x′, a vertical generization of x, with
Spo(m)(x′) = y′.

Proof. Given x ∈ Spo(B2, B2
+) and y ∈ Spo(B1, B1

+) as in the statement we may, after
making some choices if necessary, construct the following commutative diagram of pseudo-
residue fields:

Spd(Kx, Kx
+) Spd(Ky, Ky

+)

Spd(B2, B2
+) Spd(B1, B1

+)

Since the map Spd(Kx, Kx
+) → Spd(Ky, Ky

+) is a map of locally spatial diamonds it is
generalizing and consequently surjective. But |Spd(Kx, Kx

+)| = I≤ver(x) and analogously for
y.

Lemma 1.2.16. The topological spaces Spo(B,B+) and |Spd(B,B+)| have the same gener-
ization pattern.
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Proof. Since the map |Spd(B,B+)| → Spo(B,B+) is continuous the generization pattern of
|Spd(B,B+)| is smaller than that of Spo(B,B+), it is enough by proposition 1.2.6 to prove
that formal, meromorphic and vertical specializations are specializations in |Spd(B,B+)|.
For any x ∈ Spo(B,B+) the pseudo-residue field map ιx : Spd(Kx, Kx

+) → Spd(B,B+) in
the proof of proposition 1.2.12 defines a bijection onto I≤ver(x) which proves that vertical
specializations are specializations in Spd(B,B+).

Let x ∈ Spo(B,B+) be d-analytic and let b such that |b|ax /∈ {0, 1}. Let p : Spa(C,C+)→
Spa(B,B+) be a geometric point mapping to x and let $ ∈ C◦◦ be either p∗(b) or 1

p∗(b)
.

To this choice we will associate two product of points as follows. Let R+ =
∏∞

i=1C
+, let

$0 = ($
1
n )∞n=1 and $∞ = ($n)∞n=1. Let R+

0 (R+
∞ respectively) be R+ endowed with the $0-

topology ($∞-topology respectively), and let R0 = R+
0 [ 1

$0
] (R∞ = R+

∞[ 1
$∞

] respectively).
We have diagonal maps of rings C+ → R+

∞ and C → R∞, but we warn the reader that this
maps are not continuous. On the other hand, the map C+ → R+

0 is continuous but $ is not
invertible in R0 so the map does not extend to a map C → R0. Intuitively speaking, the
product of points Spa(R∞, R∞

+) “converges outside” of the locus in which $ is topologically
nilpotent and the product of points Spa(R0, R0

+) “converges outside” of the locus in which
$ is invertible.

Suppose that x is meromorphic, then the affinoid residue field (Kh(x), Kh(x)
+) is given

the discrete topology. In particular, the diagonal map f : B → Kh(x) → R∞ is continuous
and defines a map Spa(R∞, R∞

+) → Spa(B,B+). The space of connected components
π0(|Spa(R∞, R∞

+)|) is the Stone-Čech compactification of N which has as underlying set the
set of ultrafilters of N. Principal ultrafilters {Un}n∈N define inclusions ιn : Spa(C,C+) →
Spa(R∞, R∞

+) that correspond to the nth-projection in the coordinate rings. In particular,
the closed point of a principal connected component maps to x under Spo(f). We claim
that the closed point of a non-principal connected component maps to xmer. It is enough to
construct a commutative diagram as below:

Spa(CU , CU
+) Spa(Kxmer , Kxmer

+)

Spa(R∞, R∞
+) Spa(Kh(x), Kh(x)

+) Spa(B,B+)

We claim that the natural map Kh(x) → CU maps to OCU . Indeed, it is enough to prove
$∞ · Kh(x) ⊆ OCU since then every element of Kh(x) would be power bounded. Clearly
K+
h(x) ⊆ OCU and since Kh(x) = K+

h(x)[b,
1
b
] it is enough to prove that $∞

$n
∈ OCU for n ∈ N.

Clearly $∞
$n
∈
∏∞

i=n+1OC and since our ultrafilter is non-principal complements of finite sets
are in U , which finishes the proof of the claim.

By letting t map to $∞ we get a map Kh(x) ((t))→ CU , the intersection of Kh(x) [[t]] with
C+
U in OCU is K+

h(x)+t·Kh(x) [[t]] = K+
xmer which gives our factorization. Since the set of points

that are contained in a principal connected component and that are closed in |Spa(R,R+)|
is dense within the set of closed points of |Spa(R,R+)|, meromorphic specializations in
Spo(B,B+) are specializations in |Spd(B,B+)|.
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Suppose now that x is formal, since |B|ax ≤ 1 the map (B,B+) → (C,C+) factors
through a map to (OC , C

+) and we have def(x) = B ∩ C◦◦. This allows us to define a map
Spa(R0, R0

+) → Spa(B,B+). As in the previous case the space of connected components
of Spa(R0, R0

+) is Stone-Čech compactification of N, principal connected components of
Spa(R0, R0

+) map to x in Spo(B,B+) and we will show that the non-principal ones map to
xfor.

Let k = OC/C
◦◦ and k+ = C+/C◦◦, it is enough to prove that the map (OC , C

+) →
(CU , CU

+) factors as:

(OC , C
+)→ (k, k+)→ (k ((t)) , k+ + t · k [[t]])→ (CU , CU

+)

Now $
$n0
∈
∏∞

i=n+1OC which implies that |$|U ≤ |$n
0 |U . Since $0 is a pseudo-uniformizer

in CU this implies |$|U = 0. Clearly k ⊆ OCU and we may send t to $0 to construct our
factorization. We may conclude the proof that formal specializations are specializations in
|Spo(B,B+)| as in the previous case.

We say that a Huber pair is formal if it is of the form (B,B) where B is an I-adic ring with
finitely generated ideal I. For the moment we restrict to studying the olivine spectrum of
formal Huber pairs. The main technical advantage of restricting to this case is that the open
unit ball over Spd(B,B) is easy to describe. Indeed, it is represented by Spd(B[[t]], B[[t]])
when this ring is given the (I, t)-adic topology.

Proposition 1.2.17. Let (B,B) be a formal Huber pair then the map |Spd(B,B)| →
Spo(B,B) is a homeomorphism.

Proof. By proposition 1.2.12 we the map is a continuous bijection. Let

Y = Spa(B[[t]], B[[t]])t6=0

and recall that |Y | = |Y ♦| since this is an analytic pre-adic space. Let U be an open subset
of |Spd(B,B+)|, let x ∈ U and let y ∈ Y be a point mapping to x, such that |t|y 6= 0. We
will construct a neighborhood of x contained in U that is open in Spo(B,B).

Given a classical localization Ub1≤b2 6=0 or an analytic localization Nb1<<b2 containing x
we choose quasi-compact neighborhoods of y in Spa(B [[t]], B [[t]]), that we denote Ub1,b2,y
and Nb1,b2,y, whose image in Spo(B,B) are contained in Ub1≤b2 6=0 and Nb1<<b2 respectively.
The construction is as follows, given the classical localization Ub1≤b2 6=0 we pick a finite set of
elements S ⊆ B and a positive integer n such that |s|y ≤ |b2|y for s ∈ S, that |tn|y ≤ |b2|y,
and that the ideal generated by S is open in B. We let Ub1,b2,y be the rational localization
U(S,t

n,b1
b2

) ⊆ Spa(B[[t]], B[[t]]). Rational localizations of affinoid adic spaces are always quasi-

compact open subsets and clearly Spo(f)(h−1(Ub1,b2,y)) ⊆ Ub1≤b2 6=0.
Analogously, given Nb1<<b2 we pick a set S and two positive integers, n1 and n2, such

that |bn1
1 |y ≤ |bn1

2 · t|y, that |s|y ≤ |bn1
2 · t|y for s ∈ S, that |tn2|y ≤ |t · bn1

2 |y and that

S generates an open ideal in B. We let Nb1,b2,y = U(
S,tn2 ,b

n1
1

b
n1
2 ·t

). Since t is topologically
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nilpotent in B[[t]], for any point z ∈ Spa(B[[t]], B[[t]]) we must have |t|z < 1, which proves
Spo(f)(h−1(Nb1,b2,y)) ⊆ Nb1<<b2 . Notice that Nb1,b2,y ⊆ Spa(B[[t]], B[[t]])t6=0.

Let X denote the intersection of all neighborhoods of y of the form Nb1,b2,y and Ub1,b2,y
that were chosen in this way, then Spo(f)(X) is contained in I≤(x). By lemma 1.2.16
|Spd(B,B+)| and Spo(B,B) have the same generization pattern, so we also have that
Spo(f)(X) ⊆ U . We have that Spo(f)−1(U) is open in Spa(B[[t]], B[[t]])t6=0 and that
the two families, Ub1,b2,y ∩ N0,1,y and Nb1,b2,y, consist of quasi-compact open subsets of
Spa(B[[t]], B[[t]])t6=0. A compactness argument in the patch topology of Spa(B[[t]], B[[t]])
will prove that a finite intersection of these neighborhoods is contained in Spo(f)−1(U). We
prove below that the image under Spo(f) of such a finite intersection is open in Spo(B,B).

It is enough to show that if a set Z is a finite intersections of sets of the form

Vb′1,b′2 := {z ∈ Spa(B[[t]], B[[t]])t6=0 | |b′1|z ≤ |b′2|z 6= 0}

where b′1 ∈ B ∪ {tn}n∈N and b′2 ∈ B ∪ t · B, then Spo(f)(Z) is open in Spo(B,B). Observe
that if b′1, b

′
2 ∈ B then Vb′1,b′2 = Spo(f)−1(Ub′1≤b′2 6=0) and that for any Z as above we have

Spo(f)(Z ∩ Vb′1,b′2) = Spo(f)(Z) ∩ Ub′1≤b′2 6=0. This allow us to reduce to the case in which Z
is an intersections of opens such that at least one of b′1 ∈ {tn}n∈N or b′2 = b2 · t holds.

Let T nZ be the subset of B for which either Vtn,b or Vtn+1,(b·t) appear in the expression
of Z as an intersection, we let T<<Z be the set of pairs (b1, b2) ∈ B × B such that Vb1,(b2·t)
appears in the expression of Z as an intersection, and we let T−Z and T+

Z denote the image
of T<<Z under the projection onto the first and second factors respectively. We claim, and
prove below, that Spo(f)(Z) is the intersection of all the sets of the form Ubn1≤bn2 ·b3 6=0 where
(b1, b2) ∈ T<<Z and b3 ∈ T nZ and all the sets of the form Nb1<<b2 , with (b1, b2) ∈ T<<Z . This
proves Spo(f)(Z) is open.

Let z ∈ Z with associated rank 1 point za ∈ Z, let w = Spo(f)(z) and fix b1, b2 and b3

as above. By raising to the nth-power we have that |bn1 |z ≤ |bn2 |z · |tn|z and |tn|z ≤ |b3|z hold.
In particular,

|bn1 |z = |bn1 |hw ≤ |bn2 |hw · |b3|hw = |bn2 |z · |b3|z
holds as well and we can conclude that w ∈ Ubn1≤bn2 ·b3 6=0. Similarly, since t is topologically
nilpotent we have |t|za < 1 which implies that |b1|za < |b2|za and consequently that |b1|aw <
|b2|aw. This says that w ∈ Nb1<<b2 .

To prove the converse containment given a point w in the intersection of those sets we
need to construct a lift landing in Z. Pick a geometric point q : Spa(C,C+) → Spa(B,B)
mapping to w in Spo(B,B), the choice of an element $ ∈ C◦◦,× defines a lift of q to a map
Spa(C,C+)→ Spa(B[[t]], B[[t]])t6=0 simply by letting t map to $. If w is non-analytic then
|b1|aw = 0 for every b1 ∈ T−Z and |b2|aw = |b3|aw = 1 for every b2 ∈ T+

Z and b3 ∈ T nZ . In this
case, any choice of $ defines a lift landing inside of Z.

If w is d-analytic $ must be chosen more carefully. Since C is algebraically closed we
may choose nth-roots of (b3) for all b3 ∈ T nZ . For a lift of q to land in Z, $ must satisfy

the following: |$|q ≤ |(b3)
1
n |q for all b3 ∈ T nZ and |(b1)|q

|(b2)|q ≤ |$|q for all (b1, b2) ∈ T<<Z . We

let m be the smallest of the values in Γq of the form |b
1
n
3 |q with b3 ∈ T nZ and we let M be
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the largest of the values of the form | b1
b2
|q with (b1, b2) ∈ T<<Z . Since w ∈ Ubn1≤bn2 ·b3 6=0 we have

M ≤ m. Since w ∈ Nb1<<b2 for all pairs (b1, b2) ∈ T<<Z we also have M < 1. Any $ ∈ C
with |$|q < 1 and M ≤ |$|q ≤ m defines a lift of q in Z. This finishes the proof of the first
claim.

Definition 1.2.18. Let (B,B+) be a complete Huber pair over Zp, we say that (B,B+) is
olivine if the map |Spd(B,B+)| → Spo(B,B+) is a homeomorphism.

Question 1.2.19. Is every complete Huber pair over Zp an olivine Huber pair?

We have some partial progress in answering this question. Although we do not know what
to expect in full generality, for all of the Huber pairs that we consider this is true. Let us
clarify. By remark 1.1.31 we know that Tate Huber pairs are olivine. By proposition 1.2.17
we know that formal Huber pairs are olivine. Proposition 1.2.8 allows us to conclude that if
(B,B+) → (R,R+) induces an open immersion Spa(R,R+) ⊆ Spa(B,B+) and Spa(B,B+)
is olivine then Spa(R,R+) is olivine. Moreover, we can conclude that being olivine is a
property that can be verified locally in the analytic topology of Spa(B,B+). The following
proposition is the most general criterion we could come up with.

Proposition 1.2.20. Suppose that (B,B+) is a complete Huber pair over Zp such that B+

is a ring of definition with ideal of definition I and such that B is a finite type B+-algebra.
Then (B,B+) is an olivine Huber pair.

Proof. Write B = B+[b1, . . . , bn] we prove that (B,B+) is olivine by induction on the size
of n, the case n = 0 is the content of proposition 1.2.17. Let Spa(R,R+) be the rational
localization corresponding to {x ∈ Spa(B,B+) | |b1|x ≤ |1|x 6= 0}, we claim that (R,R+)
is olivine. By proposition 1.2.7 we may compute R without taking completions. Up to
completion R+ is the integral closure of B+[b1] in B and the underlying rings of R and B
coincide (although they are not homeomorphic). Clearly R is generated over R+ by less
than n elements so by induction it is olivine. We let Spa(S, S+) be the rational localization
corresponding to {x ∈ Spa(B,B+) | |1|x ≤ |b1|x 6= 0}. Up to completion S = B[ 1

b1
] as rings

and S+ is the integral closure of B+[ 1
b1

] in B[ 1
b1

]. The Huber pair (S+[b2, . . . , bn], S+) is

olivine by induction. But Spa(S, S+) is the locus in Spa(S+[b2, . . . , bn], S+) in which 1
b1
6= 0,

so this one is also olivine. Since Spa(B,B+) = Spa(R,R+) ∪ Spa(S, S+) this finishes the
proof that (B,B+) is olivine.

Remark 1.2.21. For an arbitrary Huber pair for which B+ serves as a ring of definition
we can consider the commutative diagram

| Spd(B,B+) | Spo(B,B+)

lim←−i | Spd(Bi, B
+) | lim←−i Spo(Bi)
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where Bi ranges over all subrings of B that are of finite type. By proposition 1.2.20 the bot-
tom horizontal arrow is a homeomorphism and one can verify directly that the right vertical
arrow is also a homeomorphism. It is not clear to us if the left vertical arrow is a home-
omorphism or not since taking limits of v-sheaf does not necessarily commute with taking
underlying topological spaces. Adding to the complexity of the situation the transition maps
Spd(Bi, B

+) → Spd(Bj, B
+) might not be quasi-compact. Any counterexample to question

1.2.19 should come from this failure.

Question 1.2.22. Let B = Fp[T1, . . . , Tn, . . . ] be the free algebra in infinitely many variables
endowed with the discrete topology and let B+ = Fp. Is (B,B+) olivine?

1.2.4 Some open and closed subsheaves of Spd(B,B+)

By [51] 12.9 open subsets of Spo(B,B+) define open subsheaves of Spd(B,B+), and when
(B,B+) is olivine this association is bijective. Since the formation of Spd(B,B+) commutes
with localization in Spa(B,B+), one can compute the open subsheaf corresponding to classi-
cal localizations. The following lemma describes, in some cases, the open subsheaf associated
to an analytic localizations .

Lemma 1.2.23. Let (B,B+) be a complete Huber pair over Zp and suppose that B is adic
with ideal of definition I. Let b ∈ B, let Bb be the completion of B with respect to the (b, I)-
adic topology and let B+

b be the integral closure of B+ + (Bb)
◦◦ in Bb. The open subsheaf

associated to the analytic localization Nb<<1 ⊆ |Spd(B,B+)| is represented by Spd(Bb, Bb
+).

Proof. If a map f : Spa(R,R+) → Spd(B,B+) factors through Spd(Bb, Bb
+) then f ∗(b)

is topologically nilpotent in R]. This implies that Spo(f)(Spa(R,R+)) ⊆ Nb<<1 and since
this happens for every test space (R,R+) ∈ Perf, the map of v-sheaves Spd(Bb, Bb

+) →
Spd(B,B+) must factors through the subsheaf associated to Nb<<1. Moreover, since B ⊆ Bb

is dense, the maps f ∗ : Bb → R] are determined by their restriction to B, this implies that
Spd(Bb, Bb

+)→ Spd(B,B+) is an injective map.

We must prove that if f : Spa(R], R]+)→ Spa(B,B+) is such that

Spo(f)(Spa(R], R]+)) ⊆ Nb<<1,

then it factors through a (unique) map Spa(R], R]+) → Spa(Bb, Bb
+). Given a point x ∈

Spa(R], R]+) and a pseudo-uniformizer $ ∈ R]+ we let xa denote the rank 1 generization of
x, we have that |f ∗bn|x ≤ |$|x for some n since by hypothesis |f ∗b|xa < 1.

Let U = U(f
∗bn

$
) ⊆ Spa(R], R]+). If R1 = ̂(R],+)[ b

n

$
] where we complete by the $-adic

topology, then R′ = H0(U,OX) = R1[ 1
$

] and R′+ = H0(U,O+
X) is the integral closure of

R],+ + R◦◦1 in R′. Since f ∗bn ∈ R′◦◦ the map B → R′ is continuous when B is given the
(I, b)-adic topology. Moreover, since R′◦ is complete we get a map Bb → R′◦. This gives a
factorization Spa(R′, R′+) → Spa(Bb, Bb

+), and a map Spa(R′, R′+)[ → Spd(Bb, Bb
+). We

have proved that locally f factors through Spd(Bb, Bb
+), since Spd(Bb, Bb

+) is a v-sheaf and
the factorization is unique we may glue this to a map Spa(R,R+)→ Spd(Bb, Bb

+).
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In general the subsheaf Nb<<1 might not be of the form Spd(R,R+) for a Huber pair
(R,R+), but it can always be described as the locus in which b is topologically nilpotent.

Recall that we defined Spo(B,B+)
† ⊆ Spo(B,B+) as the closed subset of bounded points.

The definition of boundedness implies that Spo(B,B+)
†

is stable under vertical generization
and by proposition 1.1.17 it defines a closed subsheaf of Spd(B,B+). Here is a different
description.

Proposition 1.2.24. Define Spd(B,B+)
†

: Perf → Sets to parametrize triples (R], ι, f)
where (R], ι) is an untilt of R and f : Spa(R],◦, R],+) → Spa(B,B+) is a morphism of
pre-adic spaces. We get the following Cartesian diagram

Spd(B,B+)
†

Spd(B,B+)

Spo(B,B+)
†

Spo(B,B+)

Proof. We first prove that Spd(B,B+)
† → Spd(B,B+) is a closed immersion. Let A|B|Zp

denote the functor sending (R,R+) 7→ (R], ι, x) where (R], ι) is an untilt and x is a tuple

with values in R] indexed by elements of B. The similarly defined space A|B|,†Zp parametrizing

tuples in R],◦ sits inside A|B|Zp , and we have a basechange identity Spd(B,B+)
†

= A|B|,†Zp ×A|B|Zp

Spd(B,B+). Since the limit of closed immersions is a closed immersion we can reduce to
prove that A1,†

Zp → A1
Zp is a closed immersion. Consider the basechange by maps with source

an affinoid perfectoid, fr : Spa(R,R+) → A1
Zp with r ∈ R]. Then A1,† ×A1

Zp
Spa(R,R+) is

the complement in Spa(R], R]+) of⋃
$

{x ∈ Spa(R], R]+) | |1|x ≤ |r ·$|x 6= 0}

where $ ranges over elements of R],◦◦. This is a closed subset stable under vertical gener-
ization and defines a closed immersion into Spa(R,R+) as we wanted to show.

Once we know Spd(B,B+)
†

and Spd(B,B+)×Spo(B,B+)Spo(B,B+)
†

are closed immersions

it suffices to verify on geometric points that they agree. Let q : Spa(C,C+) → Spd(B,B+)
be a geometric point with rank 1 generization qa. That q maps to a bounded point in
Spo(B,B+) means by definition that |B|qa ≤ 1, which is precisely the condition that the
map B → C] factors through OC] .

Remark 1.2.25. One should be careful with the notion of bounded points since this notion is
not compatible with localization (and it shouldn’t). If Spa(R,R+) ⊆ Spa(B,B+) is a rational

localization and x ∈ Spo(R,R+) it might happen that x ∈ Spo(B,B+)
† ∩ Spo(R,R+) but

x /∈ Spo(R,R+)
†
. For example, (Z♦p )† = Z♦p but (Q♦p )† = ∅.
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Lemma 1.2.26. Suppose that (A,A+) and (B,B+) are complete Huber pairs over Zp and
that we have an adic homomorphism (B,B+)→ (A,A+). Then the induced map of v-sheaves

Spd(A,A+)
† → Spd(B,B+)

†
is representable in spatial diamonds and in particular qcqs.

Proof. Since the map (B,B+) → (A,A+) is adic we can write (A,A+) as a filtered col-
imit lim−→i∈I(Ai, Ai

+) where each (Ai, Ai
+) is topologically of finite type over (B,B+), and

the transition maps realize Ai → Aj as a topological subrings for i < j. One can see di-

rectly that Spd(A,A+)
†

= lim←−i Spd(Ai, Ai
+)
†

and by [51] 12.17 it is enough to prove that

Spd(Ai, Ai
+)
† → Spd(B,B+)

†
is representable in spatial diamonds. By definition of being

topologically of finite type there is a family of sets M = {Mi}ni=1 with B ·Mi an open ideal
and a strict surjection B〈T1, . . . Tn〉M1,...,Mn → Ai compatible with rings of integral elements.
One can verify directly that the induced map

Spd(Ai, Ai
+)→ Spd(B〈T1, . . . Tn〉M1,...,Mn , B〈T1, . . . Tn〉M1,...,Mn

+)

is a closed immersion and that Spd(Ai, Ai
+)
†

is the basechange of the corresponding bounded
subsheaf. Since closed immersions are representable in spatial diamonds it is enough to verify
the case in which Ai = B〈T1〉M1 . There is an open immersion Spd(B〈T1〉M1 , B〈T1〉M1

+) →
A1
B and such that Spd(B〈T1〉M1 , B〈T1〉M1

+) ∩ A1,†
B = Spd(B〈T1〉M1 , B〈T1〉M1

+)
†
. To prove

A1,† → Spd(B,B+)
†

is representable in spatial diamonds it is enough to verify that basechanges
by affinoid perfectoid are spatial diamonds. The basechange of a map Spa(R,R+) →
Spd(B,B+)

†
is representable by Spd(R]〈T 〉, R′) where R′ is the minimal ring of integral

elements containing R],+. Since R]〈T 〉 is Tate this space is a spatial diamond.

The following statement says that at least the bounded locus of a Huber pair is always
olivine.

Proposition 1.2.27. Suppose that (B,B+) is a complete Huber pair over Zp. The natural
map

|Spd(B,B+)
†| → Spo(B,B+)

†

is a homeomorphism.

Proof. Let B0 ⊆ B+ be a ring of definition and express (B,B+) as a filtered colimit of Huber
pairs of the form lim−→i∈J(Bi, B

+
i ) where both Bi and B+

i are of finite type over B0. We have

that Spd(B,B+)
†

= lim←− Spd(Bi, Bi
+)
†
. By proposition 1.2.20 each (Bi, Bi

+) is olivine and by

lemma 1.2.26 the transition maps are representable in spatial diamonds. Let D×
B†i

denote the

punctured open unit disc over Spd(Bi, Bi
+)
†
, and let πi be the projection map πi : D×

B†i
→

Spd(Bi, Bi
+)
†
. Observe that πi is universally open since it is `-cohomologically smooth.

We have that D×B0
is a locally spatial diamond represented by (Spa(B0[[t]], B0[[t]])t6=0)♦. In

particular, D×
B†i

is also a locally spatial diamond and since the transition maps D×
B†i
→ D×

B†j

are qcqs we see that by [51] 12.17 |D×
B†
| = lim←−|D

×
B†i
|. It is enough to prove that π : |D×

B†
| →
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Spo(B,B+)
†

is a quotient map. Let S ⊆ Spo(B,B+)
†

with π−1(S) open. For every point
y ∈ π−1(S) there is an index jy ∈ J and an open subset of Uy ⊆ D×

B†i
whose preimage in D×

B†

is contained in π−1(S) and contains y. Now, πjy(Uy) is open in |Spd(Bi, Bi
+)
†| and since

(Bi, Bi
+) is olivine it is also open in Spo(Bi, Bi

+)
†
. The preimage of πjy(Uy) in Spo(B,B+)

†

contains π(y), is open and it is contained in h−1(S) which finishes the proof that S is open

in Spo(B,B+)
†
.

1.2.5 Discrete Huber pairs in characteristic p

In the following section, when we discuss the reduction functor, we will need to understand
the olivine spectrum of Huber pairs associated to perfect schemes. For this reason we discuss
this case in detail. For the rest of the subsection A denotes a discrete perfect ring in
characteristic p and A+ ⊆ A is integrally closed.

Proposition 1.2.28. Let (A,A+) be as above. The projection map

Spo(A,A+)
† → Spa(A,A+)

is surjective. Moreover, if S ⊆ Spa(A,A+) is stable under arbitrary generization and h−1(S)

is open in Spo(A,A+)
†

then S is open in Spa(A,A+).

Proof. The complement of the bounded locus consists of d-analytic points. Since A has the
discrete topology every d-analytic point is meromorphic. If x ∈ Spo(A,A+) is a meromorphic
point it has a meromorphic specialization y ∈ Spo(A,A+) with h(x) = h(y), y is non-analytic

and in particular bounded. This gives h(Spo(A,A+)) = h(Spo(A,A+)
†
) which is Spa(A,A+).

For the second claim observe that the map Spd(A((t)), A+ + t · A[[t]]) → Spd(A,A+)

surjects onto Spd(A,A+)
†

and represents the punctured open unit ball over it. Let f denote
the map of adic spaces f : Spa(A((t)), A+ + t · A[[t]]) → Spa(A,A+), it is enough to prove
that if S is stable under generization and f−1(S) is open then S is open. The rest of the
argument is an easier version of the proof of proposition 1.2.17. In this case one exploits the
constructible topology of Spa(A((t)), A+ + t · A[[t]]).

Let x ∈ S, and let y ∈ Spa(A((t)), A+ + t · A[[t]]) a lift of x. For every open Ux,a1,a2 =
{x ∈ Spa(A,A+) | |a1|x ≤ |a2|x 6= 0} we choose n ∈ N such that |tn|y ≤ |a2|y and define
Uy,a1,a2 as

{z ∈ Spa(A((t)), A+ + t · A[[t]]) | |a1|z, |tn|z ≤ |a2|z 6= 0}.

Observe that y ∈ Uy,a1,a2 , that it is quasi-compact and that f(Uy,a1,a2) = Ux,a1,a2 . Notice
that since S is stable under generization in Spa(A,A+) the intersection of all Ux,a1,a2 that
contain x is contained in S. This implies that the intersection of the Uy,a1,a2 is contained in
f−1(S). Since f−1(S) is open, by the usual compactness argument in the patch topology
there is a finite subset with

⋂
Uy,a1,a2 ⊆ f−1(S). We denote by Z this intersection and we

observe that f(Z) =
⋂
Ux,a1,a2 which is open in Spa(A,A+) and contains x.
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Proposition 1.2.29. If A and A+ are discrete perfect valuation rings with the same fraction
field then (A,A+) is olivine.

Proof. If Spo(A,A+)
†

= Spo(A,A+) then proposition 1.2.27 proves that (A,A+) is olivine.

Suppose x ∈ Spo(A,A+) \ Spo(A,A+)
†
, then x is meromorphic and there is a ∈ A with

1 < |a|ax. We must have 1
a
∈ A+ since A+ is a valuation ring and a /∈ A+. Let b = 1

a
, we

claim that A = A+[1
b
]. By the Archimedean property of | · |ax for every a′ ∈ A there is a

big enough n ∈ N with |bn · a′|ax < 1. Since A+ is a valuation ring either a′ · bn ∈ A+ or
1

a′·bn ∈ A
+, but the second case contradicts that | · |ax ∈ Spa(A,A+).

By proposition 1.2.17 (A+, A+) is olivine and since Spo(A,A+) ⊆ Spo(A+, A+) is the
open locus in which b 6= 0 we conclude by proposition 1.2.8 that (A,A+) is also olivine.

In what follows we prove some lemmas to prepare the proof of theorem 4. As we have
mentioned in the introduction the statements and techniques are derivative of Scholze and
Weinstein’s full faithfulness result [53] 18.3.1.

Lemma 1.2.30. Let (A,A+) be a non-analytic perfect Huber pair in characteristic p. Then
there is a unique morphism of v-sheaves Spd(A,A+) → Z♦p . It is given by the composition
Spd(A,A+)→ F♦p → Z♦p .

Proof. It is enough to prove that for every geometric point Spa(C,C+) → Spd(A,A+) the
composition to Z♦p factors through F♦p . Consider the product of points Spa(R∞, R∞

+) →
Spd(A,A+) as in the proof of lemma 1.2.16, with R+

∞ =
∏∞

i=1 C
+ and $∞ = ($pi). The

composition Spa(R∞, R∞
+)→ Spd(A,A+)→ Z♦p defines an untilt of R∞ given by an element

ξ = p+ ($∞)
1

pk ·α with α ∈ W (R+). For any i ∈ N the projection map ιi : R∞ → C defines

an untilt of C and since the composition (A,A+) → (R∞, R∞
+)

ιi−→ (C,C+) is independent
of the projection map chosen, all of these untilts agree. This says that the ideal Ii generated

by ιi(ξ) in W (C+) agree, we call this ideal I. Since ιi(ξ) = p−$
pi

pk ιi(α) the sequence ιi(ξ)
converges to p in the (p,$)-adic topology. But the ideal associated to an untilt is closed, so
p ∈ I and Spa(C,C+)→ Z♦p factors through F♦p .

Lemma 1.2.31. Let (A,A+) be as above and let (B,B+) be a complete Huber pairs over
Zp. Then every morphism of v-sheaves Spd(A,A+) → Spd(B,B+) comes from a unique
morphism of Huber pairs (B,B+)→ (A,A+).

Proof. Given a map Spd(A,A+)→ Spd(B,B+) we associate to it a map of pre-adic spaces

Spa(A,A+)→ Spa(B,B+). Let S = Spd(A,A+), R = A((t
1
p∞ )), R+ = A+ + (t

1
p∞ )A[[t

1
p∞ ]],

X = Spa(R,R+) and X ′ = X ×S X. Notice that X is an affinoid perfectoid space and X ′ is
a perfectoid space (which is not affinoid). The natural map X → Spd(A,A+) surjects onto

Spd(A,A+)
†

and we get an equalizer diagram:

0→ Hom(Spd(A,A+)
†
, Spd(B,B+))→ Hom(X, Spd(B,B+))⇒ Hom(X ′, Spd(B,B+)).
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Since X is affinoid perfectoid a homomorphism f : X → Spd(B,B+) is given by an untilt
R] and a continuous ring map f ∗ : B → R] such that f ∗(B+) ⊆ R+,]. By lemma 1.2.30 the
untilt must be R.

A necessary condition for such a morphism to glue, is that f ∗(B) must be invariant under
any automorphism of R over A. In particular, we may replace t by any topological nilpotent
unit in R without changing the image of f ∗(B). Take an element b ∈ B, we want to show
f ∗(b) ∈ A. Observe that tp

n · f ∗(b) is topologically nilpotent for big enough n. Replacing by

t 7→ t
1
pm we conclude that tp

n
f ∗(b) is topologically nilpotent for all n ∈ Z. This proves f ∗(b)

is power-bounded which gives f ∗(b) ∈ A[[t
1
p∞ ]]. We can write f ∗(b) as a0 + t

1
pm q with a0 ∈ A

and q ∈ A[[t
1
p∞ ]]. Since the second term converges to 0 under the substitution t 7→ tp

n
we

see that f ∗(b) = a0. This defines a map of rings B → A. Since the subspace topology of
A in R is the discrete topology this ring morphism is continuous if and only if the original
one was. Finally, we see that B+ maps to R+ ∩ A which is easily seen to be A+. So far we
have constructed a map Spa(A,A+)→ Spa(B,B+) with the property that the induced map

Spd(A,A+)→ Spd(B,B+) agrees with our original map in the locus Spd(B,B+)
†
. We wish

to prove that the two maps agree.
Consider the map Spd(A,A+)→ Spd(B,B+)×Spd(B,B+) we will show that Spd(A,A+)

factors through the diagonal embedding ∆ : Spd(B,B+)→ Spd(B,B+)×Spd(B,B+). This
can be verified on geometric points Spd(C,C+)→ Spd(A,A+), and since the maps already

agree on Spd(A,A+)
†

it is enough to verify this on meromorphic points x ∈ Spo(A,A+).
Pick a pseudo-uniformizer $ ∈ C and consider the product of points R∞ as in the proof
lemma 1.2.16 together with the map Spa(R∞, R∞

+) → Spd(A,A+) given by the diagonal
morphism A→

∏
C. Recall that for the product of points constructed in this way we have

that

C ⊆∆ R∞ ⊆
∞∏
i=1

C,

and that although the diagonal embedding C ⊆∆ R∞ is not continuous the composition
A→ R∞ is continuous since A has the discrete topology.

The composition Spa(R∞, R∞
+) → Spd(A,A+) → Spd(B,B+) × Spd(B,B+) gives two

morphisms f1, f2 : B → R∞, and one verifies that at the level of rings they both have to
factor through the diagonal C ⊆∆ R∞. The connected components of Spa(R∞, R∞

+) are
in bijection with ultrafilters of N. By the proof of lemma 1.2.16 the residue field at a non-
principal ultrafilter U maps to the meromorphic specialization xmer. Since Spa(CU , CU

+)→
Spd(B,B+)× Spd(B,B+) factors through Spd(A,A+)

†
(being non-analytic in Spo(A,A+)),

it also factors through the diagonal. These maps are given by the composition fi : B →
C → R∞ → CU . We can conclude f1 = f2 since the map C → CU is injective.

We are no ready to prove theorem 4, which is the global version of lemma 1.2.31. For
the convenience of the reader we state it again.

Theorem 1.2.32. Let Y be a perfect non-analytic adic space over Fp and let X be a pre-adic
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space over Zp. The natural map

Hom
PreAd

(Y,X)→ Hom(Y ♦, X♦)

is bijective. In particular, ♦ is fully faithful when restricted to the category of perfect non-
analytic adic spaces over Fp.

This theorem says, intuitively speaking, that (up to perfection) one does not get new
morphisms of v-sheaves when the source is a non-analytic adic space.

Proof. It is not hard to prove injectivity. For surjectivity, the hard part is to prove that
a morphism g : X♦ → Y ♦ induces a unique map of topological spaces f : |X| → |Y | that
makes the following diagram commutative.

| Y ♦ | | X♦ |

| Y | | X |

g

f

Assume for the moment that this is the case. Let U =
∐

i∈I Spa(Bi, Bi
+) be an open cover

for X and let V =
∐

j∈J Spa(B′j, B
′
j
+) be an open cover of U ×X U . Given a map Y ♦ → X♦

we can pullback U and V through f to obtain an open cover of adic spaces

YV ⇒ YU → Y

satisfying Y ♦U = Y ♦ ×X♦ U♦ and Y ♦V = Y ♦ ×X♦ U♦. It is enough to prove that Y ♦U → U♦

and Y ♦V → V ♦ come from morphisms of pre-adic spaces. This follows from lemma 1.2.31 by
a standard glueing argument, since U and V are a disjoint union of affinoid pre-adic spaces.

Verifying that g : |Y ♦| → |X♦| descends to a continuous map f : |Y | → |X| can be done
locally on |Y |, we may assume Y = Spa(A,A+). For y ∈ |Y | and z ∈ Spo(A,A+) with
h(z) = y, we define f(y) := h(g(z)). We must verify that this doesn’t depend of the choice
of z and that it is continuous. The map f is well defined if and only if h(g(z)) = h(g(zmer))
when z is meromorphic, and by proposition 1.2.28 to prove continuity it is enough to prove
that if S ⊆ |X| is open then f−1(S) is stable under arbitrary generization in Spa(A,A+).
Let w ∈ Spa(A,A+) a horizontal generization of y. Let (ky, ky

+) and (kw, kw
+) denote the

affinoid residue fields of w and y and let Kw denote the smallest ring containing k+
w and A. It

is enough to prove that the induced maps |Spd(Kw, k
+
w )| → |X♦| and |Spd(ky, k

+
y )| → |X♦|

descend to continuous maps |Spa(Kw, k
+
w )| → |X| and |Spa(ky, k

+
y )| → |X|. In summary, we

have reduced the initial claim to the case in which Y = Spa(A,A+) where A+ ⊆ A and the
two rings are perfect non-analytic valuation rings that have the same fraction field.

Lemma 1.2.33. Let X be a pre-adic space over Zp as above and let Y = Spa(A,A+) where
A+ and A are perfect non-analytic valuation rings that have the same fraction field, and let
g : Spd(A,A+) → X♦ be a map. Let h(c) ∈ Spa(A,A+) denote the unique closed point and
let c ∈ Spo(A,A+) denote the unique non-analytic point mapping to h(c). If h(g(c)) ∈ |X|
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lies in Spa(B1, B1
+) ⊆ X then g factors through a map Spd(A,A+)→ Spd(B1, B1

+) ⊆ X♦.
In particular, g is coming from a map of pre-adic spaces Spa(A,A+)→ Spa(B1, B1

+) ⊆ X.

Proof. Suppose to get a contradiction that there is an “exotic” g that does not satisfy
this property. By proposition 1.2.29 (A,A+) is olivine so we may treat |Spd(A,A+)| and
Spo(A,A+) as the same object. Let U1 ⊆ Spo(A,A+) be the open subset associated to the
pullback of Spd(B1, B1

+), this is by assumption a proper open subset. Let Z = Spo(A,A+)\
U1, it is a quasi-compact topological space and we may use [53] 18.3.2 to find the largest prime
pm ∈ Spec(A) that is the support of an element in Z. Replacing A and A+ by A/pm and
A+/pm we may assume that all elements of z ∈ Z satisfy supp(z) = 0, we let K = Frac(A).
In this case Z ⊆ Spo(K,A+). Since Z is a closed subset it contains the unique closed point q
of Spo(K,A+), this is the unique non-analytic point such that h(q) is closed in Spa(K,A+).
We claim that U1 contains every analytic localization of the form Nn<<1 with n 6= 0 and
n ∈ supp(c). Indeed, if z ∈ Z ∩Nn<<1 then |n|az < 1 and either z or its formal specialization
would have non-trivial support contradicting the assumption that pm was the largest.

The composition Spd(K,A+)→ X♦ must also factor through some other open affine sub-
sheaf Spd(B2, B2

+), since it has a unique closed point. We let U2 be the open in Spo(A,A+)
associated to the pullback of Spd(B2, B2

+). By example 1.2.9 there is an open neighbor-
hood of q of the form U0≤b 6=0 ∩ U1≤b′ 6=0 ∩Nn<<1 and contained in U2. Moreover, in example
1.2.9 q corresponds to the triple of prime ideals (0, 0,m) where m denotes the maximal
ideal of A+. With this description it is easy to see that U1≤b′ 6=0 = Spo(A,A+) and that
Nn<<1 = Spo(A,A+) since they contain q. In summary, there is a classical localization
U0≤b 6=0 containing q and contained in U2.

We have found neighborhoods Nb<<1 ⊆ U1 and U0≤b 6=0 ⊆ U2 with Nb<<1 ∩U0≤b 6=0 ⊆ U1 ∩
U2, observe that Spo(A,A+) = Nb<<1∪U0≤b 6=0. Let Ab and A+

b denote the (b)-adic completion
of A and A+ respectively. Lemma 1.2.23 shows that Nb<<1 is represented by Spd(Ab, Ab

+).
We also have that U0≤b 6=0 is represented by Spd(A[1

b
], A+) and that the intersection Nb<<1 ∩

U0≤b 6=0 is represented by Spa(Ab[
1
b
], A+

b ), notice that this last one is a perfectoid field. We
let qb denote the closed point of Nb<<1 ∩ U0≤b 6=0 which is meromorphic in Spo(A,A+).

Since these morphisms glue, there is an affinoid open subspace

Spa(B3, B3
+) ⊆ Spa(B1, B1

+)×X Spa(B2, B2
+)

and a map Spa(Ab[
1
b
], A+

b )→ Spd(B3, B3
+) making the following diagram commutative:

Spa(Ab[
1
b
], A+

b ) Spd(A[1
b
], A+)

Spd(B3, B3
+) Spd(B2, B2

+)

Spd(Ab, A
+
b ) Spd(B1, B1

+) X♦
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By lemma 1.2.31 the map Spd(A[1
b
], A+)→ Spd(B2, B2

+) is given by a map of Huber pairs
(B2, B2

+)→ (A[1
b
], A+). Since

Spo(B3, B3
+) ⊆ Spo(B2, B2

+)

is of the form h−1(Spa(B3, B3
+)) the pullback of Spo(B3, B3

+) to Spo(A[1
b
], A+) has the form

h−1(U3) for some U3 ⊆ Spa(A[1
b
], A+). Moreover, h(qb) is the closed point of Spa(A[1

b
], A+).

This proves that Spd(A[1
b
], A+) factors through Spd(B3, B3

+) and consequently through
Spd(B1, B1

+) contradicting our initial assumption.

We now study perfect non-analytic Huber pairs of the form (A,A). These are the type
of Huber pairs that we will associate to perfect affine schemes to develop our theory of
specialization.

Proposition 1.2.34. Let A be a ring endowed with the discrete topology and f ∗ : (B,B+)→
(A,A) a map of Huber pairs, then the following hold:

1. Spo(f) is saturated with respect to h, in other words

Spo(f)(Spo(A,A)) = h−1(f(Spa(A,A))).

2. f(Spa(A,A)) is stable under horizontal specializations in Spa(B,B+).

3. f(Spa(A,A)) is stable under vertical generization in Spa(B,B+).

Proof. To prove the first claim let y ∈ Spo(A,A) and let x = Spo(f)(y). If x is d-analytic, y
must be meromorphic and ymer maps to xmer under Spo(f), that is h−1(h(x)) ⊆ Im(Spo(f)).

Suppose now that x is non-analytic and that xmer exists in Spo(B,B+). In this case,
ymer might not exist if | · |hy is not microbial, and even when ymer exists it may not be true
that ymer maps to xmer under Spo(f). Indeed, it may happen that ymer maps to x instead.
For these reasons we use a different construction.

Consider h(y) ∈ Spa(A,A) together with its residue field map ιh(y) : Spa(Kh(y), Kh(y)
+)→

Spa(A,A). Notice that ιh(y) factors through a map g : Spa(K+
h(y), K

+
h(y)) → Spa(A,A), so

it is enough to prove that xmer is in the image of Spo(f ◦ g). Take an element b ∈ B
with |b|axmer /∈ {0, 1} and replace it by its inverse in Kh(y), whenever it is necessary, so that
b ∈ K+

h(y). Define K+ as the (b)-adic completion of K+
h(y), and let K = K+[1

b
]. We get the

following commutative diagram,

Spa(K,K+) Spo(K+
h(y), K

+
h(y))

Spo(B,B+)
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and one can verify that the image of the closed point of Spa(K,K+) in Spo(B,B+) is xmer.
This proves that h−1(h(x)) ⊆ Im(Spo(f)).

The proof of the second claim also follows from observing that the residue field map ιh(y)

factors through g. Indeed, we get the following commutative diagram of adic spaces:

Spa(Kh(y), Kh(y)
+) Spa(K+

h(y), K
+
h(y)) Spa(A,A)

Spa(Kh(x), Kh(x)
+) Spa(K+

h(x), K
+
h(x)) Spa(B,B+)

g

g′

Where we use that K+
h(x) = K+

h(y) ∩ Kh(x) to define g′. Moreover, the vertical map on the

left is surjective since h(x) = f(h(y)) and one can deduce that the vertical map in the
middle column is also surjective because the map of valuation rings is local. A prime ideal
of J ⊆ K+

h(x) determines a horizontal specializations of | · |h(x), namely | · |h(x)/J , and every

horizontal specialization of h(x) can be constructed in this way. For J as above we let
K+
J = K+

h(x)/J and KJ = Frac(K+
J ), we get the following commutative diagram:

Spa(KJ , KJ
+) Spa(K+

J , K
+
J ) Spa(K+

h(y), K
+
h(y))

Spa(B,B+)

The closed point of Spa(KJ , KJ
+) maps to the horizontal specialization of h(x) associated

to the ideal J .
The third claim follows from corollary 1.2.15 and from the first claim.

Definition 1.2.35. We say that a subset of Spo(B,B+) is a schematic subset if it is a
union of sets of the form Spo(m)(Spo(A,A)) where (A,A) is given the discrete topology and
m∗ : (B,B+)→ (A,A) is a map of Huber pairs.

Proposition 1.2.36. Suppose that Z ⊆ Spo(B,B+) is a schematic closed subset. Let σ :
Spo(B,B+)→ Spec(B) denote the map x 7→ supp(x) attaching to every point of Spo(B,B+)
its support ideal. Notice that σ = supp◦h where supp : Spa(B,B+)→ Spec(B) also attaches
the support ideal. Then Z = σ−1(V (I)) for some prime ideal I ⊆ B open for the topology in
B.

Proof. Any map m∗ : (B,B+)→ (A,A) with A a discrete ring must factor through

(B/B◦◦, B+/B◦◦),

by reducing to this case we may assume that B has the discrete topology. By proposition
1.2.34, Z = h−1(h(Z)) and by corollary 1.2.15, Z is closed under vertical generization.
Moreover, since Z is closed in Spo(B,B+) it is also stable under vertical specialization. This
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implies that Z = σ−1(σ(Z)). Indeed, any two points x, y ∈ Spa(B,B+) with supp(x) =
supp(y) = p are vertical specializations of the trivial valuation on B with support p.

We only have left to prove that σ(Z) is closed in the Zariski topology of Spec(B). Since
B has the discrete topology, the support map admits a continuous section triv : Spec(B)→
Spa(B,B+) that assigns to a prime ideal p ⊆ B the trivial valuation with support p. We
have σ(Z) = triv−1(h(Z)) so we may prove h(Z) is closed instead. By proposition 1.2.34,
h(Z) is also closed under horizontal specialization, this gives that the complement of h(Z)
in Spa(B,B+) is stable under (arbitrary) generization. Spo(B,B+) \Z = h−1(Spa(B,B+) \
h(Z)) by proposition 1.2.28 the set Spa(B,B+) \ h(Z) is open as we needed to show.

1.3 The reduction functor

1.3.1 The v-topology for perfect schemes

This is the only section in which we will be forced to be set-theoretically careful, we advise
the reader that does not wish the ignore the set-theoretic subtleties that arise in this section
to review the definition and basic properties of cut-off cardinals that are given in [51] §4.

We will denote by PCAlgopFp the category of perfect affine schemes over Fp. If κ is a

cut-off cardinal we denote by PCAlgopFp,κ the category of perfect affine schemes over Fp whose
underlying topological space and whose ring of global sections have cardinality bounded by
κ. Given S = Spec(A) ∈ PCAlgopFp we associate to it a v-sheaf in Perf given by:

S♦((R,R+)) = {f : A→ R+|f is a morphismof rings}

Remark 1.3.1. Notice that Spec(A)♦ = Spd(A,A) when A is given the discrete topology.
Later on, we will work with v-sheaves of the form Spd(A,A) where A can be given either the
discrete topology or a more interesting topology and we might consider both kind of sheaves
at the same time. To avoid having to specify the topology given to A every time, we will use
Spec(A)♦ whenever A is given the discrete topology and we will use Spd(A,A) when A is
given a more interesting topology.

Proposition 1.3.2. If κ is a cut-off cardinal and S ∈ PCAlgopFp,κ then S♦ is a κ-small
v-sheaf.

Proof. Let S = Spec(A) then Spa(A((t
1
p∞ )), A[[t

1
p∞ ]]) is a κ-small perfectoid space and the

map

Spa(A((t
1
p∞ )), A[[t

1
p∞ ]])→ S♦

is surjective.

Proposition 1.3.2 gives rise to functors ♦κ : PCAlgopFp,κ → P̃erfκ that are compatible when

we vary κ and give rise to a functor ♦ : PCAlgopFp → P̃erf
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Proposition 1.3.3. The functors ♦ : PCAlgopFp → P̃erf and ♦κ : PCAlgopFp,κ → P̃erfκ are
fully-faithful and commute with finite limits.

Proof. This is a direct consequence of 1.2.32.

After embedding PCAlgopFp in P̃erf one can define a Grothendieck topology on PCAlgopFp
by considering a small family of maps of affine schemes, (Si → T )i∈F , to be a cover if the
map

∐
i∈F S

♦
i → T ♦ is a surjective map of v-sheaves. However, there is an intrinsic way of

defining this topology which we now discuss.

Definition 1.3.4. (See [5] 2.1)

1. A morphisms of qcqs schemes S → T , is said to be universally subtrusive (or a v-cover)
if for any valuation ring V and a map Spec(V )→ T there is an extension of valuation
rings V ⊆ W (see [56] 0ASG) and a map Spec(W )→ S making the following diagram
commutative:

Spec(W ) S

Spec(V ) T

2. A small family of morphisms in PCAlgopFp, (Si → T )i∈F , is said to be universally
subtrusive (or a v-cover) if there is a finite subset F ′ ⊆ F for which

∐
i∈F ′ Si → T is

universally subtrusive.

Lemma 1.3.5. (See [5] 2.2) A morphism f : Spec(B) → Spec(A) of affine schemes (not
necessarily over Fp) is universally subtrusive if and only if the map of topological spaces
|fad| : |Spa(B,B)| → |Spa(A,A)| is surjective.

Proof. Let T = Spec(A), S = Spec(B), T ad = Spa(A,A) and Sad = Spa(B,B). Assume
f to be universally subtrusive and take x ∈ |T ad|. Taking a representative we can consider
x as a valuation | · |x : A → Γx, which gives a valuation subring V of Frac(A/supp(| · |x))
together with a map Spec(V ) → Spec(A). Since f is universally subtrusive we can take an
extension of valuation rings W/V and a map Spec(W )→ Spec(B) making diagram 1 above
commutative. The map B → W induces a valuation | · |y : B → Γy and consequently a point
y ∈ Sad. Moreover, the composition | · |f(y) : A→ B → Γy is equivalent to | · |x which proves
that |Sad| → |T ad| is surjective. For the converse, given a map Spec(V )→ T we may consider
the induced map Spa(K,V )→ T ad with K = Frac(V ). The closed point of Spa(K,V ) gives
a point x ∈ T ad and by surjectivity of fad we may pick a point y ∈ Spa(B,B) lifting x.
Consider the affinoid residue fields (Kx, Kx

+) and (Ky, Ky
+) at x and y respectively. We get

the following commutative diagram:
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Spec(K+
y ) S

Spec(V ) Spec(K+
x ) T

Both K+
y and V are valuation extensions of K+

x , consequently there is a valuation ring W
extending both K+

y and V making the diagram commute (See [25] 1.1.14-f). This proves
that f is universally subtrusive.

Lemma 1.3.6. Let f : S → T be a morphism of perfect affine schemes over Fp. The map
f♦ : S♦ → T ♦ is a quasi-compact map of v-sheaves.

Proof. By writing B = A[ti]i∈I/JA[ti]i∈I for some variables ti and an ideal J we can reduce
to the cases where either f is a closed embedding or f is the base change of the structure
map g : Spec(Fp[ti]i∈I)→ Spec(Fp).

Let X = Spa(R,R+) ∈ Perf it is enough to prove that X×T♦ S♦ is quasi-compact for any
map Spa(R,R+)→ S♦. For the later case, the basechange gives the sheaf X×Spec(Fp[ti])♦.
This functor is represented by

Spa(R〈t
1
p∞
i 〉i∈I , R+〈t

1
p∞
i 〉i∈I),

which is affinoid perfectoid and consequently quasi-compact. For the former case let B =
A/J , and let Z = X ×T♦ S♦. For a perfectoid Huber pair (L,L+) we have:

Z(L,L+) = {r : (R,R+)→ (L,L+) | r(R · J) = 0}

This is the definition of a Zariski closed subset of X and by ([50] Lemma II.2.2) representable
by an affinoid perfectoid space. In particular, Z is a quasi-compact v-sheaf.

Remark 1.3.7. One can prove lemma 1.3.6 by observing that for a perfect discrete ring A
we have the identity Spd(A,A)† = Spd(A,A). Indeed, we can apply lemma 1.2.26.

Proposition 1.3.8. 1. Let f : S → T be a morphism of perfect affine schemes over Fp.
The map f is universally subtrusive if and only if f♦ : S♦ → T ♦ is a surjective map of
v-sheaves.

2. A family of morphisms (Si → T )i∈F is universally subtrusive if and only if (
∐

i∈F Si)→
T is a surjective map of v-sheaves.

Proof. Let T = Spec(A) and S = Spec(B). Since the map of v-sheaves f♦ : S♦ → T ♦ is quasi-
compact, by ([51] 12.11) it is a surjective map of v-sheaves if and only if |f♦| is a surjective
map of topological spaces. By proposition 1.2.12 and lemma 1.3.5, it suffices to prove that
the map Spo(B,B)→ Spo(A,A) is surjective if and only if the map Spa(B,B)→ Spa(A,A)
is. Functoriality and surjectivity of h proves one direction, and the converse direction is a
direct consequence of 1.2.34.
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For the second claim, it follows easily from above that a universally subtrusive family of
maps (Si → T )i∈F induces a surjective map of v-sheaves (

∐
i∈F Si) → T , actually a finite

subfamily is already surjective. To prove the converse we have to take a family of maps
(Si → T )i∈F such that (

∐
i∈F S

♦
i ) → T ♦ is a surjective map of v-sheaves and prove there

is a finite subset F ′ ⊆ F for which
∐

i∈F ′ S
♦
i → T ♦ is still surjective. Let Si = Spec(Ri)

and T = Spec(P ) and consider affinoid perfectoid spaces Y = Spa(P ((t
1
p∞ )), P [[t

1
p∞ ]]) and

Xi = Spa(Ri((t
1
p∞ )), Ri[[t

1
p∞ ]]). The map (

∐
i∈F Xi)→ Y is surjective and since Y is quasi-

compact there is a finite subset F ′ ⊆ F such that (
∐

i∈F ′ Xi) → Y is still surjective. An

easy argument proves that for F ′ chosen in this way (
∐

i∈F ′ S
♦
i )→ T ♦ is also surjective.

Remark 1.3.9. In this context, one can discuss the analogue of example 1.1.4. Given an
index set I and {Vi}i∈I a family of perfect valuation rings over Fp, we construct the ring
R =

∏
i∈I Vi. We call the affine schemes constructed in this way a scheme-theoretic product

of points. They form a basis for the v-topology on PCAlgopFp (See [5] 6.2).

Given a cut-off cardinal κ we let ˜SchPerfκ be the topos associated to the site PCAlgopFp,κ
with the v-topology, and we will refer to an object in this topos as a κ-small scheme-theoretic
v-sheaf. For any pair of cut-off cardinals κ < λ we have a continuous fully-faithful embedding

of sites ι∗κ,λ : PCAlgopFp,κ → PCAlgopFp,λ, which induces a morphism of topoi ικ,λ : ˜SchPerfλ →
˜SchPerfκ.

Proposition 1.3.10. The functor ι∗κ,λ : ˜SchPerfκ → ˜SchPerfλ is fully-faithful (See [51] 8.2).

Proof. It is enough to prove that the adjunction F → ικ,λ,∗ι
∗
κ,λF is an isomorphism. Let

G : PCAlgopFp,λ → Sets

be the presheaf with S 7→ G(S) constructed as follows. Let CκS denote the category of maps
of affine schemes S → T with T ∈ PCAlgopFp,κ. This category is cofiltered and there is a
λ-small set of objects IκS ⊆ CκS, that is cofinal in CκS. We let G(S) = lim−→T∈IκS

F(T ), for any

choice of IκS . Unraveling the definitions we see that ι∗κ,λF is the sheafification of G.
We claim that G is already a sheaf. Indeed, since filtered colimits are exact it is enough

to prove that any v-cover S ′ → S in PCAlgopFp,λ can be expressed as a filtered colimit of

v-covers in PCAlgopFp,κ. Let S = Spec(A) and let S ′ = Spec(B), write A = lim−→i∈IκS
Ai and

B = lim−→j∈Iκ
S′
Bj with Ai and Bj κ-small rings, we may assume that the transition maps are all

injective. By lemma 1.3.11 below we may assume that all morphisms Spec(A) → Spec(Ai)
are v-covers. Consequently, the composition S ′ → S → Spec(Ai) is also a v-cover and
whenever S ′ → Spec(Ai) factors through a map Spec(Bj)→ Spec(Ai) this later one is also a
v-cover. We can replace our index sets IκS and IκS′ by a common index set I and replace the
rings Bj by the smallest subring of B containing Bj and Ai for some i ∈ IκS so that we get a
family indexed by I for which (Spec(Bi) → Spec(Ai))i∈I is always defined and is a v-cover.
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We get our desired expression

(S ′ → S) = lim←−
i∈I

(Spec(Bi)→ Spec(Ai))i∈I .

Once we know ι∗κ,λF = G, we compute ικ,λ,∗ι
∗
κ,λF(S) for S ∈ PCAlgopFp,κ to be lim−→T∈IκS

F(T ),

but since S is κ-small the identity map is cofinal in CκS and lim−→IκS
F(S) = F(S) as we needed

to show.

Lemma 1.3.11. Let κ be a cut-off cardinal, S ∈ PCAlgopFp and T ∈ PCAlgopFp,κ. Given a

morphism g : S → T , there is T ′ ∈ PCAlgopFp,κ together with morphisms f : S → T ′ and
h : T ′ → T such that f is a v-cover and g = h ◦ f .

Proof. This lemma is purely of set-theoretic nature and contentless otherwise. Indeed, if S
was κ-small we could simply choose T ′ = S and f to be the identity. Lets treat the general
case, let S = Spec(B) and T = Spec(A). By replacing A by its image in B we may assume
g∗ : A→ B to be injective. We construct a countable sequence of subrings

A = A0 ⊆ · · · ⊆ An ⊆ An+1 ⊆ . . . B

with the property that each Ai is κ-small and that the image of the map Spa(B,B) →
Spa(An, An) coincides with the image of Spa(An+1, An+1) → Spa(An, An). We do this in-
ductively as follows: Assume An to be defined and let Zn ⊆ Spa(An, An) be the image of
Spa(B,B) in Spa(An, An). If x is an element of Spa(An, An)\Zn the valuation |·|x : An → Γx
can’t be extended to a valuation | · | : B → Γ. A compactness argument proves there are
finitely many elements {a1, . . . am} such that | · |x does not extend to An[a1, . . . , am] ⊆ B.
Since Spa(An, An) \ Zn is κ-small, there is λ < κ and a set {ai}i∈λ ⊆ B such that An[ai]i∈λ

does not extend any x ∈ Spa(An, An) \Zn. We let An+1 = An[a
1
p∞
i ]i∈λ, clearly An+1 satisfies

the desired properties.
Let A∞ = lim−→i∈NAi, we claim that the map Spec(B)→ Spec(A∞) is a v-cover and that

A∞ is κ-small. Indeed, since each Ai is κ-small and since the cofinality of κ is larger than ω
(See [51] 4.1) A∞ is also κ-small. To prove it is a v-cover, we can use lemma 1.3.5 to prove
instead that Spa(B,B) → Spa(A∞, A∞) is surjective. One verifies that Spa(A∞, A∞) =
lim←−i∈N Spa(Ai, Ai) as topological spaces. Given a compatible sequence xi ∈ Spa(Ai, Ai) we

define Mi to be the preimage of xi in Spa(B,B). This gives a sequence of sets

Spa(B,B) ⊇M0 ⊇M1 . . .Mn ⊇ . . .

Since the maps Spa(B,B) → Spa(Ai, Ai) are spectral maps of spectral topological spaces,
each of the Mi is closed and compact in the patch topology and their intersection is non-
empty. Any element in this intersection will map to the element x∞ ∈ Spa(A∞, A∞) repre-
sented by the compatible sequence xi.

We define ˜SchPerf as the big colimit
⋃
κ

˜SchPerfκ along all cut-off cardinals and the fully-
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faithful embeddings ι∗κ,λ. Objects in ˜SchPerf are called small scheme-theoretic v-sheaves.
The general formalism of topoi, specifically ([3] IV 4.9.4), allows us to promote ♦κ :

PCAlgopFp,κ → P̃erfκ to a morphism of topoi fκ : P̃erfκ → ˜SchPerfκ for which f ∗κ |PCAlgopFp,κ
=

♦κ. Indeed, proposition 1.3.3 shows that ♦κ is left-exact and proposition 1.3.8 gives us
continuity of ♦κ.

Proposition 1.3.12. 1. Given two cut-off cardinals κ < λ we have a commutative dia-
gram of morphism of topoi:

P̃erfλ ˜SchPerfλ

P̃erfκ ˜SchPerfκ

fλ

ικ,λ ικ,λ

fκ

2. We also have that the natural morphism ι∗κ,λ ◦ fκ,∗ → fλ,∗ ◦ ι∗κ,λ is an isomorphism.

Proof. The commutativity of morphism of topoi follows formally from the similar commu-
tativity of continuous functors:

PCAlgopFp,κ P̃erfκ

PCAlgopFp,λ P̃erfλ

ι∗κ,λ

♦κ

ι∗κ,λ

♦λ

For the second claim, given an element S ∈ PCAlgopFp,λ we let IκS be an index set category as

in the proof of 1.3.10. If S = Spec(A) we let X = Spa(A((t
1
p∞ )), A[[t

1
p∞ ]]) and Y = X×S♦X.

In a similar way, for T ∈ IκS with T = Spec(B) we let XT = Spa(B((t
1
p∞ )), B[[t

1
p∞ ]]) and

YT = XT ×T♦XT . The family of perfectoid spaces (XT )T∈IκS ((YT )T∈IκS respectively) is cofinal
in the category CκX of maps X → X ′ with X ′ a κ-small perfectoid space (CκY respectively).
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We get the following chain of isomorphisms:

ι∗κ,λfκ,∗F(S) = lim−→
T∈IκS

Hom ˜SchPerfκ
(hT , fκ,∗F) (1.1)

= lim−→
T∈IκS

HomP̃erfκ
(f ∗κhT ,F) (1.2)

= lim−→
T∈IκS

HomP̃erfκ
(T ♦κ ,F) (1.3)

= lim−→
T∈IκS

EqP̃erfκ
(Hom(XT ,F)⇒ Hom(YT ,F)) (1.4)

= EqP̃erfλ
( lim−→
T∈IκS

Hom(XT ,F)⇒ lim−→
T∈IκS

Hom(YT ,F)) (1.5)

= EqP̃erfλ
(Hom(XS, ι

∗
κ,λF)⇒ Hom(YS, ι

∗
κ,λF)) (1.6)

= HomP̃erfλ
(S♦λ , ι∗κ,λF) (1.7)

= Hom ˜SchPerfλ
(hS, fλ,∗ι

∗
κ,λF) (1.8)

= fλ,∗ι
∗
κ,λF(S) (1.9)

Recall that a morphism of topoi consists of a pair of adjoint functors (f ∗, f∗) such that f ∗

commutes with finite limits. By proposition 1.3.12 above we can gather all of the morphisms

of topoi fκ : P̃erfκ → ˜SchPerfκ into a pair of adjoint functors (f ∗, f∗) : P̃erf → ˜SchPerf

such that f ∗ commutes with finite limits. This is not a morphism of topoi because P̃erf and
˜SchPerf are not topoi, but they behave as such.

Definition 1.3.13. Let (f ∗, f∗) the pair of adjoint functors described above, given F ∈
˜SchPerf we will denote f ∗F by F♦ and given G ∈ P̃erf we will denote f∗G by (G)red. We

refer to (−)red as the reduction functor.

Remark 1.3.14. The functor (−)red will be very important for our purposes. To make this

functor explicit take a small v-sheaf F ∈ P̃erf and S ∈ PCAlgopFp. Adjunction tells us that

F red(S) = HomP̃erf(S
♦,F). We could have defined the functor in this way without invoking

the formalism of topoi, but it will be useful to know that the “reduction” of small v-sheaf is
a small scheme-theoretic v-sheaf.

We can endow any small scheme-theoretic v-sheaf with a topological space in a similar

fashion to definition 1.1.11. Given S ∈ ˜SchPerf we let |S| denote the set of equivalence
classes of maps Spec(k) → S, where k is a perfect field over Fp. Two maps p1, p2 are
equivalent if we can complete a commutative diagram as below:
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Spec(k1)

Spec(k3) S

Spec(k2)

p1
q1

q2

p3

p2

Proposition 1.3.15. Let S ∈ ˜SchPerf the following hold:

1. There is a pair of cut-off cardinals κ < λ and a λ-small family {Si}i∈I of objects in
PCAlgopFp,κ together with a surjective map X = (

∐
i∈I Si)→ S.

2. The small scheme-theoretic v-sheaf R = X×SX has a similar cover Y = (
∐

j∈J Tj)→
R, there is a natural map |X| → |S| which induces a bijection |S| ∼= |X|/|Y |. We
endow |S| with the quotient topology induced by this bijection.

3. The topology on |S| does not depend on the choices of X or Y .

4. Any map of small v-sheaves S1 → S2 induces a continuous map of topological spaces
|S1| → |S2|.

Proof. By definition S ∈ ˜SchPerfκ for some cut-off cardinal κ, the category PCAlgopFp,κ is a
small category. By cofinality of cut-off cardinals we may pick λ larger than

sup
T∈PCAlgopFp,κ

S(T ).

We let X = (
∐

T∈PCAlgopFp,κ

∐
x∈S(T ) T ) with the evident projection map to S. We claim this

map is surjective. This map is defined in ˜SchPerfλ and it is enough to prove surjectivity
there. Given S ∈ PCAlgFp,λ, we have S(S) = lim−→T∈IκS

S(T ). Since this colimit is filtered, for

a fixed map g : S → S we can find (f : S → T ) ∈ IκS and a map h : T → S with g = h ◦ f .
In particular, g factors through a map to X since X contains a copy of T mapping to S via
h.

We move on to the second claim. Given x ∈ |X| we take the residue field inclusion
ιx : Spec(kx) → X. The composition Spec(kx) → X → S defines an element of |S|.
Suppose now that x1, x2 ∈ |X|, we must show that (x1, x2) ∈ |X| × |X| is in the image of
|Y | if and only if x1 and x2 define the same element in |S|. If the maps ιx1 and ιx2 are
equivalent we get a map ιx3 : Spec(k3) → X ×S X. By replacing k3 by a larger field if
necessary, we may assume that ιx3 lifts to Y and defines an element y ∈ |Y |. We see that
y maps to (x1, x2) in |X| × |X|. On the other hand, if there is y ∈ Y mapping to (x1, x2)
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and ιy : Spec(ky)→ Y is the residue field map, the compositions Spec(ky)→ Y
πi−→ X factor

through ιxi : Spec(kxi)→ X. This proves that x1 and x2 map to the same point |S|.
For the third claim suppose we are given two covers Xi → S with i ∈ {1, 2}, we must

show that the two quotient topologies coming from the surjections |Xi| → |S| agree. The
small scheme theoretic v-sheaf R = X1 ×S X2 admits a v-cover X3 → R by the first claim.
By replacing X2 by X3 we may assume that we have a commutative diagram of surjective
maps:

X2

S

X1

Since X2 → X1 is a v-cover we get a quotient map of topological spaces |X2| → |X1|. If we
give |S| the quotient topology coming from the surjection |X1| → |S| the composition map
|X2| → |S| is also a quotient map. This implies that the two topologies agree.

For the last claim, we may find covers S1 and S2 by X1 and X2 respectively forming the
following commutative diagram:

| X2 | | S2 |

| X1 | | S1 |

q

q

Both horizontal maps are quotient maps and the leftmost vertical map is continuous since it
is induced by a morphism of unions of affine schemes, this prove the required continuity.

1.3.2 Reduction functor and formal adicness

Definition 1.3.16. We say that a small scheme-theoretic v-sheaf F is reduced if the adjunc-

tion morphism F → (F♦)red is an isomorphism in ˜SchPerf.

We have the following formal consequences of our definition.

Proposition 1.3.17. 1. If S is a perfect scheme in characteristic p then the Yoneda
functor hS is reduced. (See [53] 18.3.1)

2. The functor ♦ : ˜SchPerf → P̃erf is fully-faithful when restricted to small reduced v-
sheaves.

Proof. The first claim follows from theorem 1.2.32. The second claim follows from adjunction.

Indeed, if F is reduced and G ∈ ˜SchPerf then:

HomP̃erf(G
♦,F♦) = Hom ˜SchPerf

(G, (F♦)red) = Hom ˜SchPerf
(G,F)
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Question 1.3.18. Are perfect algebraic spaces reduced? If this was the case much of the
formalism of specialization goes through in this generality.

Intuitively speaking, the reduction functor kills all topological nilpotents and removes
analytic points from our v-sheaf. Below, we try to justify why one can think of this reduction
functor as an analogue of taking the underlying reduced subscheme of a formal scheme.

Lemma 1.3.19. The scheme-theoretic v-sheaf (Zp♦)red is represented by Fp.

Proof. This is a direct consequence of lemma 1.2.30.

For a Huber pair (A,A+) over Zp, we let Ared denote the perfection of A/(A ·A◦◦) where
A · A◦◦ is the ideal generated by the set of topologically nilpotent elements. The following
statement generalizes lemma 1.3.19

Proposition 1.3.20. Let X be a pre-adic space over Zp and let Xna be the reduced adic
space associated to the non-analytic locus of proposition 1.1.28. The following hold:

1. The map (Xna,♦)red → (X♦)red is an isomorphism.

2. If X = Spa(A,A+) for (A,A+) a Huber pair over Zp, then Spd(A,A+)
red

is represented
by Spec(Ared).

Proof. By theorem 1.2.32 if S = Spec(R) ∈ PCAlgopFp then morphisms S♦ → X are given by
maps of pre-adic spaces f : Spa(R,R)→ X, and they must factor through the non-analytic
locus which proves the first claim.

The non-analytic locus of Spa(A,A+) is represented by the Huber pair (A/A◦◦·A,A◦◦·A+).
Since R is perfect the map f ∗ : A/A · A◦◦ → R factors uniquely through its perfection.

We now justify the intuition behind thinking of diamonds as purely analytic objects.

Proposition 1.3.21. For a quasi-separated diamond Y the associated reduced functor Y red

is the empty-sheaf.

Proof. We need to prove that for a perfect scheme S there are no morphisms S♦ → Y . It is
enough to prove this for S = Spec(k) the spectrum of an algebraically closed field. Suppose
there is such a map f : S♦ → Y , and let y ∈ |Y | be the unique point in the image of |f |.
We consider Yy the sub-v-sheaf of points of Spa(R,R+)→ Y for which |Spa(R,R+)| → |Y |
factors through y. The map f factors through Yy and by ([51] 11.10) it is a quasi-separated
diamond with |Yy| consisting of one point. We can use ([51] 21.9) to write Yy = Spa(C,OC)/G
with C a non-Archimedean algebraically closed field in characteristic p and G a profinite
group acting continuously and faithfully on C.
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Consider the v-cover S ′ = Spa(K1, OK1) → Spec(k)♦ where K1 is an algebraic closure

of k((t
1
p∞ )). Similarly, let T = Spa(K2, OK2) where K2 is an algebraically closed non-

Archimedean field containing k discretely and whose value group ΓK2 ⊆ R≥0 has at least
two elements that are linearly independent when we treat ΓK2 \ {0} as vector space over Q.
By our hypothesis on K2, we can find two continuous embeddings ι∗i : K1 → K2 such that
|ι∗1(K1)|ΓK2

∩ |ι∗2(K1)|ΓK2
= 1 and in particular, such that ι∗1(K1) ∩ ι∗2(K1) = k.

The composition of f : S♦ → Yy with the natural projection Spa(K1, K1
+) → S♦ gives

a map [g] : Spa(K1, K1
+) → Yy such that [g] ◦ ι1 = [g] ◦ ι2. Since both Spa(K1, K1

+) and
Spa(K2, K2

+) are algebraically closed fields the sets of maps to Yy are given by G-orbits of
maps to Spa(C,OC), that is Hom(Spa(Ki, Ki

+), Yy) = Hom(Spa(Ki, Ki
+), Spa(C,OC))/G.

Let g∗ : (C,OC)→ (K1, OK1) represent [g] in Hom(Spa(K1, K1
+), Yy), we get maps ι∗i ◦ g∗ :

(C,OC) → (K2, OK2) and since [g] ◦ ι1 = [g] ◦ ι1 we have ι∗1 ◦ g∗(C) = ι∗2 ◦ g∗(C) ⊆ k. This
contradicts that k has the discrete topology and that C is a non-Archimedean field, the
contradiction shows that the map f : S♦ → Yy does not exist.

Recall that a morphism of adic spaces X → Y is said to be adic if the image of an
analytic point is again an analytic point. For v-sheaves we can define a related notion.

Definition 1.3.22. We say that a morphism of v-sheaves F → G is formally adic if the
commutative diagram that one obtains from adjunction:

(F red)♦ (Gred)♦

F G

is a Cartesian diagram.

We warn the reader that although the notion of a morphism of adic spaces to be adic is
related to the morphism of v-sheaves being formally adic neither of this notions implies the
other.

Example 1.3.23. Take a perfect field k in characteristic p together with a rank 1 valuation
subring Ok ⊆ k with the discrete topology. The morphism of adic spaces Spa(k,Ok) →
Spa(Fp,Fp) is adic. Nevertheless, the induced morphism Spd(k,Ok) → Spd(Fp,Fp) is not
formally adic since Spd(k,Ok)

red is represented by Spec(k). Observe that Spo(k,Ok) has a
meromorphic point that is not bounded.

Example 1.3.24. Take a non-Archimedean perfect field K in characteristic p and consider
the morphism id : Spa(K1, OK1)→ Spa(K2, OK2) where K2 = K given the discrete topology
and K1 = K given the topology induced by the norm. This morphism is not adic, nevertheless
the reduction diagram looks like this:
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∅ Spec(K2)♦

Spd(K1, OK1) Spd(K2, OK2)

Which is Cartesian.

Although the notion of formal adicness does not recover the notion of adicness in general,
it will in some important situations:

Proposition 1.3.25. Let (A,A) and (B,B) be formal Huber pairs over Zp with ideals of
definition IA and IB respectively. A morphism of adic spaces Spa(A,A)→ Spa(B,B) is adic
if and only if the corresponding morphism of v-sheaves Spd(A,A)→ Spd(B,B) is formally
adic.

Proof. The reduction diagram looks as follows:

Spec(Ared)♦

(Spec(A/IB)perf )♦ Spec(Bred)♦

Spd(A,A) Spd(B,B)

Continuity of the morphism B → A ensures that InB ⊆ IA for some n. In this context,
the morphism is adic if and only if IB · A is an ideal of definition of A which happens if
and only if ImA ⊆ A · IB for some m. If the morphism is adic, then A/IA and (A/A · IB)
become isomorphic after taking perfection which gives formal adicness. Conversely, if the
morphism is formally adic, by hypothesis the rings (A/IB)perf , and Ared are isomorphic with
the isomorphism being induced by the natural surjective ring map with source (A/p)perf .
This implies that the ideals IA and IB define the same Zariski closed subset in Spec(A).
In particular, the elements of IA are nilpotent in A/IB, and since IA is finitely generated
ImA ⊆ IB for some m.

Proposition 1.3.26. 1. If F → H and H → G are formally adic, the composition F →
G is formally adic.

2. If F → H is formally adic, the basechange G ×H F → G is formally adic.

Proof. The first claim is clear. For the second one we get a Cartesian diagram:

(Gred)♦ ×(Hred)♦ (F red)♦ (F red)♦ F

(Gred)♦ (Hred)♦ H
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The functors (−)red and (−)♦ commute with finite limits. This gives (Gred)♦×(Hred)♦ (F red)♦ =
((G ×H F)red)♦, and proves that

((G ×H F)red)♦ G ×H F F

(Gred)♦ G H

is also Cartesian.

Definition 1.3.27. We say that a v-sheaf F over Z♦p is formally p-adic if the morphism
F → Z♦p is formally adic.

Over Zp the situation of example 1.3.24 does not happen.

Proposition 1.3.28. Suppose we have a Huber pair (A,A+) and a map f : Spa(A,A+) →
Spa(Zp,Zp), if f♦ is formally adic then f is adic (as a morphism of adic spaces).

Proof. Let U ⊆ Spa(A,A+) the open subset of analytic points. It is easy to verify that
this open embedding is formally adic because Spec(Ared)♦ → Spd(A,A+) factors through
the complement of U♦ and because by proposition 1.3.21 (U♦)red = ∅ holds. Since formal
adicness is preserved by composition U♦ → Z♦p is formally adic. By formal adicness the map
U♦ → Z♦p must factor through Q♦p . This proves f(U) ⊆ Spa(Qp,Zp) which proves that f is
adic.

Recall that a v-sheaves F is said to be separated if the diagonal F → F ×F is a closed
immersion (See [51] 10.7). We need the following related notion:

Definition 1.3.29. 1. We say that a map of v-sheaves F → G is formally closed if it is
a formally adic closed immersion.

2. We say that a v-sheaf is formally separated if the diagonal map F → F×F is formally
closed.

Lemma 1.3.30. The v-sheaf Z♦p is formally separated.

Proof. We need to prove that the diagonal Z♦p → Z♦p × Z♦p is a closed immersion of per-
fectoid spaces after any basechange by maps Spa(R,R+) → Z♦p × Z♦p , with Spa(R,R+) ∈
Perf. This amounts to proving that the locus on which two untilts agree is closed inside
|Spa(R,R+)| and representable by a perfectoid space. Now, each untilt is individually cut
out of Spa(W (R+),W (R+)) \ {V ([$])} as a closed Cartier divisor (See [53] 11.3.1). We
can take the intersection which will define a Zariski closed subset in each of the untilts, but
Zariski closed subsets of a perfectoid space are representable by some other perfectoid space.
The tilt of such a closed immersion represents this basechange.

To prove the diagonal is formally adic we compute directly (Z♦p ×F♦
p
Z♦p )red = Fp since

(−)red commutes with limits. The basechange F♦p ×Z♦
p×F♦p

Z♦
p
Z♦p agrees with F♦p .
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Proposition 1.3.31. If a v-sheaf F is formally p-adic, then the diagonal F → F × F is
formally adic.

Proof. We have a formally adic map F → Z♦p , and since formal adicness is preserved by
basechange and composition we get a formally adic map F ×Z♦

p
F → Z♦p . By the two out

of three property of Cartesian diagrams, the diagonal map F → F ×Z♦
p
F is also formally

adic. Now, F ×Z♦
p
F is the basechange of the diagonal map Z♦p → Z♦p ×Z♦p by the projection

map F × F → Z♦p × Z♦p . This gives us that F ×Z♦
p
F → F × F is also formally adic. Since

formal adicness is preserved by composition, F → F ×F is also formally adic as we needed
to show.

Lemma 1.3.32. The diagonal F → F × F is formally adic if and only if the adjunction
morphism (F red)♦ → F is injective. In this case, if (A,A+) is a perfectoid Huber pair,
and m ∈ F(A,A+) then m ∈ (F red)♦(A,A+) if and only if Spa(A,A+) admits a v-cover
Spa(R,R+) → Spa(A,A+) and a morphism Spec(R+)♦ → F making the following diagram
commutative:

Spa(R,R+) Spec(R+)♦

Spa(A,A+) Fm

Proof. In general, a map of sheaves G → F is injective if and only if (G × G)×F×F F = G.
We can apply this reasoning to the map (F red)♦ → F .

For the second claim let CR be the category of maps Spa(R,R+)→ S♦ with S ∈ PCAlgopFp ,

this category is cofiltered. Now, (F red)♦ is the sheafification of the functor that assigns to
(R,R+):

lim−→
S♦∈CR

Hom(S♦,F).

But the evident map Spa(R,R+)→ Spec(R+)♦ is cofinal in CR. That is, (F red)♦ is the sheafi-
fication of the presheaf that assigns (R,R+) 7→ Hom(Spec(R+)♦,F). The description given
in the statement above is what one gets from taking sheafification and assuming injectivity
of (F red)♦ → F .

The following lemma will be key for our theory of specialization, it roughly says that
formally adic closed immersions behave as expected:

Lemma 1.3.33. Let (A,A+) be a perfectoid Huber pair and let F → Spd(A+, A+) be for-
mally adic closed immersion. Then (F red)♦ = Spec(A+/J)♦ for some open ideal J ⊆ A+.

Proof. Since F → Spd(A+, A+) is a closed immersion, |F| ⊆ Spo(A+, A+) is a closed subset
and we have a Cartesian diagram,
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F Spd(A+, A+)

| F | Spo(A+, A+)

By proposition 1.3.20, (Spd(A+, A+)
red

)♦ = Spec(A+
red)♦ which is also a closed subsheaf of

Spd(A+, A+). By formal adicness (F red)♦ is a closed subsheaf of Spd(A+, A+) given again by
the topological condition |F|∩|Spec(A+

red)|. By lemma 1.3.32 a map Spa(R,R+)→ F factors
through (F red)♦ if after possibly replacing R by a v-cover it factors through Spec(R+)♦ →
F ∩ Spec(A+

red)♦. This proves that |(F red)♦| is a schematic closed subset of Spo(A+, A+) as
in definition 1.2.35. By proposition 1.2.36 it is a Zariski closed subset corresponding to an
open ideal J ⊆ A+, this proves the claim.

Example 1.3.34. Let Z denote the complement Spd(Fp[t],Fp[t]) \ Nt<<1 of the analytic
localization Nt<<1. Then Z → Spd(Fp[t],Fp[t]) is a closed immersion that is not formally
closed. One may glue two copies of Spd(Fp[t],Fp[t]) along Z to get a v-sheaf Y that is
separated but not formally separated. Y red is represented by the affine line with two origins
but the adjunction map (Y red)♦ → Y is not injective.

We will often use implicitly the following easy result.

Lemma 1.3.35. Let F and G be two small v-sheaves, and f : F → G a map between them.
Suppose that F ×G (Gred)♦ is representable by a reduced scheme-theoretic v-sheaf (definition
1.3.16) and that G is formally separated, then f is formally adic.

Proof. Let T be a reduced scheme-theoretic v-sheaf such that T ♦ = F ×G (Gred)♦. Since T is
reduced we have (T ♦)red = T and consequently ((T ♦)red)♦ = T ♦. Recall that for any pair of
adjoint functors (L,R) the compositions R→ R◦L◦R→ R and L→ L◦R◦L→ L are the
identity. Since G is formally separated the adjunction map (Gred)♦ → G is injective. Since
(−)red is a right adjoint the map f : ((Gred)♦)red → Gred is also injective. Now, the map f is
injective and the identity of Gred factors through it, this implies that f is an isomorphism.
We can compute:

(T ♦)red = (F ×G (Gred)♦)red (F red)♦ = ((T ♦)red)♦

= F red ×Gred ((Gred)♦)red = T ♦

= F red ×Gred Gred

= F red

1.4 Specialization

In this section we review the specialization map in the context of formal schemes and gener-
alize it to the context of v-sheaves. We identify a class of v-sheaves, that we call kimberlites,
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whose specialization maps behave like those of formal schemes. We prove some abstract
statement on the behavior of the specialization map in this context, which we will later use
when we discuss the examples of interest.

1.4.1 Specialization for Tate Huber pairs

Definition 1.4.1. Given a Tate Huber pair (A,A+) over Zp and a pseudo-uniformizer $ ∈
A, we define the specialization map spA : |Spa(A,A+)| → |Spec(A+

red)| by sending a valuation
| · |x ∈ |Spa(A,A+)| to the ideal p ⊆ A+ given by p = {a ∈ A+ | |a|x < 1}

These maps of sets are functorial in the category of Tate Huber pairs.

Proposition 1.4.2. (See [4] 8.1.2) The specialization map spA : |Spa(A,A+)| → |Spec(A+
red)|

is a continuous, surjective, spectral and closed map of spectral topological spaces.

Strictly totally disconnected spaces form a basis for the pro-étale topology on Perf. In
particular, any small v-sheaf admits a surjective map from a union of totally disconnected
spaces. Moreover, as the following proposition shows, the specialization map for these spaces
is usefully nice.

Proposition 1.4.3. For a strictly totally disconnected space Spa(R,R+), the specialization
map spR is a homeomorphism.

Proof. By proposition 1.4.2 the map is surjective and a quotient map so it is enough to prove
injectivity. Suppose x, y ∈ |Spa(R,R+)| map to the same point in |Spec(R+

red)|. We claim
that x and y are in the same connected component of |Spa(R,R+)|. Indeed, let πx and πy be
the connected components of x and y respectively. The closed-open subsets U ⊆ Spa(R,R+)
are Zariski closed subsets defined by an idempotent 1U ∈ R+. The ones containing x are
precisely those for which |1U |x = 1 or equivalently for which 1U /∈ spR(x) ⊆ R+. By
assumption spR(x) = spR(y) so x and y are contained in the same closed-opens, this gives
πx = πy.

By proposition 1.1.8, πx is representable by Spa(C,C+) for some perfectoid field C and
open valuation subring C+. By functoriality of the specialization map it is enough to prove
that the maps spC and |Spec(C+/$)| → |Spec(R+/$)| are injective. The former is injective
by lemma 1.4.4 below. To prove injectivity of the later map we argue as follows: πx =

⋂
U

where U ranges over the closed-open subsets of |Spa(R,R+)| containing x. Each closed-open
U ⊆ Spa(R,R+) is of the form U = Spa(RU , RU

+) and if U c denotes the complement of U
then R+ = R+

U × R
+
Uc as topological rings. In particular, the map R+ → R+

U is surjective.
We have that C+ is the $-adic completion of lim−→x∈U R

+
U which implies that the image of

R+ → C+ is dense. Consequently, Spec(C+/$) → Spec(R+/$) is a closed immersion and
injective.

Lemma 1.4.4. 1. Given a non-Archimedean field K there is an order preserving bijection
between open and bounded valuation subrings K+ of K, and valuation subrings of
OK/K

◦◦, given by K+ 7→ K+/K◦◦
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2. Given K as above and an open and bounded valuation subring K+ the specialization
map spK is a homeomorphism.

Proof. This is well known and the proof is left to the reader.

Remark 1.4.5. Although the construction of V in the proof above does not depend of the
choice of $ = ($i)i∈I , the ring V ′ very much depends of this choice. This is in agreement
with remark 1.1.6.

1.4.2 Specializing v-sheaves

We now discuss the specialization map for v-sheaves. The idea is to descend the specialization
map from the case of formal Huber pairs.

Definition 1.4.6. We say that a small v-sheaf F is v-locally formal if there is a set I, a
family (Bi, Bi)i∈I of formal Huber pairs over Zp and a surjective map of v-sheaves∐

i∈I

Spd(Bi, Bi)→ F .

Definition 1.4.7. Let F be a small v-sheaf, Spa(A,A+) an affinoid perfectoid space in
characteristic p and f : Spa(A,A+)→ F a map of v-sheaves.

1. We say that F formalizes f (or that f is formalizable) if there exists a commutative
diagram as follows:

Spa(A,A+) F

Spd(A+, A+)

ι

2. We say that F v-formalizes f if there is a v-cover g : Spa(B,B+) → Spa(A,A+) of
affinoid perfectoid spaces for which F formalizes f ◦ g.

3. We say that F is formalizing if it formalizes any f as above.

4. We say that F is v-formalizing if it v-formalizes any f as above.

The previous technical definition will be used extensively, because it gives an abstract
criterion to verify that a v-sheaf is v-locally formal.

Lemma 1.4.8. The following statements hold:

1. The v-sheaf Z♦p is formalizing.

2. Spd(B,B) is formalizing for any formal Huber pair over Zp.
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3. A small v-sheaf F is v-formalizing if and only if it is v-locally formal.

Proof. Given an affinoid perfectoid Spa(R,R+) in characteristic p and an untilt ι : (R])[ → R
we need to produce a natural transformation Spd(R+, R+)→ Z♦p for which the composition
with the canonical map Spa(R,R+)→ Spd(R+, R+) gets mapped to R]. Let ξ = p+[$]α be
a generator of the kernel of W (R+) → (R])+, where $ ∈ R+ denotes a pseudo-uniformizer
and α ∈ W (R+). Let Spa(A,A+) be some other affinoid perfectoid space in characteristic p.
Recall that, since R+ is in characteristic p

Spd(R+, R+)(A,A+) = {f : Spa(A,A+)→ Spa(R+, R+)}

Consider the following construction, take the map of topological rings f ∗ : R+ → A+

defined by f , apply the Witt vector functor to f ∗ to get W (f ∗) : W (R+) → W (A+) and
consider the element W (f ∗)(ξ) ∈ W (A+). We claim that W (f ∗)(ξ) is primitive of degree 1

(See [53] 6.2.8) and defines an untilt of Spa(A,A+) over Spa(R]+, R]+). Indeed W (f ∗)(ξ) =
p+[f ∗($)]f ∗(α) and it is enough to prove that there is a pseudo-uniformizer $A that divides
f ∗($). This follows from the fact that f ∗($) is topologically nilpotent.

For the second claim, if we fix an untilt and a morphism Spa(R], R]+) → Spa(B,B) we
can promote this to a morphism Spa(R],+, R],+) → Spa(B,B) and induce a formalization
Spd(R],+, R],+)→ Spd(B,B).

For the third claim, assume that F is v-formalizing. Since it is small there is a set I
and a surjective map by a union of affinoid perfectoid spaces

∐
i∈I Spa(Ri, Ri

+)→ F . After
refining this cover we may assume that each of the maps Spa(Ri, Ri

+)→ F formalizes to a
map Spd(R+

i , R
+
i ) → F , then

∐
i∈I Spd(R+

i , R
+
i ) → F is also surjective proving that F is

v-locally formal. If F is v-locally formal a map Spa(R,R+)→ F will v-locally factor through
a map Spa(R,R+)→ Spd(Bi, Bi). By the second claim this map formalizes Spd(R+, R+)→
Spd(Bi, Bi) and the composition to F is a formalization of the original map.

Since the notions of being v-locally formal and being v-formalizing are equivalent we will
use them interchangeably, without mentioning it.

Proposition 1.4.9. The following properties are easy to verify.

1. If f : F → G is a surjective map of small v-sheaves and F is v-formalizing then G is
v-formalizing.

2. If Spec(R) ∈ PCAlgopFp then Spec(R)♦ is formalizing.

3. If X ∈ ˜SchPerf then X♦ is v-formalizing by lemma 1.3.32.

4. Non-empty v-formalizing v-sheaves have non-empty reduction. Consequently, diamonds
are not v-formalizing.

5. If F formalizes f : Spa(A,A+) → F then F formalizes f ◦ g for any map g :
Spa(B,B+)→ Spa(A,A+)
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Proposition 1.4.10. Let F be a small v-sheaf, and f : Spa(R,R+) → F a map with
Spa(R,R+) affinoid perfectoid in characteristic p. If F is formally separated then f admits
at most one formalization.

Proof. Suppose we are given two formalizations gi : Spd(R+, R+) → F that agree on
Spa(R,R+). We get a map (g1, g2) : Spd(R+, R+) → F × F , and we can pullback along
the diagonal ∆F : F → F × F to get G ⊆ Spd(R+, R+) a formally closed subsheaf. We
want to prove that G = Spd(R+, R+), and to do so it is enough to prove the equality at
the level of topological spaces, |G| = Spo(R+, R+). Moreover, since |Spa(R,R+)| ⊆ |G| and
Spo(R+, R+) = Spa(R,R+) ∪ |Spec(R+

red)♦| it is enough to prove |(Gred)♦| = |Spec(R+
red)♦|.

We warn the reader that we can’t use a direct density argument because although Spa(R,R+)
is dense in Spa(R+, R+), it is no longer dense in Spo(R+, R+).

We first deal with the case in which C is a non-Archimedean field and C+ ⊆ C is an open
and bounded valuation subring. Let k+ = C+

red and k = Frac(k+), we have that Spec(k+) =

Spd(C+, C+)
red

and by lemma 1.3.33 (Gred)♦ = Spec(k+/I)♦ for some ideal I. On the
other hand, since Spa(C,C+) ⊆ G and |G| is closed in Spo(C+, C+), |G| contains the formal
specialization of Spa(C,OC) in Spo(C+, C+), this corresponds to the image of Spec(k)♦. By
formal adicness |(Gred)♦| = |G| ∩ |Spec(k+)♦| and we can conclude that Spec(k)♦ ⊆ (Gred)♦.
This proves that I = {0} and that (Gred)♦ = Spec(k+)♦ as we needed to show.

For the general case, we get that for every map Spa(C,C+)→ Spa(R,R+) the canonical
formalization Spd(C+, C+) → Spd(R+, R+) factors through G. In particular, after taking
reduction, the map Spec(k+) → Spec(R+

red) factors through Gred. This says that |Gred|
contains every point of |Spec(R+

red)| in the image of the specialization map. By lemma 1.3.33
Gred → Spec(R+

red) is a closed immersion and by proposition 1.4.2 the specialization map
is surjective, these two imply that Gred = Spec(R+

red). This also shows that |(Gred)♦| =
|Spec(R+

red)♦| and concludes the proof.

Proposition 1.4.11. The following statements hold:

1. Given two maps of v-sheaves F → H, G → H if F and G are v-formalizing and H is
formally separated then F ×H G is v-formalizing.

2. The subcategory of v-sheaves that are v-formalizing and formally separated is stable
under fiber product and contains Z♦p .

Proof. Given a map Spa(A,A+) → F ×H G we can find a cover Spa(B,B+) → Spa(A,A+)
for which the compositions with the projections to F and G are both formalizable. By formal
separatedness any pair of choices of formalizations Spd(B+, B+)→ G and to Spd(B+, B+)→
F define the same formalization to H and a map to F ×H G. The second claim follows from
the stability of separatedness by basechange and composition, from lemma 1.3.30 and from
lemma 1.3.32. Indeed, we need to prove that (F red)♦×(Hred)♦ (Gred)♦ is a subsheaf of F ×HG,
but this follows from knowing that F red (respectively H, G) is a subsheaf of F (respectively
H, G).
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Definition 1.4.12. Let F be a small v-sheaf, we say that it is specializing if it is formally
separated and v-locally formal.

Definition 1.4.13. Let F be a specializing v-sheaf and let f :
∐

i∈I Spd(Bi, Bi) → F be a
surjective map. The specialization map for F , denoted spF , is the unique map spF : |F| →
|F red| making the following diagram commutative:∐

i∈I | Spd(Bi, Bi) | | F |

∐
i∈I | Spec((Bi)red) | | F red |

f

spBi

|f red|

Remark 1.4.14. We use proposition 1.4.10 to prove that this map of sets is well defined
and does not depend on the choices taken. Indeed, given a point [x] ∈ |F| we may take
a formalizable representative x : Spa(Kx, Kx

+) → F . We take its unique formalization
Spd(K+

x , K
+
x ) → F and we apply the reduction functor to this map. We obtain a map

Spec((K+
x )red)→ F red, and the maximal ideal of (K+

x )red maps to a point in |F red|, spF([x])
is this point. Suppose y : Spa(Ky, Ky

+) → F is another formalizable map with [x] =
[y] after replacing y by a cover we may assume that the map factors as Spa(Ky, Ky

+) →
Spa(Kx, Kx

+)→ F . Since formalizations are unique we get a map

Spd(K+
y , K

+
y )→ Spd(K+

x , K
+
x )→ F

and the maximal ideal of (K+
y )red maps to the maximal ideal of (K+

x )red

Proposition 1.4.15. For any specializing v-sheaf F the specialization map spF : |F| →
|F red| is continuous. Moreover, this construction is functorial in the category of specializing
v-sheaves.

Proof. We prove functoriality first, take a map of v-sheaves as above g : F → G. Given a
point x : Spa(K,K+) → F the image in |G| is given by composition. A formalization for
x gives a formalization for g(x) and we get maps Spec(K+

red) → F red → Gred, we get that
gred(spF(x)) = spG(g(x)).

Let us prove continuity, take a cover f :
∐

i∈I Spd(Bi, Bi) → F with each (Bi, Bi) a
formal Huber pair. By definition we get the following commutative diagram:

|
∐

i∈I Spd(Bi, Bi) | | F |

| Spec((Bi)red) | | F red |

f

spBi spF

f red

The map f red is continuous by proposition 1.3.15, the map f is continuous and a quotient
map, and the maps spBi are continuous by proposition 1.4.2. Since the diagram is commu-
tative, the map spF is also continuous.
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1.4.3 Kimberlites, formal schemes and tubular neighborhoods

To prove pleasant properties of the specialization map we need to restrict our discussion to
certain types of specializing v-sheaves.

Definition 1.4.16. 1. A pre-kimberlite is a small v-sheaf F such that:

a) F is specializing.

b) F red is represented by a scheme.

c) The map (F red)♦ → F coming from adjunction is a closed immersion.

2. For a pre-kimberlite F , we define the analytic locus Fan as the open subsheaf F \F red.
If Fan is a locally spatial diamond we say that F is a kimberlite.

There are situations in which we will be interested in studying the specialization map
when restricted to a proper subset of the analytic locus, for this reason we consider the
following slightly more general concept.

Definition 1.4.17. A smelted kimberlite is a pair (F ,D) where F is a pre-kimberlite and
D ⊆ Fan is an open subsheaf such that D is a locally spatial diamond. A morphism of
smelted kimberlites f : (F1,D1) → (F2,D2) is a morphism of v-sheaves f : F1 → F2 such
that f(D1) ⊆ D2.

If we are given a kimberlite F over Z♦p there are two different smelted kimberlites that
one can naturally associate to F . That is, (F ,Fan) and (F ,F ×Z♦

p
Q♦p ). These two will only

coincide if F → Z♦p is formally adic. We will use the following definition to abbreviate some
sentences.

Definition 1.4.18. A kimberlite (respectively prekimberlite) F together with a formally adic
map F → Z♦p is said to be a p-adic kimberlite (respectively p-adic prekimberlite). Given a
map of sheaves F → Z♦p we denote by Fη the basechange F ×Z♦

p
Q♦p . A p-smelted kimberlite

is a prekimberlite F over Z♦p for which (F ,Fη) is a smelted kimberlite.

Definition 1.4.19. Given a smelted kimberlite K = (F ,D) we define the map of topological

spaces spK : |D | → |F red| as the composition of |D | → |F| spF−−→ |F red|. For a kimberlite F
we abbreviate sp(F ,Fan) by spFan.

Proposition 1.4.20. Let K = (F ,D) be a smelted kimberlite, then spK is a spectral map
of locally spectral spaces. The construction of spK is functorial in the category of smelted
kimberlites.

Proof. Continuity and functoriality follows directly from proposition 1.4.15. We need to
prove that this map is also continuous for the constructible topology. Since it is enough to
prove continuity on an open cover of |D |, we may assume that D is a spatial diamond. We
cover D by an affinoid perfectoid space X = Spa(A,A+). Consider the diagram,
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| Spa(A,A+) |cons | D |cons

| Spec(A+
red)red |cons | F red |cons

g

spX spK

gred

where the spaces are given the constructible topology. Since F red is represented by a scheme
proposition 1.3.17 implies that gred is continuous for the constructible topology. Indeed,
morphisms of schemes induce spectral maps. Similarly, the map spX is continuous and since
X is a spatial diamond proposition 1.1.26 shows that the map g is also continuous. Moreover,
g gives a surjective map of compact spaces and is consequently a quotient map. Since the
diagram commutes, spK is continuous for the patch topology.

The author thinks of kimberlites as a natural category in which one can consider “integral
models” for diamonds. In what follows we will prove that v-sheaf associated to a separated
formal scheme is a kimberlite.

For this one has to choose conventions carefully of what it means to be a “formal scheme”.
We take the convention given [52] section 2.2.

Convention 1. Denote by NilpZp the category of algebras in which p is nilpotent, and endow
NilpopZp with the structure of a site by giving it the Zariski topology. By a formal scheme X

over Zp we mean a Zariski sheaf on NilpopZp which is Zariski locally of the form Spf(A). Here
A is a topological ring given the I-adic topology for a finitely generated ideal of A containing
p, and Spf(A) denotes the functor Spec(B) 7→ lim−→n

Hom(A/In, B).
For a formal scheme X over Zp we let Xred denote its reduction in the sense of formal

schemes (See [56] Tag 0AIN). Recall that this is a sheaf in NilpopZp which is representable
by a scheme. Moreover, the map Xred → X is relatively representable in schemes, it is a
closed immersion and for any open Spf(A) ⊆ X the pullback to Xred is given by the reduced
subscheme of Spec(A/I) (for an ideal of definition I ⊆ A).

We say that X is separated if Xred is a separated scheme (See [56] Tag 0AJ7).

Recall the following result of Scholze and Weinstein

Proposition 1.4.21. (See [52] 2.2.1) The functor Spf(A) 7→ Spa(A,A) extends to a fully
faithful functor X 7→ Xad from formal schemes over Zp as in convention 1 to the category of
pre-adic spaces.

Remark 1.4.22. We warn that what is called adic spaces in [52] is what we call pre-adic
spaces here and in [53].

Proposition 1.4.23. If X is a separated formal scheme over Zp as in convention 1 then
(Xad)♦ is a kimberlite.

Proof. Let X = Xad and let W = Xna, we have that W = (Xred)
ad. Clearly X♦ is v-

locally formal since it is open locally of the form Spd(B,B). By proposition 1.3.20 we have
(W ♦)red = (X♦)red which is the perfection of Xred. The adjunction morphism agrees with
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the map W ♦ → X♦ which by proposition 1.1.31 is a closed immersion. Moreover, this says
X♦ \ ((X♦)red)♦ = (Xan)♦ so by proposition 1.1.31 this is a locally spatial diamond.

The only thing left to prove is that X♦ → Z♦p is separated, we fist prove that X♦ is
quasi-separated. Let Z = Spa(R,R+) be a strictly totally disconnected space and take a
map f : Z → X♦ ×Z♦

p
X♦. Since Z splits any open cover we may assume that f factors

through an open neighborhood of the form Spd(B1, B1)×Z♦
p

Spd(B2, B2) for an open subset

Spf(B1)×Spf(Zp) Spf(B2) ⊆ X×Spf(Zp) X. Consider the following basechange diagrams, where
Y = Yad

Y Spf(B1)×Spf(Zp) Spf(B2) Y Spa(B1, B1)×Zp Spa(B2, B2)

X X×Spf(Zp) X X X ×Zp X

Since X is separated Y is quasi-compact. This implies that Y admits a finite open cover of
the form

∐n
i=1 Spa(Ai, Ai) → Y . Moreover, the diagonal map X → X ×Zp X is adic (sends

analytic points to analytic points). Indeed, composing the diagonal map with one of the
projections gives the identity. Since open immersions preserve adicness the maps of pre-adic
spaces Spa(Ai, Ai) → Spa(B1, B1) ×Zp Spa(B2, B2) are adic. By lemma 1.2.26 the maps
Spd(Ai, Ai) → Spd(B1, B1) ×Zp Spd(B2, B2) are quasi-compact, which proves that Y ♦ →
Spd(B1, B1)×Zp Spd(B2, B2) and any basechange of it is also quasi-compact. After proving
that the map X♦ → Z♦p is quasi-separated we may use the valuative criterion of separatedness
(See [51] 10.9). We must prove that for a perfectoid field and a map Spa(K,OK)→ X♦ there
is at most one extension to Spa(K,K+) → X♦ where K+ ⊆ OK is an open and bounded
valuation subring. Maps Spa(K,K+) → X♦ are in bijection with maps Spf(K+) → X.
On the other hand, maps g : Spf(K+) → X are in bijection with pairs (gη, gs) where gη :
Spf(OK)→ X, gs : Spec(K+/K◦◦)→ Xred and such that gη = gs when we restrict the maps
to to Spec(OK/K

◦◦). At this point we may use the valuative criterion of separatedness of
Xred.

The following concept is central to our purposes.

Definition 1.4.24. Let F be a prekimberlite and let S ⊆ F red be a locally closed immersion
of schemes.

1. We define the tubular neighborhood of S on F , denoted F̂/S, as the sub-v-sheaf of F
defined by the following Cartesian diagram:
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F̂/S F

| F |

| S | | F red |

spF

2. If K = (F ,D) is a smelted kimberlite we let D̂/S be F̂/S ∩D and we refer to this sheaf
as the smelted tubular neighborhood.

3. If F comes equipped with a map to Z♦p (not necessarily formally adic) we define the

p-adic tubular neighborhood of F , denoted (F̂/S)η, as the basechange F̂/S ×Z♦
p
Q♦p .

Intuitively speaking, F̂/S is the subsheaf of points whose specialization map factors
through S. This notion generalizes completions along a closed subscheme in formal ge-
ometry:

Proposition 1.4.25. Suppose (A,A) is a formal Huber pair over Zp with ideal of definition
I. Let J ⊆ A be a finitely generated ideal containing I and B the completion of A with
respect to J . The closed immersion of schemes S = Spec(Bred) → Spec(Ared), induces an

identification ̂Spd(A,A)/S = Spd(B,B).

Proof. Let S = Spec(Bred) and T = Spec(Ared). The reduction of the map Spd(B,B) →
Spd(A,A) induces the map S → T . Since specialization is functorial any point coming
from Spd(B,B) has to specialize to S. Consequently the map factors as Spd(B,B) →
̂Spd(A,A)/S → Spd(A,A). Since A is dense in B, it is easy to see that this map is an

injection. To prove surjectivity onto ̂Spd(A,A)/S, suppose we have a map f : A → R+ for

which the induced map f : Spec(R+
red) → Spec(Ared) factors through |S|. Then for every

a ∈ J the element f(a) is nilpotent in Spec(R+/$n). Since J is finitely generated there is an
m for which Jm ⊆ ($n) in R+. This proves that the map f : A→ R+ is continuous for the
J-adic topology on A. Since R+ is complete the map f : A→ R+ factors through B, which

proves that any map Spa(R,R+)→ ̂Spd(A,A)/S factors through a map to Spd(B,B).

Proposition 1.4.26. Let f : G → F be a morphism prekimberlites and let S ⊆ |F red| a

locally closed subscheme. If we define T = S×Fred Gred, then F̂/S ×F G = Ĝ/T . In particular,

a map of prekimberlites G → F factors through F̂/S if and only if Gred → F red factors through
S.

Proof. Since S is a locally closed immersion we have |T | = |S| ×|Fred| |Gred|. We can look at
the following commutative diagram:
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G F

| Gred | | F red |

The first claim follows by basechanging this diagram by the map |S| → |F red|. For the second

claim, observe that the map G → F factoring through F̂/S is equivalent to G ×F F̂/S = G.

By the first claim this is equivalent to Ĝ/T = G, which happens if and only if T = Gred and
Gred → F red factors through S.

Remark 1.4.27. Let F be a prekimberlite and S ⊆ F red locally closed subset. One can prove
that the v-sheaf F̂/S is a small v-sheaf but this is not automatic. The problem is that the
v-sheaf T is not small whenever the topological space T does not satisfy the separation axiom
T1.

Proposition 1.4.28. Let F be a prekimberlite and let S ⊆ |F red| a locally closed subset,

then F̂/S is a prekimberlite and (F̂/S)red = S.

Proof. The formula (F̂/S)red = S follows easily from observing that by proposition 1.4.26

a map Spec(A)♦ → F factors through F̂/S if and only if the map obtained by adjunction

Spec(A) → F red factors through S. Indeed, S and F̂ red
/S represent the same functor in this

case.
For the first claim, since F̂/S is a subsheaf of a formally separated v-sheaf it is formally

separated as well. To prove it is v-formalizing take a map Spa(R,R+) → F̂/S ⊆ F . After
replacing Spa(R,R+) by a v-cover if necessary we get a formalization Spd(R+, R+)→ F . By

proposition 1.4.26 this formalization factors through F̂/S if and only if Spec(R+
red) → F red

factors through S. But this later condition holds since Spa(R,R+) → F factors through

F̂/S. To finish the proof we need to show that S♦ → F̂/S is a closed immersion. Consider

the base change F̂/S ×F (F red)♦. On one hand the projection to F̂/S is a closed immersion,

and on the other hand by proposition 1.4.26 this identifies with ̂((F red)♦)/S. In case S is a

closed subscheme of F red we have that the map of v-sheaves S♦ → (F red)♦ is proper so that

S♦ → ̂((F red)♦)/S is also a closed immersion. In case S is an open subscheme of F red, we

can verify ̂((F red)♦)/S = S♦. The general case follows from these two cases.

Whenever S is a constructible subset we can say more:

Proposition 1.4.29. Let F be a prekimberlite, S ⊆ |F red| a locally closed constructible
subset then:

1. The map F̂/S → F is an open immersion.

2. If K = (F ,D) is a smelted kimberlite, then F̂/S ∩D is the open subsheaf corresponding
to the interior of spK

−1(S) in |D |.
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Proof. For the first claim we begin by observing that the question is Zariski local in F red.
Indeed, an open cover

∐
i∈I Ui → F red induces an open cover

∐
i∈I F̂/Ui → F . After local-

izing, we may assume that F red = Spec(A) and that S is closed subset of Spec(A) that is
open for the constructible topology. Write S = Spec(A/I) for I ⊆ A an ideal, since we are
only interested in S as a topological space, a compactness argument allows us to assume
that I is finitely generated. Let (i1, . . . , in) be a list of generators for I, let (R,R+) be
a perfectoid Huber pair and Spd(R+, R+) → F a map. We can describe the basechange

X := Spd(R+, R+)×F F̂/S as follows. Let $ ∈ R+ be a pseudo-uniformizer and (j1, . . . , jn)
a list of lifts of (i1, . . . in) in R+

red. We claim X is the open subsheaf of Spd(R+, R+) de-

fined by
⋂n
k=1Njk<<1. Indeed, by proposition 1.4.26 X is given by ̂Spd(R+, R+)/V (I) and by

proposition 1.4.25 if we let B+ be the completion of R+ by the (I,$)-adic topology then
X = Spd(B+, B+). That Spd(B+, B+) =

⋂n
k=1Njk<<1 is a direct consequence of lemma

1.2.23. Since F is v-formalizing every map Spa(R,R+) → F factors through Spd(R+, R+)

after replacing Spa(R,R+) by a v-cover. In particular, the basechanges Spa(R,R+)×F F̂/S
are open after taking a v-cover. By [51] 10.11 F̂/S → F is open.

For the second claim let T ⊆ spK
−1(S) be the largest subset stable under generization.

We prove that T ⊆ F̂/S ∩D since we already have a chain of inclusions:

F̂/S ∩D ⊆ (spK
−1(S))int ⊆ T.

Take x ∈ T and a formalizable geometric point ιx : Spa(Cx, Cx
+) → F over x. Since every

generization of x is in spK
−1(S) the map Spec((C+

x )red) → F red factors through S so that
the composition |Spa(Cx, Cx

+)| → |D | → |F red| factors through |S|, giving that ιx factors

through F̂/S.

Proposition 1.4.30. Let f : G → F be a formally closed immersion of small v-sheaves.
The following hold:

1. If F is a specializing v-sheaf, then G is a specializing v-sheaf.

2. If F is a prekimberlite, then G is a prekimberlite.

3. If F is a kimberlite, then G is a kimberlite.

4. If (F ,D) forms a smelted kimberlite then (G,G ∩D) forms a smelted kimberlite.

Proof. Suppose F is specializing, since G is a subsheaf of F it is formally separated. Observe
that for a perfectoid Huber pair (R,R+) and a map Spd(R+, R+) → F the basechange
X := G ×F Spd(R+, R+) is a formally closed subsheaf of Spd(R+, R+). We may reason as
in the proof of proposition 1.4.10 to conclude X = Spd(R+, R+) whenever Spa(R,R+)→ F
factors through G. This proves that G is also v-formalizing and a specializing sheaf. Suppose
F is a prekimberlite, we have a commutative diagram:
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(Gred)♦ (F red)♦

G F

By formal adicness this diagram is Cartesian which gives that (Gred)♦ → G is a closed immer-
sion. Since the map (Gred)♦ → (F red)♦ is also a formally closed immersion by lemma 1.3.33
Gred is represented by a closed subscheme of F , finishing the proof that G is a prekimberlite.
Suppose now that F is a kimberlite, then Gan = Fan ×F G and by ([51] 11.20) it is a locally
spatial diamond, so G is a kimberlite. The same applies for G×FD in the smelted kimberlite
case.

1.4.4 cJ-diamonds and rich kimberlites

Suppose we have a formal scheme X topologically of finite type over Zp, suppose we let
Xη denote the generic fiber of X considered as an adic space over Qp and suppose we let
Xred denote the reduced special fiber of X considered as a scheme over Fp. In this classical
situation we have a specialization map spXη : |Xη| → |Xred|, and for a fixed closed point

x ∈ |Xred| we have the following chain of inclusions |(X̂/x)η| ⊆ spXη
−1(x) ⊆ |Xη|. These

inclusions satisfy that:

1. spXη
−1(x) is a closed subset.

2. |(X̂/x)η| is the interior of spXη
−1(x) in |Xη|.

3. |(X̂/x)η| is dense in spXη
−1(x)

The first two conditions generalize, by proposition 1.4.29, to the case of kimberlites for
which closed points are constructible. In this section we give sufficient conditions that make
a kimberlite have the third property as well. Before discussing these condition we give an
example showing that some sort of finiteness hypothesis need to be imposed for the third
property to hold.

Example 1.4.31. Let C be a p-adic non-Archimedean field and C+ an open and bounded
valuation subring whose rank is strictly larger than 1. We have that spC is a homeomor-
phism between Spa(C,C+) and Spec(C+/C◦◦). In particular, if x denotes the closed point
of Spec(C+/C◦◦) then spC

−1(x) is the closed point of y ∈ Spa(C,C+). The interior of {y}
is empty, therefore it is not a dense subset of {y}.

Definition 1.4.32. We say that a locally spatial diamond X is constructibly Jacobson if
the subset of rank 1 points are dense for the constructible topology of |X|. Locally spatial
diamonds with this property will be called cJ-diamonds.

Proposition 1.4.33. Suppose that K = (F ,D) is a smelted kimberlite with D a cJ-diamond,

let S ⊆ |F| a constructible subset. Then |D ∩ F̂/S| is dense in spK
−1(S).
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Proof. By the proof of proposition 1.4.29, we know that |D ∩ F̂/S| is the largest subset of
spK

−1(S) stable under generization. Since S is constructible and spK is a spectral map, the
set spK

−1(S) is open in the constructible topology of |D | and rank 1 points contained in
this set are dense in it. Since rank 1 points are stable under generization, they belong to
|D ∩ F̂/S|. This proves that |D ∩ F̂/S| is dense in spK

−1(S) for the constructible topology,
but the usual topology is coarser so it is dense for the usual topology as well.

We discuss some properties of this concept.

Proposition 1.4.34. Let f : X → Y be a morphism of locally spatial diamonds the following
hold:

1. Suppose that |f | is a surjective map of topological spaces and that X is a cJ-diamond,
then Y is a cJ-diamond.

2. Suppose that f is an open immersion and that Y is a cJ-diamond, then X is a cJ-
diamond.

3. Suppose that f realizes X as a quasi-pro-étale J-torsor over Y for some profinite group
J and that X is a cJ-diamond, then Y is a cJ-diamond.

4. Suppose that f is étale and that Y is a cJ-diamond, then X is a cJ-diamond.

Proof. Maps of locally spatial diamonds induce continuous spectral maps of locally spectral
spaces. Surjective maps send dense subsets to dense subsets. Moreover, maps of locally
spatial diamonds are generalizing which implies that rank 1 points can only map to rank 1
points. This proves the first claim.

Suppose now that Y is a cJ-diamond. If f is an open immersion, any open in the patch
topology of X is also open in the patch topology of Y and contains a rank 1 point, this
proves the second claim. Moreover this allow us to localize in the analytic topology, so we
can assume for the rest of the argument X and Y are spatial.

If f is étale, by ([51] 11.31) locally for the analytic topology we can write f as the
composition of an open immersion and a finite étale map. The category of finite étale
morphisms over a fixed spatial diamond is a Galois category and using the first claim we
may reduce to the case in which f is Galois with finite Galois group G. In this way, the
fourth claim follows from the third.

In the setup of the third claim, we claim (and prove below) that f is an open mapping
for the patch topology, this would finish the proof. Indeed, if a point y maps to x under a
quasi-pro-étale map and x is rank 1 then y is also rank 1.

Let J = lim←−i Ji with Ji a cofiltered family of finite groups and denote by fi : Xi → Y the
induced Ji-torsors. We get action maps Ji× |Xi| → |Xi| that are continuous for the discrete
topology on Ji and the constructible topology on |Xi|. Moreover, for any set S ⊆ |Xi| we
have that f−1

i (fi(S)) = Ji · S. Now, the formation of the patch topology on a spectral space
commutes with limits along spectral maps. This gives an action map J × |X| → |X| that is
continuous when |X| is given the patch topology and J is given its profinite topology. Let
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U ⊆ X be open in the constructible topology, then f−1(f(U)) = J · U which is also open.
The map |f |cons : |X|cons → |Y |cons is a surjective continuous map of compact spaces, so it
is a quotient map. Since J · U is open and saturated f(J · U) = f(U) is open as we wanted
to show.

Let’s recall the following theorem of Huber:

Theorem 1.4.35. (See [23] Theorem 4.1) Let k be a complete field with respect to a rank
1 valuation, and let A be a k-algebra of topologically finite type over k. Then the subset
Max(A) ⊆ Spa(A,A◦) is dense for the constructible topology.

Huber’s statement says something a bit stronger, but this weaker form of the statement
is easier to state and the one we will use in applications.

Corollary 1.4.36. If X is an adic space topologically of finite type over Spa(k, k◦), where
Spa(k, k◦) is a non-Archimedean field over Zp. Then X♦ is a cJ-diamond.

Proof. The claim is local on X so we can assume X = Spa(A,A◦) for a Tate algebra, A/k.
In this case every point Max(A), when considered as a valuation, is a rank 1 valuation.

Example 1.4.37. The perfectoid unit ball Bn = Spa(C〈T
1
p∞

1 . . . T
1
p∞
n 〉, OC〈T

1
p∞

1 . . . T
1
p∞
n 〉)

over a perfectoid field C of characteristic p, is a cJ-diamond. Indeed, we have the equality
of diamonds

Spa(C〈T1 · · ·Tn〉, OC〈T1 · · ·Tn〉)♦ = Bn,

and we may conclude by theorem 1.4.35.

Definition 1.4.38. Let C be a perfectoid field in characteristic p and X a locally spatial
diamond over Spa(C,OC). We say that X has “enough facets” over C if it admits a v-cover
of the form

∐
i∈I Spd(Ai, A

◦
i ) → X where each Ai is an algebra topologically of finite type

over C.

Proposition 1.4.39. Let X and Y be two locally spatial diamonds with enough facets over
C, and let C] denote an untilt of C. The following hold:

1. For any morphism of perfectoid fields Spa(C ′, OC′) → Spa(C,OC) the base change
X ×Spa(C,OC) Spa(C ′, OC′) has enough facets over C ′.

2. The fiber product X ×Spa(C,OC) Y has enough facets over C.

3. X is a cJ-diamond.

4. If X = Spd(A,A◦) for a smooth and topologically of finite type C]-algebra A, then X
has enough facets.
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Proof. Since the property of being topologically of finite type is stable under products and
change of the base ground field one can prove easily the first two claims. The third claim
follows from corollary 1.4.36 and proposition 1.4.34.

For the last claim, let Tn
C]

denote Spa(C]〈T±1 , . . . T±n 〉, OC]〈T±1 , . . . T±n 〉), and let T̃n
C]

=

lim←−Ti 7→T pi T
n
C]

analogously for TnC and T̃nC . For any point x ∈ Spa(A,A◦) we may find an open

neighborhood U of x together with an étale map η : U → Tn
C]

. Let Ũ denote the pullback of

η along T̃n
C]
→ Tn

C]
, we get an étale map Ũ [ → T̃nC . By the invariance of the étale site under

perfection (see [51] lemma 15.6) Ũ [ = U ′♦ for an adic space U ′ that is étale over TnC . Now,
U ′ admits an open cover of the form

∐
i∈I Spa(Ai, A

◦
i ) → U ′ with each Ai topologically of

finite type over C. This gives a cover,∐
i∈I

Spd(Ai, A
◦
i )→ Ũ [ → U♦.

We now define rich kimberlites, which are some of the kimberlites that will satisfy the
third condition we discussed above.

Definition 1.4.40. Let F be a prekimberlite and K = (F ,D) a smelted kimberlite.

1. We say that K is rich if the following conditions hold:

• D is a cJ-diamond.

• |F red| is a locally Noetherian topological space.

• The specialization map spK : |D | → |F red| is specializing and a quotient map.

2. If F is a kimberlite we say it is rich if (F ,Fan) is rich. If F is a p-smelted kimberlite
we say it is rich if (F ,Fη) is rich.

Remark 1.4.41. To the author’s knowledge, the theory of diamonds and v-sheaves doesn’t
have a good notion of what it means to be of “finite type”. Being rich, is an ad hoc condition
that is good enough for the applications that we have in mind.

The following fact about rich smelted kimberlites is a crucial property that we use later
on in our applications.

Proposition 1.4.42. Let K = (F ,D) be a rich smelted kimberlite and suppose that for any

closed point x ∈ |F red| the smelted tubular neighborhood D̂/x is connected, then π0(spD) :
π0(|D |)→ π0(|F red|) is a bijection between sets of connected components.

Proof. Let U, V ⊆ |D | be two non-empty closed-open subsets with V ∪ U = |D |. Since spD

is a quotient map the map of connected components is surjective. Suppose now that ∅ 6=
spF(U)∩ spF(V ) we want to show that U ∩V 6= 0 which implies that |D | and |F red| have the
same families of closed-open subsets. Since spD is specializing we can assume there is a closed
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point x ∈ spD(U) ∩ spD(V ). Since |F red| is locally Noetherian the closed points are open

in the constructible topology. By proposition 1.4.33, D̂/x is dense in spD
−1(x), this implies

that spD
−1(x) is connected. Connectedness gives that (spD

−1(x) ∩ U) ∩ (spD
−1(x) ∩ V ) 6= ∅

and in particular U ∩ V 6= ∅ which is what we wanted to show.

The following three technical lemmas will be used later on to prove that certain kimber-
lites are rich kimberlites.

Lemma 1.4.43. Suppose F is a p-smelted kimberlite and that Fη is partially proper over
Q♦p , then:

1. spFη : |Fη| → |F red| is specializing.

2. If spFη is surjective and |F red| is a locally Noetherian topological space then it is also
a quotient map.

Proof. Take a point r ∈ |Fη| mapping to x ∈ |F red| and take y ∈ |F red| specializing from x.
We need to find q specializing from r that maps to y. Suppose r is represented by a map fr :
Spa(C,C+) → F and suppose that F formalizes fr. Let K = OC/C

◦◦ and K+ = C+/C◦◦,
then x is the image of the maximal ideal of K+ under the map fx : Spec(K+) → F red.
Consider the local ring R, constructed from F red by taking the reduced subscheme whose
underlying topological spaces is the intersection of the closure of x and the localization at
y. We let k = K+/mK+ , and so we have R ⊆ k. By ([56] Tag 00IA), we have a valuation
subring R ⊆ V ⊆ k such that Frac(V ) = k and V dominates R. This induces a valuation
subring K ′+ ⊆ K+ and a map fy : Spec(K ′+)→ F red whose closed point maps to y. In turn,
this induces a valuation subring C ′+ ⊆ C+ with C ′+/C◦◦ = K ′+ by lemma 1.4.4. Since Fη
is partially proper, we get a map fq : Spa(C,C ′+)→ Fη extending fr. Separatedness of F red

can be used to prove that the point q = [fq] ∈ |Fη| maps to y.
For the second claim, we first prove the case in which |F red| is irreducible. Let g be

the generic point of |F red|, and take a rank 1 point in r ∈ |Fη| mapping to g. Take a
map fr : Spa(C,OC) → Fη representing r, and let Cmin be the minimal integrally closed
subring of C containing Zp and C◦◦, this is the minimal ring of integral elements for C.
By partial properness we get a map Spa(C,Cmin) → Fη whose image consists of the set of
specializations of x in |Fη|. The composition of the map fmin : |Spa(C,Cmin)| → |F red| is
specializing, surjective and a spectral map of spectral spaces (surjectivity of this map proves
that |F red| is also spectral instead of just locally spectral). By corollary 1.1.23 fmin is a
closed map and consequenlty a quotient map of topological spaces.

The case in which |F red| has a finite number of irreducible components is analogous. For
the general case, it is enough to prove locally on |F red| (for the Zariski topology) that spFη is

a quotient map. By assumption around each point x ∈ |F red| there is an open neighborhood
Ux ⊆ |F red| for which |Ux| is a Noetherian topological space. In particular, Ux has a finite
number of irreducible components and the closure Ux ⊆ |F red| also has a finite number of
irreducible components. Let T = spFη

−1(Ux), this set is closed and consequently stable

under specialization. If we lift the generic points of Ux to T we can argue as above to prove
that the map spFη : T → Ux is a quotient map. This finishes the proof.
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Lemma 1.4.44. Let C be a characteristic zero non-Archimedean algebraically closed field,
and let k = OC/mC. Let F be a p-smelted kimberlite over Spd(OC , OC). Suppose that
for every algebraically closed non-Archimedean field extension C ′/C the basechange FOC′ =
F ×Spd(OC ,OC) Spd(OC′ , OC′) satisfies that for closed point x ∈ |F red

OC′
| the p-adic tubular

neighborhood (F̂OC′ /x)η is non-empty. Then spFη is a surjection.

Proof. Given a point in x ∈ |F red| we can find a field extension of perfect fields K/k for
which F red ×k Spec(K) has a section y : Spec(K) → F red ×k Spec(K) mapping to x under
F red ×k Spec(K)→ F red. Since F is formally separated, F red ×k Spec(K) is also separated
and sections to the structure map define closed points. We can construct a non-Archimedean
field C ′ with C ⊆ C ′ and W (k)[1

p
] ⊆ W (K)[1

p
] ⊆ C ′. We get a map of p-smelted kimberlites

FOC′ → F , and in |F red
OC′
| there is a closed point y mapping to x. Any point r ∈ |FC′ | with

spFC′ (r) = y maps to a point whose image under the specialization map is x. This proves
surjectivity.

Lemma 1.4.45. Let f : F → G be a map of p-adic kimberlites over Z♦p . Suppose that f is
surjective, that F is a rich kimberlite, that |Gred| is locally Noetherian and that |f red| is a
specializing map of topological spaces. Then the following hold:

1. G is rich.

2. If F has connected p-adic tubular neighborhoods and f red has connected geometric fibers
then G has connected p-adic tubular neighborhoods.

Proof. Since the map Fη → Gη is surjective we have that, by proposition 1.4.34, Gη is
a cJ-diamond. Since we assumed the kimberlites to be p-adic the map F red → Gred is
surjective, |F red| → |Gred| is a quotient map by proposition 1.3.15 and a specializing map
by hypothesis. Since we assumed that |Gred| is locally Noetherian we only need to prove
that spG is specializing and a quotient map. Observe that the composition |f red| ◦ spF is
specializing and quotient map, from which we can conclude.

For the claim on p-adic tubular neighborhoods pick a closed point x ∈ |Gred|, by propo-

sition 1.4.26 (Ĝ/x)η ×G F = (F̂/S)η with S = |f red|−1(x). One can easily deduce from the
hypothesis on geometric fibers that S is connected which implies by propositions 1.4.42 and
1.4.29 that (F̂/S)η is also connected. Since f is surjective (Ĝ/x)η is also connected.
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Chapter 2

Specialization maps for some moduli
problems

2.1 G-torsors, lattices and shtukas

In this section we recall the theory of vector bundles over the Fargues-Fontaine curve, and
point to the technical statements that allow us to discuss the specialization map for the
p-adic Beilinson-Drinfeld Grassmanians and moduli spaces of mixed-characteristic shtukas.
Nothing in this section is essentially new and it is all written in some form in ([53], [30],
[15], [1]). Nevertheless, we need specific formulations for some of these results that are not
explicit in the literature. For the convenience of the reader, we justify how our formulations
follow from other (harder) statements that can be explicitly found in the literature.

For the rest of this Chapter we let k be an auxiliary perfect field in characteristic p
and we let G be a parahoric group scheme over Spec(W (k)) with reductive generic fiber G.
Depending on the context, we will introduce more notation and add restrictive hypothesis
on what G and k are allowed to be. We will often times abbreviate Spd(W (k),W (k)) by
W (k)♦, and Spec(k)♦ by k♦.

2.1.1 Vector bundles, torsors and meromorphicity

We give a quick review of the theory of vector bundles for adic and perfectoid spaces. Given
an analytic Huber pair (A,A+), and an A module M we can define M̃ as a presheaf on
the open sets of Spa(A,A+) defined as M̃(U) = lim←−Spa(B,B+)⊆U M ⊗A B running over all the

rational subsets Spa(B,B+) ⊆ Spa(A,A+), and where M ⊗A B refers to the usual tensor
product of A-modules ignoring the topology (See [28] 1.3.2). Kedlaya and Liu prove that
whenever (A,A+) is sheafy and M is a finite projective A-module M̃ is an acyclic sheaf.

Definition 2.1.1. Given an adic space X, a vector bundle of rank n over X is a sheaf of OX-
modules which is locally isomorphic to M̃(Ui) for some affinoid open cover Ui = Spa(Ai, Ai

+)
and rank n projective modules M(Ui) over Ai.
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In what follows we will need to work with categories of vector bundles over adic spaces
and over schemes at the same time. The following important result of Kedlaya and Liu
makes the bridge between these categories:

Theorem 2.1.2. (See [28] 1.4.2) Let X = Spa(A,A+) be an analytic affinoid adic space,
suppose that A is sheafy. The functor

H0(Spa(A,A+),−) : V ecSpa(A,A+) → V ecSpec(A)

from the category of vector bundles over Spa(A,A+) to the category of finite projective A-
modules is an exact equivalence of exact categories.

Remark 2.1.3. The acyclicity of M̃ proves that H0(Spa(A,A+),−) is exact. The quasi-

inverse ˜(−) is also exact since Tori(M,B) = 0 for M finite projective A-module and i > 0.

As in the theory of analytic functions on a complex variable one can introduce the notion
of poles and meromorphic functions between vector bundles. We discuss how to do this:

Definition 2.1.4. (See [53] 5.3.1, 5.3.2, 5.3.7) Given a uniform analytic adic space X, and
an ideal sheaf I ⊆ OX , we say that I defines a Cartier divisor if I is a line bundle over X.
Let Z ⊆ X denote the support of OX/I. We say that I is a closed Cartier divisor if the
topologically ringed topological space equipped with valuations (Z,OX/I, | · |x∈Z) is an adic
space.

The data of a Cartier divisor allows us to define the notion of meromorphicity.

Proposition 2.1.5. (See [53] 5.3.4) Let X be a uniform analytic adic space and I ⊆ OX
a Cartier divisor. Let U = X \ V (I) be the complement of the Cartier divisor and denote
j : U ⊆ X the natural inclusion, we then have inclusions of OX-modules:

OX ⊆ lim−→I
⊗(−n) ⊆ j∗(OU)

Definition 2.1.6. Let X be a uniform analytic adic space, let V1 and V2 be two vector
bundles over X and let I ⊆ OX be a Cartier divisor. Let us denote by U the complement of
the support of I. We say that a map in HomU(V1,V2) is meromorphic along I if it is in

H0(X,Hom(V1,V2)⊗ (lim−→I
⊗(−n)))

where Hom(V1,V2) denotes the internal Hom vector bundle.

Definition 2.1.7. Let X be a uniform analytic adic space over Spa(W (k),W (k)). We define
a G -torsor over X to be a ⊗-exact functor from the category of algebraic representations over
finite free W (k)-modules, Rep(G ), to the category of vector bundles over X, V ecX .

We can then generalize the notion of meromorphicity to that of G -torsors.
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Definition 2.1.8. With X as in definition 2.1.6 and definition 2.1.7, we will say that a
morphism, f : T1|U → T2|U , of G -torsors over X, is meromorphic along I if for all rep-
resentation π ∈ Rep(G ) the corresponding map f(π) : T1(π)|U → T2(π)|U is meromorphic
along I.

We will often use the following fact.

Theorem 2.1.9. (See [53] 17.1.8) The category of vector bundles fibered over Perfd forms
a stack for the v-topology.

2.1.2 Vector bundles on Y
We defined Z♦p as the v-sheaf parametrizing untilts. Although Z♦p is not itself represented
by an analytic adic space, the product Z♦p × S for any S ∈ Perf can be represented by an
analytic adic space. Let us recall this construction.

Definition 2.1.10. Given a perfectoid Huber pair (R,R+) and a pseudo-uniformizer $ ∈
R+, we define YR+

[0,∞) as Spa(W (R+),W (R+)) \ V ([$]). Where [$] denotes a Teichműller

lift of $, and where W (R+) is given the (p, [$])-adic topology. We also define YR+ as
Spa(W (R+),W (R+)) \ V (p, [$]).

Proposition 2.1.11. (See [29] 3.6, [53] 11.2.1]) For any perfectoid Huber pair (R,R+) the
space YR+ has a cover by sheafy Huber pairs. Consequently, YR+ and YR+

[0,∞) are adic spaces.

Moreover, (YR+

[0,∞))
♦ = Z♦p × Spa(R,R+).

Let us review the geometry of YR+ , for this fix a pseudo-uniformizer $ ∈ R+. One defines
a continuous map κ$ : |YR+| → [0,∞] characterized by the property that κ(y) = r if and
only if for any positive rational number r ≤ m

n
the inequality |p|my ≤ |[$]|ny holds and for any

positive rational number m
n
≤ r the inequality |[$]|ny ≤ |p|my holds.

Given an interval I ⊆ [0,∞] we denote by YR+

I the open subset corresponding to the
interior of κ−1

$ (I). For example, YR+

(0,∞] corresponds to the locus in YR+ where |p| 6= 0 and

YR+

[0,∞) corresponds to the locus where |[$]| 6= 0. For intervals of the form [0, h
d
] where h and

d are integers the space YR+

[0,h
d

]
is represented by Spa(R′, R′+) corresponding to the rational

localization,
{x ∈ Spa(W (R+),W (R+)) | |ph|x ≤ |[$]d|x 6= 0}.

In this case, we can compute R′+ explicitly as the [$]-adic completion of W (R+)[ ph

[$]d
] and

R′ as R′+[ 1
[$]

]. A direct computation shows that R′ does not depend of R+. In particular,

the exact category of vector bundles over YR+

[0,∞) does not depend of the choice of R+ either.
We will also need to work with an algebraic version of YR+ , which we will denote YR+ .

This is defined as the scheme Spec(W (R+)) \ V (p, [$]). Since W (R+) ⊆ OYR+ and since p,
[$], do not vanish simultaneously on YR+ we get a map of locally ringed spaces f : YR+ →
YR+ ⊆ Spec(W (R+).
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Recall that given an untilt R] of R there is a canonical surjection W (R+)→ R]+ whose
kernel is generated by an element ξ ∈ W (R+) primitive of degree 1 (See [53] 6.2.8). The
element ξ defines a closed Cartier divisor over YR+ and also defines a Cartier divisor on the
scheme YR+ . In what follows, we compare the categories of vector bundles over Spec(W (R+)),
YR+ and YR+ with morphisms being functions that are meromorphic along the ideal (ξ).

Recall GAGA-type theorem of Kedlaya and Liu:

Theorem 2.1.12. (See [29] 3.8) Suppose (R,R+) is a perfectoid Huber pair in characteristic
p. The natural morphisms of locally ringed spaces f : YR+ → YR+ gives, via the pullback
functor f ∗ : V ecYR+ → V ecYR+ , an exact equivalence of exact categories.

Remark 2.1.13. Although the reference does not explicitly claim that this equivalence is
exact, one can simply follow the proof loc. cit. exchanging the word “equivalence” by “exact
equivalence” since every arrow involved in the proof is an exact functor.

Corollary 2.1.14. With the notation as above, the pullback f ∗ induces an equivalence

f ∗ : (V ecY ξ 6=0

R+
)mer → (V ecYξ 6=0

R+
)mer

between the category whose objects are vector bundles over YR+ (respectively vector bun-
dles over YR+) and morphisms are functions meromorphic along the ideal (ξ) (respectively
functions over YR+ \ V (ξ)).

Proof. By theorem 2.1.12 it is enough to prove that f ∗ is fully-faithful. Using internal
Hom we can reduce to proving H0(YR+ , f ∗V)merξ 6=0 = H0(Y ξ 6=0

R+ ,V). For quasi-compact, quasi-
separated schemes the global sections of a quasi-coherent sheaf after localizing by a global
section of the structure sheaf is given simply by localization. That is H0(Y ξ 6=0

R+ ,V) =
H0(YR+ ,V)[1

ξ
]. On the other hand, by definition

H0(YR+ , f ∗V)merξ 6=0 = H0(YR+ , f ∗V ⊗ lim−→(ξ)⊗(−n)).

Now the ideal sheaf (ξ) is isomorphic to OYR+ since it is a principal Cartier divisor so we
can view f ∗V ⊗ lim−→(ξ) as:

f ∗V f ∗V · · ·ξ ξ

And since H0 commutes with filtered colimits we get precisely H0(YR+ , f ∗V)[1
ξ
].

Since we defined G -torsors Tannakianly these statements immediately generalize to those
for G -torsors. Kedlaya proves another important statement.

Theorem 2.1.15. (See [29] 2.3, 2.7, 3.11) With notation as above, and letting j be the
open embedding, j : YR+ → Spec(W (R+)) the following statements hold:

1. The pullback functor j∗ : V ecSpec(W (R+)) → V ecYR+ is fully-faithful.
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2. If R+ is a valuation ring then j∗ is an equivalence.

3. Taking categories of quasi-coherent sheaves the adjunction morphism j∗j∗V → V is an
isomorphism.

Remark 2.1.16. One may think that the third statement together with the first statement of
theorem 2.1.15 above would give an equivalence of categories of vector bundles for any ring
R+. This is not the case because even if V is a vector bundle, j∗V might not be a vector
bundle over Spec(W (R+)).

We will need a small modification of theorem 2.1.15.
For this we recall a few facts about topological modules on a Tate ring, this material is

taken from ([53] 14.2.3). Let A be a complete Tate ring, f a topological nilpotent unit, A0 a
ring of definition, and N a projective module over A. One can endow N with its canonical
topology (See [28] 1.1.11).

1. An A0-submodule M ⊆ N is open if and only if M [ 1
f
] = N .

2. An A0-submodule M ⊆ N is bounded if and only if M is contained in a finitely
generated A0-submodule.

3. If A ⊆ B with the subspace topology, B is Tate and complete for its topology, and
S ⊆ N ⊗A B is bounded, then S ∩N ⊆ N is also bounded.

The following statement is implicitly used and proved in ([53] 25.1.2).

Proposition 2.1.17. Let Spa(R,R+) be the product of points constructed from the family
{(Ci, Ci+), $i}i∈I as in definition 1.1.5. The pullback functor j∗ : V ecSpec(W (R+)) → YR+

gives an equivalence of categories of vector bundles with fixed rank.

Proof. We already have a fully-faithful embedding by theorem 2.1.15, so it is enough to prove
it is essentially surjective. Let V be a vector bundle over YR+ of constant rank n, we let M ′ =
H0(YR+ ,V) which is a W (R+)-module whose pullback to YR+ identifies with V by theorem
2.1.15, we want to prove that M ′ is a projective module. Let N = M ′ ⊗W (R+) W (R+)[1

p
],

this module is projective since N is the pullback of V to Spec(W (R+)[1
p
]).

Define Mi as H0(YC+
i
, ι∗iV) where ιi : YC+

i
→ YR+ is the closed embedding produced by

the idempotent 1i ∈ W (R+) =
∏

i∈IW (C+
i ). For each i, this is a free W (C+

i )-module by
theorem 2.1.15 and because W (C+

i ) is a local ring. We define M =
∏

i∈IMi which is a free
W (R+)-module of constant rank n. Since we have maps of W (R+) modules

M ′ = H0(YR+ ,V)→ H0(YC+
i
, ι∗iV) = Mi

We get a map M ′ → M . This map is injective since the family YC+
i

is dense in the Zariski
topology of YR+ . We want to prove that this map is an isomorphism.

As a first step we prove that the map induces an isomorphism M ′[1
p
] → M [1

p
]. For this

we will consider W (R+)[1
p
] as a Tate ring with its p-adic topology, and W (R+) as a ring of
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definition. In this context M ′ ⊆ N is an open subset when N is given its canonical topol-
ogy. This follows from property 1, since by construction N = M ′[1

p
]. The map of schemes

Spec(W (R)) → Spec(W (R+)) factors through YR+ . This implies that M ′ ⊗W (R+) W (R) is
a finite projective module over W (R). The usual map realizes W (R+)[1

p
] as a topological

subring of W (R)[1
p
]. Moreover, M ′⊗W (R+)W (R) is a bounded subset of N⊗W (R+)[ 1

p
]W (R)[1

p
]

by property 2. On the other hand, property 3 readily implies M ′ is a bounded subset of N .
We construct an injection M ⊆ N as W (R+)-modules. Consider Ni = 1iN as a

W (C+
i )[1

p
]-module but also as a subset of N . We have an injection N ⊆

∏
i∈I Ni and

an element (ni)i∈I is in the image of N if and only if the set S = {ni}i∈I ⊆ N is bounded in
N . There is a clear injection M =

∏
i∈IMi →

∏
i∈I Ni and we claim that it factors through

N . To prove the claim observe that if 1ci denotes the complementary idempotent of 1i then
1i ·M ′ = M ′[ 1

1ci
]. Since taking global sections commutes with localization on qcqs schemes,

we have that Mi = 1i ·M ′. Then the image of any element m ∈M in
∏

i∈I Ni has the form
(mi)i∈I with mi ∈ 1i ·M ′. Since M ′ is bounded in N , the set

∐
i∈IMi is bounded and the

map M →
∏

i∈I Ni defines and embedding into N . We have M ′ ⊆M ⊆ N and in particular
M ′[1

p
] = M [1

p
], which finishes the first step.

We define V2 to be j∗M , which is a vector bundle over YR+ . The situation is as follows,
we have a morphism of vector bundles V1 → V2 over YR+ with V2 a trivial vector bundle,
that becomes an isomorphism over YC+

i
for every i ∈ I and also becomes an isomorphism

over Spec(W (R+)[1
p
]) ⊆ YR+ . We prove that it is already an isomorphism over YR+ . After

taking determinant bundles and fixing a trivialization we get a map ∧V1 → OX , and it is
enough to prove this one is an isomorphism.

Upon applying Beauville-Laszlo lemma (See [53] 5.2.9) to p ∈ W (R+)[ 1
[$]

] the morphism

∧V1 → OX produces for us a family of lattices over W (R) = ̂(W (R+)[ 1
[$]

])p parametrized by

Spec(R). This is the same as a morphism of schemes Spec(R)→ GrGmW to the 1-dimensional
Witt-vector Grassmanian (See [5] 8.1). Pullback of the map V1 → OX to W (Ci) gives a
lattice corresponding to the composition Spec(Ci) → Spec(R) → GrGmW , but for each i ∈ I
the restriction of the morphism V1 → OX to W (Ci) is an isomorphism. In particular, we get
the following commutative diagram,∐

i∈I Spec(Ci) Spec(R)

Spec(Fp) GrGmW
e

where the map e : Spec(Fp)→ GrGmW is the one associated to the identity of OX . The image
of |
∐

i∈I Spec(Ci)| in |Spec(R)| is dense since the map of rings R→
∏

i∈I Ci is injective. But

GrGmW is representable by a discrete disjoint union of points of the form Spec(Fp). So the
map Spec(R)→ GrGmW factors through the identity section which finishes the proof.

Given ξ ∈ W (R+) primitive of degree 1 as before, observe that since both Spec(W (R+))
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and YR+ are qcqs schemes the equivalence of vector bundles of proposition 2.1.17 generalizes
to the categories where the objects are the same, but morphism are allowed to have poles
along ξ on both categories.

Interestingly, extending G -torsors from YR+ to Spec(W (R+)) adds yet another layer of
complexity. Indeed, the equivalences of theorem 2.1.15 and proposition 2.1.17 are not exact
equivalences, so Tannakian formalism can’t be used directly. As a matter of fact, only the
pullback functor j∗ is exact. J. Anschűtz gives a detailed study of the problem of extending
G -torsors along j in [1]. We emphasize that, as we discussed in the introduction, the methods
of [1] allow Anschűtz to construct a point-wise specialization map for the p-adic Beilinson-
Drinfeld Grassmanians attached to any group G with parahoric reduction. Proposition 2.1.19
below, which is nothing but a small improvement to theorem 2.1.18 of Anschűtz, is the main
technical input that we will need to upgrade Anschűtz map to a map of topological spaces.
In the case that G is reductive we will be able to say more about the specialization map.

Theorem 2.1.18. (See [1] 7.2, 7.3, 7.9, 6.5, 7.6 and [2] 11.6) Let C be an algebraically
closed non-Archimedean field over k, let C+ ⊆ C an open and bounded valuation subring
with k ⊆ C+, and let G be a parahoric group scheme over W (k). Then every G -torsor T
over YC+ extends to Spec(W (C+)).

We now state an analogue of proposition 2.1.17 for G -torsors.

Proposition 2.1.19. Keep the notation as in theorem 2.1.18, and let Spa(R,R+) be a
product of points over k. Every G -torsor T over YR+ extends along j : YR+ → Spec(W (R+))
to a torsor G torsor over Spec(W (R+)).

Proof. We need to prove that the functor j∗T : Rep(G )→ V ecSpec(W (R+)) is exact, and since
the functor j∗ is always left-exact we only have to prove right-exactness of j∗T . Suppose
we have a morphism of free modules f : V1 → V2 over Spec(W (R+)) and we have that
the basechange to Spec(W (C+

i )) is surjective for every i ∈ I, we need to prove that the
morphism is surjective. Taking determinant bundles we can reduce to the case that V2 is
free of rank 1. After taking trivializations we have n sections f1, · · · , fn ∈ W (R+) and we
need to prove that they generate the unit ideal. Consider the family of subsets {Im}1≤m≤n
defined by

Im = {i ∈ I | fm ∈ W (C+
i )×}

By construction 1Im is in the ideal generated by the fi. Since each W (C+
i ) is a local

ring and the {fm}1≤m≤n generate the unit ideal in W (C+
i ) the union

⋃
Im has to be I. This

finishes the proof.

We need the following descent result which is similar to theorem 2.1.9.

Proposition 2.1.20. (See [53] 19.5.3) Let S be a perfectoid space over k and let U ⊆ YS[0,∞)

be an open subset. For map of perfectoid spaces f : S ′ → S, let CS′ denote the category of
G -torsors over YS′[0,∞) ×YS[0,∞)

U . Then the assignment S ′ 7→ CS′, as a fibered category over

PerfS, is a v-stack.
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2.1.3 Lattices and shtukas

For this section fix Spa(R,R+) an affinoid perfectoid space over k, $ ∈ R+ a choice of pseudo-
uniformizer, R] an untilt of R and ξR] a generator for the kernel of the map W (R+)→ R],+.

Definition 2.1.21. We define the category of B+
dR(R])-lattices with G -structure to have as

objects pairs (T , ψ) where T is a G -torsor over YR+

[0,∞) and ψ : T → G is an isomorphism

over YR+

[0,∞) \ V (ξR]) that is meromorphic along (ξR]). Morphisms are the evident isomor-
phisms of pairs.

Given data (T , ψ) as above we can choose a big enough number r$ ∈ R for which YR+

[r$,∞)

is disjoint from V (ξR]). Over this locus we can glue along ψ to extend T canonically to a G -
torsor over YR+ . Using Corollary 2.1.14 and Beauville-Laszlo on the scheme Spec(W+

R )[ 1
[$]

]

we get an equivalence of categories with the category of pairs (Ξ, ψ) where Ξ is G -torsor
over Spec(B+

dR(R])) and ψ : Ξ → G is a trivialization over Spec(BdR(R])), where B+
dR(R])

denotes the completion of W (R+)[ 1
[$]

] along ξR] , and BdR(R]) = B+
dR(R])[ 1

ξ
R]

].

Recall that for an algebraically closed non-Archimedean field C the ring BdR(C]) is a
complete discrete valuation field so that the set of isomorphism classes of G -torsors over
Spec(B+

dR(C])) is in canonical bijection with G (BdR(C]))/G (B+
dR(C])). In case 1

p
∈ C] we

also have that 1
p
∈ B+

dR(C]), and we will find that GB+
dR(C]) = GB+

dR(C]) is split reductive.
After fixing auxiliary groups T ⊆ B ⊆ GB+

dR(C]), a maximal torus and a Borel respectively,
the Cartan decomposition gives an identification:

G (B+
dR(C]))\G (BdR(C]))/G (B+

dR(C])) = G(B+
dR(C]))\G(BdR(C]))/G(B+

dR(C])) = X+
∗ (T )

(2.1)
Suppose that B and T are fixed and understood from the context, and let µ ∈ X+

∗ (T ). We
say that a B+

dR(C])-lattice (Ξ, ψ) is of type µ if the isomorphism class of (Ξ, ψ) maps to µ
under the identification above.

We now consider mixed-characteristic shtukas. Recall that the spaces Spec(W (R+)),
YR+

[0,∞), YR+ and YR+ come equipped with a Frobenious action. All of these actions are

coming from the usual Frobenious action on W (R+) given by:

φ∗

(
∞∑
i=0

[αi]p
i

)
=
∞∑
i=0

[αpi ]p
i

A computation shows that φ(YR+

[a,b]) = YR+

[pa,pb] which proves that all of the loci considered
above are preserved by Frobenious.

Definition 2.1.22. We define the category of shtukas with one paw over Spa(R], R]+) and
G -structure. For this we require that k = Fp and that G is defined over Zp. This category
has as objects pairs (T ,Φ) where T is a G -torsor over YR+

[0,∞) and Φ : φ∗T → T is

an isomorphism over YR+

[0,∞) \ V (ξR]) meromorphic along (ξR]). Morphisms are the evident
isomorphisms of pairs.
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Definition 2.1.23. Given a φ-module with G -structure (E ,ΦE) over YR+

(0,∞) and a shtuka

(T ,ΦT ) we say that (T ,ΦT ) is isogenous to (E ,ΦE) if there is a number r ∈ R (that
depends of the choice of $) and a φ-equivariant isomorphism f : (T ,ΦT )→ (E ,ΦE) defined
over YR+

[r,∞). We call such a pair (r, f) an isogeny. Two isogenies (r1, f1) and (r2, f2) are

equivalent if there is a third isogeny (r3, f3) with r3 > r1, r2 and f1 = f3 = f2 when restricted
to YR+

[r3,∞). We also refer by isogenies to the elements of the set of equivalence classes of pairs

(r, f).

After the work of Scholze and Weinstein one may think of mixed-characteristic shtukas
as a generalization of p-divisible groups (See [53] 14.11,[52] Theorem B). We do not make
this precise, but isogenies as defined above are closely related with isogenies of p-divisible
groups. In what follows, we prove three technical lemmas that intuitively speaking allow us
to “deform” lattices and shtukas with G -structure. Later on it will become clear why we
think of these lemmas as “deformation” statements.

For any r ∈ [0,∞) let BR+

[r,∞] = H0(YR+

[r,∞],OYR+

[r,∞]
), and consider R+

red = (R+/$)perf . We

observe that the universal property of YR+

[r,∞] as a rational subset of Spa(W (R+),W (R+))

induces compatible maps of rings BR+

[r,∞] → W (R+
red)[1

p
] for varying r. We denote this family

of reduction maps by (−red).

Lemma 2.1.24. Let s ∈ BR+

[r,∞] and suppose that the reduction sred, originally defined over

W (R+
red)[1

p
], lies in W (R+

red), then there are: a number r′ with r ≤ r′, elements a ∈ W (R+),

b ∈ BR+

[r′,∞] and a pseudo-uniformizer $s ∈ R+ such that s = a+ b and b ∈ [$s] ·BR+

[r′,∞].

Proof. By enlarging r if necessary we can assume YR+

[r,∞] is of the form:

{x ∈ Spa(W (R+),W (R+)) | |[$]|x ≤ |pm|x 6= 0}

for some m, we compute BR+

[r,∞] explicitly. If S+ denotes the p-adic completion of W (R+)[ [$]
pm

],

then BR+

[r,∞] = S+[1
p
]. Any element s ∈ BR+

[r,∞] is of the form s = 1
pn
· Σ∞i=0[ai]x

m(i)pi where

ai ∈ R+, x = [$]
pm

, and m(i) denotes a non-negative integer. We can decompose pn · s as

x ·

 ∞∑
i=0,m(i)>0

[ai]x
m(i)−1pi

+
∞∑

i=0,m(i)=0

[ai]p
i.

Since x = [$]
pm

, we have that [$] divides in BR+

[r,∞] the first term of this decomposition. As long

as we pick a $s that divides $, we may and do reduce to the case s = Σ∞i=0[ai]p
i−n. In this

case, sred = Σ∞i=0[(ai)red]pi−n and by hypothesis we have that for i < n (ai)red = 0 in R+
red.

We can choose a pseudo-uniformizer $s for which all of ai, for i < n, are zero in R+/$s. We
can take a =

∑∞
i=n[ai]p

i−n and b =
∑n−1

i=0 [ai]p
i−n. These clearly satisfy the properties.
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Lemma 2.1.25. Suppose that T1 and T2 are trivial G -torsor over Spec(W (R+)) and that
λ : T1 → T2 is an isomorphism defined over YR+

[r,∞] which upon reduction to Spec(W (R+
red)[1

p
])

extends to an isomorphism over Spec(W (R+
red)). Then, there is an isomorphism λ̃ : T1 → T2

defined over Spec(W (R+)), a pseudo-uniformizer $λ ∈ R+ and a number r′ ∈ R with r ≤ r′

such that λ = λ̃ in:
Hom

Spec(BR
+

[r′,∞]
/[$λ])

(T1,T2)

Proof. Fix for the rest of the proof trivializations ιi : Ti → G , and consider ι2 ◦ λ ◦ ι−1
1 as

an element g ∈ H0(YR+

[r,∞],G ) ⊆ H0(YR+

[r,∞], GLn) for some n and some embedding G → GLn
defined over W (k). By lemma 2.1.24 we can find $λ such that one can write g as M1+[$λ]M2

where M1 ∈ GLn(W (R+)) and M2 ∈ Mn×n(BR+

[r′,∞]). With this setup the reduction of M1

to GLn(BR+

[r′,∞]/[$λ]) lies in G (W (R+)/[$λ]). Moreover, since G is a smooth group and

W (R+) is [$λ]-complete, we can lift this to an element g′ ∈ G (W (R+)) with g′ = M1 in

GLn(W (R+)/[$λ]). Consequently g′ = g in G (BR+

[r′,∞]/[$λ]), and by letting λ̃ = ι−1
2 ◦ g′ ◦ ι1

we get the desired isomorphism.

Remark 2.1.26. In lemmas 2.1.25 and 2.1.24 above one can take r = r′ but that would
extend the arguments and we will not need this.

The proof of the following lemma is inspired by the computations that appear in [20]
Theorem 5.6, and it is a key input in the proof of theorem 2.3.14.

Lemma 2.1.27 (Unique liftability of isogenies). Let T be a trivial G -torsor defined over
Spec(W (R+)) and let Gb denote the trivial G -torsor endowed with the φ-module structure
over YR+

(0,∞] given by an element b ∈ G (YR+

(0,∞]). Let Φ : φ∗T → T be an isomorphism defined

over Spec(W (R+)[1
ξ
]) and λ : T → Gb a φ-equivariant isomorphism defined over BR+

[r,∞]/[$]
for some r big enough so that ξR] becomes a unit. Then, there is a unique φ-equivariant
isomorphism λ̃ : T → Gb defined over YR+

[r,∞] such that λ̃ = λ in BR+

[r,∞]/[$].

Proof. After fixing a trivialization ι : T → G we may assume, by transport of structure,
that G = T , that Φ is given by an element G (W (R+)[1

ξ
]), and that λ is given by an element

G (BR+

[r,∞]/[$]). We need to find an element λ̃ ∈ G (BR+

[r,∞]) reducing to λ and satisfying Φ =

λ̃−1◦b◦φ∗(λ̃). Choose an arbitrary lift λ0 ∈ G (BR+

[r,∞]) of λ, and let η0 = λ0
−1◦b◦φ∗(λ0)◦Φ−1.

We construct a pair of sequences of maps, λi : G → Gb and ηi : G → G defined recursively
as follows:

λn+1 = λn ◦ ηn
ηn = λ−1

n ◦ b ◦ φ∗(λn) ◦ Φ−1

We make the observation that η0 = Id in G (BR+

[r,∞]/[$]) and we prove inductively that

ηn = Id in G (BR+

[r,∞]/[$
pn ]). If g ∈ G (BR+

[r,∞]) is such that g = Id in G (BR+

[r,∞]/[$
pn ]), then

φ∗(g) = Id in

G (BR+

[ r
p
,∞]/[$

pn+1

]) ⊆ G (BR+

[r,∞]/[$
pn+1

]).
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The induction then follows from the computation:

ηn+1 = λ−1
n+1 ◦ b ◦ φ∗(λn+1) ◦ Φ−1 (2.2)

= η−1
n ◦ λ−1

n ◦ b ◦ φ∗(λn+1) ◦ Φ−1 (2.3)

= Φ ◦ φ∗(λn)−1 ◦ b−1 ◦ λn ◦ λ−1
n ◦ b ◦ φ∗(λn+1) ◦ Φ−1 (2.4)

= Φ ◦ φ∗(λn)−1 ◦ φ∗(λn+1) ◦ Φ−1 (2.5)

= Φ ◦ φ∗(ηn) ◦ Φ−1 (2.6)

Since φ∗(ηn) = Id in G (BR+

[r,∞]/[$
pn+1

]) we also have that ηn+1 = Id in G (BR+

[r,∞]/[$
pn+1

]).

This let us conclude that ηi converges to Id in G (BR+

[r,∞]). We define λ̃ ∈ G (BR+

[r,∞]) as the

limit of the λi. Taking limits we deduce the identities Id = η∞ = λ̃ ◦ b ◦ φ∗(λ̃) ◦ Φ−1 and

λ̃ = λ0 = λ in G (BR+

[r,∞]/[$]) as we needed to show.

Suppose that there are two lifts λ̃i of λ with the required properties. We get a φ-
equivariant automorphism λ̃1◦λ̃−1

2 of Gb which we may think of as an element of g ∈ G (BR+

[r,∞])

that reduces to the identity in BR+

[r,∞]/[$]. Now, φ-equivariance gives b = g−1 ◦ b ◦ φ∗(g), and

since g = Id in G (BR+

[r,∞]/[$]) then φ∗(g) = Id in G (BR+

[r,∞]/[$
p]) and we get the identity

b = g−1 ◦ b ◦ Id in G (BR+

[r,∞]/[$
p]). We may proceed inductively to prove that g = Id in

G (BR+

[r,∞]/[$
pn ]) for every n. Since BR+

[r,∞] is complete and separated for the [$]-adic topology

we conclude that g = Id in G (BR+

[r,∞]).

2.2 The specialization map for p-adic Beilinson-Drinfeld

Grassmanians

2.2.1 Grassmanians as kimberlites

In the Berkeley notes, Scholze and Weinstein define a p-adic analogue of the Beilinson-
Drinfeld Grassmanian where the parameter “curve” is given by Z♦p , or in our case W (k)♦ =
Spec(k)♦ × Z♦p . We will adopt the definition that is the most convenient for studying the
specialization map for this object.

Definition 2.2.1. (See [53] 20.3.1) We let GrG
W (k)♦ denote the presheaf that assigns to an

affinoid perfectoid pair (R,R+) the set:

GrG
W (k)♦(R,R+) = {(R], ι, f,T , ψ)}/ ∼=

Where (R], ι, f) is an untilt over W (k) and (T , ψ) is a lattice with G -structure as in defini-
tion 2.1.21.

Whenever G is reductive over W (k) with quasi-split fibers we fix T ⊆ B ⊆ G , integrally
defined maximal torus and Borel subgroups respectively.
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Definition 2.2.2. Suppose that G is reductive and µ ∈ X+
∗ (T) is a dominant cocharacter

with reflex field E. We define GrG ,≤µ
OE

as the subsheaf of GrG
OE

:= GrG
W (k)♦ ×W (k)♦ O

♦
E that

on geometric points evaluates to G -lattices (Ξ, ψ) whose type is bounded by µ in the Bruhat
order. We use equation 2.1 to compare µΞ with µ.

Recall the following theorem of the Berkeley notes.

Theorem 2.2.3. (See [53] 20.3.2, 21.2.1) For any parahoric group scheme G over W (k), the
presheaf GrG

W (k)♦ is a small v-sheaf and ind-proper over W (k)♦. Moreover, if G is reductive

and µ ∈ X∗(T) the functor GrG ,≤µ
OE

is proper and representable in spatial diamonds over O♦E.

The inclusion of sheaves GrG ,≤µ
OE

→ GrG
OE

is a closed embedding.

Proposition 2.2.4. The v-sheaf GrG
W (k)♦ formalizes products of points. In particular, it is

v-formalizing.

Proof. Let Spa(R,R+) be a product of points and f : Spa(R,R+) → GrG
W (k)♦ a map. By

definition, associated to this map we have an untilt (R], ι,m) over W (k) and a G -torsor
T over YR+

[0,∞) together with a trivialization ψ : T → G over YR+

[0,∞) \ V (ξR]) meromorphic

along ξR] . We can use ψ to glue T and G along YR+

[r,∞) (for big enough r) and get a G -

torsor defined over YR+ , together with a meromorphic isomorphism over YR+ \V (ξR]) which
restricts to the original data. Using corollary 2.1.14, proposition 2.1.19 and the fact that by
construction T is trivial on YR+ \ V (ξ) we can extend T to a G -torsor over Spec(W (R+))
together with a trivialization over Spec(W (R+)[ 1

ξ
R]

]). We claim that this is enough to define

a map Spd(R+, R+) → GrG
W (k)♦ . Indeed, take a second affinoid perfectoid Spa(S, S+) and

a map g : Spa(S, S+) → Spd(R+, R+), we want to produce a map Spa(S, S+) → GrG
W (k)♦

in a functorial way. We may construct an untilt (S], ι,m) as in lemma 1.4.8. The map g
gives a map g′ : W (R+)→ W (S+) with g′(ξR]) = ξS] . Basechange along g′ gives a G -torsor
over Spec(W (S+)) together with a trivialization over Spec(W (S+)[ 1

g′(ξ)
]). This restricts to

a G -torsor over YS+

[0,∞) and a trivialization over YS+

[0,∞) \ V (g′(ξ)) that is meromorphic along

g′(ξ). This gives our desired natural transformation Spd(R+, R+) → GrG
W (k)♦ . Clearly

the composition Spa(R,R+) → Spd(R+, R+) → GrG
W (k)♦ agrees with f , so this map is a

formalization.

Proposition 2.2.5. (See [53] Section 20.3) The v-sheaf GrG
W (k)♦ is specializing and formally

p-adic, and (GrG
W (k)♦)red is represented by the Witt-vector Grassmanian, GrG

W,k. Moreover,

if G is reductive and kE denotes the residue field of OE, then GrG ,≤µ
O♦
E

is also formally p-adic

and (GrG ,≤µ
O♦
E

)red = GrG ,≤µ
W,kE

.

Proof. That GrG
W (k)♦ is specializing would follow from proposition 2.2.4, theorem 2.2.3 and

proposition 1.3.31 once we establish that it is formally p-adic. We begin by constructing
a map GrG

W,k → (GrG
W (k)♦)red. Given a map Spec(R) → GrG

W,k we need to produce a map

Spec(R)♦ → GrG
W (k)♦ in a functorial way. The map to GrG

W,k is given by a G -torsor T
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over Spec(W (R)) together with a trivialization ψ : T → G over Spec(W (R)[1
p
]). Given an

affinoid perfectoid Spa(S, S+) and a map f : Spa(S, S+)→ Spec(R)♦ we need to produce a
map Spa(S, S+) → GrG

W (k)♦ . The morphism f induces the ring map f ′ : W (R) → W (S+).

We can assign to f the characteristic p untilt and assign the G -bundle f ′∗T over YS+

[0,∞)

with trivialization f ′∗ψ, using corollary 2.1.14 we see that it is meromorphic along p. This
construction is clearly functorial and gives the desired map.

Now, by Beauville-Laszlo theorem, we may also think of (f ′∗T , f ′∗ψ) as a pair (ΞS, ψS)
with ΞS a G -torsor over Spec(B+

dR(S)) and ψS : ΞS → G a trivialization over Spec(BdR(S)).
Since S is the characteristic p untilt, we have B+

dR(S) = W (S) and BdR(S) = W (S)[1
p
]. In

this case, (ΞS, ψS) is simply the pullback of (T , ψ) along W (R) → W (S). In particular, if
G is reductive and the type of (T , ψ) is pointwise bounded by µ ∈ X+

∗ (T), then the type
of (ΞS, ψS) is also pointwise bounded by µ. This last observation gives us a commutative
diagram which we will use later in the proof:

(GrG ,≤µ
W,kE

)♦ (GrG
W,kE

)♦

GrG ,≤µ
O♦
E

GrG
O♦
E

(2.7)

For the moment, let us move on and prove explicitly that for any (R,R+) we have bijection
of sets:

(GrG
W,k)

♦(R,R+)→ GrG
W (k)♦ ×W (k)♦ Spec(k)♦(R,R+).

By lemma 1.3.35, this would give that GrG
W (k)♦ → W (k)♦ is formally adic and would prove

(GrG
W (k)♦)red = GrG

W,k. To prove injectivity, suppose we are given two maps gi : Spa(R,R+)→
(GrG

W,k)
♦ in characteristic p whose composition agree. It is enough to prove that g1 = g2

after taking a v-cover of Spa(R,R+). Locally for the v-topology we can assume that both
maps factor through morphisms g′i : Spec(R+) → GrG

W,k given by pairs (Ti, ψi). Since the

compositions agree, these pairs become isomorphic over YR+

[0,∞). Since both Ti are defined

over Spec(W (R+)) and the pullback functor j∗ : V ecSpec(W (R+)) → V ecYR+ of theorem 2.1.15
is fully faithful (even when it is not an equivalence), we can conclude that g′1 = g′2.

To prove surjectivity take a map f : Spa(R,R+) → GrG
W (k)♦ ×W (k)♦ Spec(k)♦. Since

surjectivity can be checked v-locally we can assume that Spa(R,R+) is a product of points.
By the proof of proposition 2.2.4 we get a G -torsor T over Spec(W (R+)) and a trivialization
over Spec(W (R+)[1

p
]) which gives a map Spec(R+)→ GrG

W,k and consequently the required

lift to our original map Spa(R,R+)→ (GrG
W,k)

♦.
The second claim will follow from proving that the commutative diagram 2.7 is Cartesian.

Indeed, that would prove that the closed immersion GrG ,≤µ
O♦
E

→ GrG
O♦
E

is formally adic, and

that (GrG ,≤µ
O♦
E

)red = GrG ,≤µ
W,kE

. All of the morphisms in diagram 2.7 are closed immersions, so

it is enough to check that the diagram is Cartesian on (C,OC)-points. Suppose we have a
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map m : Spa(C,OC) → GrG ,≤µ
O♦
E

∩ (GrG
W,kE

)♦, this factors through a map m′ : Spec(OC)♦ →
(GrG

W,kE
)♦. The map is given by a lattice (TOC , ψOC ) over W (OC) whose basechange to

W (C) is bounded by µ. Indeed, using the Beauville-Laszlo theorem, this is the translation
of what it means for the composition Spa(C,OC) ⊆ Spec♦(OC) → (GrG

W,kE
)♦ to factor

through GrG ,≤µ
O♦
E

. By proposition 1.3.17 m′ is coming from a map Spec(OC) → GrG
W,kE

for

which the composition Spec(C)→ GrG
W,kE

factors through GrG ,≤µ
W,kE

. Since Spec(C) is Zariski

dense in Spec(OC), m′ factors through GrG ,≤µ
W,kE

and m factors through (GrG ,≤µ
W,kE

)♦.

Remark 2.2.6. We want to remark that although the v-sheaf GrG ,≤µ
O♦
E

is formally p-adic,

the similarly defined moduli GrG ,µ

O♦
E

of B+
dR-lattices of type exactly µ is not formally p-adic

if µ is not minuscule. Indeed, in that case there are points p : Spa(C,OC) → (GrG
W,kE

)♦

with formalization m : Spd(OC , OC) → (GrG
W,kE

)♦ such that p factors through GrG ,µ

O♦
E

but

m doesn’t. This implies that GrG ,µ

O♦
E

∩ (GrG
W,kE

)♦ is not v-formalizing and consequently not

represented by a scheme-theoretic v-sheaf. Similarly, this proves that if µ is not minuscule
GrG ,µ

O♦
E

∩ (GrG
W,kE

)♦ properly contains (GrG ,µ
W,kE

)♦ as open subsheaves of (GrG ,≤µ
W,kE

)♦.

Corollary 2.2.7. If G is reductive over W (k) and µ ∈ X+
∗ (T), then the v-sheaf GrG ,≤µ

OE
is a

p-adic kimberlite.

Proof. We know GrG ,≤µ
O♦
E

is separated by theorem 2.2.3. Since GrG ,≤µ
O♦
E

is formally p-adic,

by proposition 1.3.31 it is also formally separated. The map GrG ,≤µ
O♦
E

→ GrG
O♦
E

is a for-

mally closed immersion and GrG
O♦
E

is specializing so by proposition 1.4.30 GrG ,≤µ
O♦
E

is also

specializing. The morphism GrG ,≤µ
O♦
E

→ O♦E is formally adic which implies that the ad-

junction morphism ((GrG ,≤µ
O♦
E

)red)♦ → GrG ,≤µ
O♦
E

is a closed embedding. By proposition 2.2.5

(GrG ,≤µ
O♦
E

)red = GrG ,≤µ
W,kE

, which is represented by a scheme (See [5] Theorem 8.3). We also

have (GrG ,≤µ
O♦
E

)an = GrG ,≤µ
O♦
E

×O♦
E
E♦, which is represented by a spatial diamond by theorem

2.2.3.

The purpose of the rest of this section is to upgrade corollary 2.2.7 and prove that GrG ,≤µ
OE

is a rich p-adic kimberlite and that its p-adic tubular neighborhoods are connected.

Remark 2.2.8. One could try to generalize corollary 2.2.7 to the parahoric case. This is
more subtle to deal with because it is not possible to define boundedness conditions through
a cocharacter. What one can do is to define the boundedness condition on the generic fiber
and take the closure in the sense of v-sheaves to obtain a closed subsheaf. To prove that
this closed subsheaf is a kimberlite the only real difficulty one can run into is that it is not a
priori clear whether the special fiber of this subsheaf is represented by a scheme or not. It is
the author’s understanding that these subtleties will be tackled in [26], and that their methods
can prove that the special fiber will be represented by the “expected” perfect scheme. With this
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result at hand one can prove that the bounded parahoric Beilinson-Drinfeld Grassmanians
are also rich p-adic kimberlites.

2.2.2 Twisted loop sheaves

We begin by discussing two constructions that are related to twisted loop sheaves and that
we will use below. Given an affine scheme X = Spec(A) of finite type over W (k) with
structure morphism π : X → Spec(W (k)), we can associate to it two v-sheaves over W (k)♦

which we will denote by X(O]) and X(O],+). Here X(O]) : Perfk → Sets is defined to be
the presheaf that assigns to Spa(R,R+) the set of triples (R], ι, f) where (R], ι) is an untilt
and f ∈ HomW (k)(A,R

]) is a W (k)-algebra homomorphism. On the other hand, X(O],+)
assigns triples (R], ι, f) with f ∈ HomW (k)(A,R

],+). Notice that we have an open inclusion
of v-sheaves X(O],+) ⊆ X(O]). Both of these functors glue to give a construction that is
now defined for every scheme X locally of finite type over Spec(W (k)). Visibly, these two

constructions are very related to the functor ♦ : PreAdW (k) → P̃erf, we make this explicit
below.

We still assume X = Spec(A), and we let Xp denote the p-adic completion of X. Now,
Xp is a p-adic Noetherian formal scheme that we may regard as an affinoid adic space
Spa(Ap, Ap). Since for any untilt of R the ring R],+ is p-adically complete, we have an iden-
tification X♦p = X(O],+). Also, if Y → X is an open cover of the form Y =

∐n
i=1 Spec(A[ 1

fi
])

with fi ∈ A, then Yp → Xp is also an open cover of adic spaces. Indeed, Spec(A[ 1
fi

])p
corresponds to the open subset of Xp where 1 ≤ |fi|.

The construction of X(O]) is a little more elaborate. Given an adic space S (thought
of as a triple (|S|,OS, {vs : s ∈ |S|}) in Huber’s category V see [24]), we let SH denote the
topologically ringed space (|S|,OS) that is obtained from S by forgetting the last entry of
data. Suppose we are given a morphism of schemes f : X → Y that is locally of finite type
and a morphism g : SH → Y of locally ringed spaces where S is an adic space for which
every point s ∈ S has an affinoid open neighborhood with Noetherian ring of definition. In
[24] (proposition 3.8) Huber constructs an adic space ”S×Y X” together with a map of adic
spaces p1 : ”S ×Y X”→ S and a map of locally ringed spaces p2 : (”S ×Y X”)H → X with
the following universal property. If T is an adic space, π1 : T → S is a map of adic spaces
and π2 : TH → X is a map of locally ringed spaces such that f ◦ π1 = g ◦ πH2 , then there is
a unique map π : T → ”S ×Y X” such that p1 ◦ π = π1 and p2 ◦ πH = π2.

With this adic space at hand we can let Y = Spec(W (k)), S = Spa(W (k),W (k)) and X
the finite type scheme over Y that we started with and define Xad as (”S ×Y X”). With
this definition we have X(O]) = (Xad)♦. Moreover, if X = Spec(A) and Xf = Spec(A[ 1

f
])

for f ∈ A we can see from the universal property that Xad
f is the open locus of Xad where

f 6= 0.
The advantage of these two-step constructions is that it makes it clear, by proposition

1.1.30, that X(O]) and X(O],+) are small v-sheaves and it also clarifies the glueing process
for X(O]) and X(O],+) when X is an arbitrary finite type scheme. These two constructions
already appear in [51] §27.
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We will later on use the following facts about these constructions:

Proposition 2.2.9. If X → Spec(W (k)) is a proper map of schemes, then the natural map
X(O],+)→ X(O]) is an isomorphism.

Proof. By [24] remark 4.6.(iv).d we have an isomorphism of adic spaces Xp → Xad where Xp

and Xad are as above. Since X(O]) = (Xad)♦ and X(O],+) = X♦p the conclusion holds.

Proposition 2.2.10. Suppose that X and Y are qcqs finite type schemes over Spec(W (k))
and that X → Y is universally subtrusive as in definition 1.3.4, then X(O]) → Y (O]) and
X(O],+)→ Y (O],+) are surjective maps of v-sheaves.

Proof. Replacing Y by an open cover we may assume that Y = Spec(A) for a ring A of finite
type over W (k). By [47] theorem 3.12 we may assume that X → Y factors as X → Y ′ → Y
with Y ′ → Y proper and surjective and X → Y ′ a quasi-compact open covering. Since
open covers of adic spaces induce surjective maps of v-sheaves we only need to deal with
the proper case. Moreover, by Chow’s lemma ([56] Tag 0200) we may assume Y ′ → Y is
projective. We claim that both maps of v-sheaves Y ′(O])→ Y (O]) and Y ′(O],+)→ Y (O],+)
are quasi-compact. Indeed, they are both the composition of a closed immersion and the
first projection map of (PnW (k))

♦×W (k)♦ Y (O]) and (PnW (k))
♦×W (k)♦ Y (O],+) respectively. By

([51] 12.11) we may check surjectivity at a topological level. Take an algebraically closed
non-Archimedean field C with open and bounded valuation subring C+ ⊆ C, and consider
ring maps r∗ : A → C and s∗ : A → C+ representing (C,C+)-valued points in r ∈ Y (O])
and s ∈ Y (O],+) respectively. Since Y ′ → Y is proper and surjective the map of schemes
Spec(C)×Y Y ′ → Spec(C) admits a section which induces a lift of r to Y ′(O]). Analogously,
the map of schemes Spec(C+)×Y Y ′ → Spec(C+) admits a section (by the valuative criterion
of properness). This defines an element of Y ′(O],+) lifting s.

Perhaps unsurprisingly, for a scheme X over Spec(W (k)) the reduction functor applied
to X(O]) and X(O],+) give the same scheme-theoretic v-sheaf.

Proposition 2.2.11. Given X a scheme locally of finite type over Spec(W (k)) we have

identifications in ˜SchPerf:

X(O])red ∼= X ×W (k) Spec(k) ∼= X(O],+)red

Proof. Both identifications follow from proposition 1.3.20. By the construction of Xp as
a p-adic completion in the case of X(O],+), and by the universal property of Xad in the
category of adic spaces in the case of X(O]).

We move on to discuss twisted loop sheaves. For the rest of this section we let C be an
algebraically closed non-Archimedean field over k with ring of integers OC and residue field
kC . We fix a characteristic 0 untilt C] and we pick ξ ∈ W (OC) a generator for the kernel
of W (OC)→ OC] . The choice of untilt determines a unique map O♦C → Z♦p that we also fix
throughout this section.
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Definition 2.2.12. 1. We let W+(O) : PerfO♦
C
→ Sets denote the presheaf that assigns

to Spa(R,R+)→ O♦C the ring W (R+).

2. We let B+
dR(O]) : PerfO♦

C
→ Sets denote the presheaf that assigns to Spa(R,R+)→ O♦C

the ring B+
dR(R]) where R] is the untilt associated with our fixed choice of ξ ∈ W (OC).

3. We let W (O) : PerfO♦
C
→ Sets denote the presheaf that assigns to Spa(R,R+) → O♦C

the ring W (R+)[1
ξ
].

4. We let BdR(O]) : PerfO♦
C
→ Sets denote the presheaf that assigns to Spa(R,R+)→ O♦C

the ring BdR(R]) := B+
dR(R])[1

ξ
].

Proposition 2.2.13. The presheaves W+(O), B+
dR(O]), W (O), and BdR(O]) are small v-

sheaves.

Proof. Ignoring the ring structure, we see that the Teichműller expansion of W (R+) gives a
bijection to (R+)N which is a small v-sheaf. We can prove inductively that B+

dR(O])/ξn is a
small v-sheaf. Indeed, it sits in the exact sequence of presheaves:

0→ B+
dR(O])/ξn−1 ·ξ−→ B+

dR(O])/ξn → O] → 0

By induction the leftmost term is a small v-sheaf and we already know that the rightmost
term is a small v-sheaf. A diagram chase gives that the middle one is also a small v-sheaf.
Since B+

dR(O]) = lim←−nB
+
dR(O])/ξn this other one is also a small v-sheaf.

NowW (O) = lim−→(W+(O)
ξ−→ W+(O)

ξ−→ . . . ) andBdR(O]) = lim−→(B+
dR(O]) ξ−→ B+

dR(O]) ξ−→
. . . ). Since these are filtered colimit of sheaves they define small v-sheaves as well.

Notice that W+(O) and B+
dR(O]) come equipped with reduction maps

red : W+(O)→ W+(O)/ξ = O],+

and
red : B+

dR(O])→ B+
dR(O])/ξ = O].

Definition 2.2.14. Let H be a finite type affine scheme over Spec(W (k)[t, t−1]), and let
(H, ρ) be a finite type affine scheme over Spec(W (k)[t]) together with an isomorphism ρ :
H×A1

W (k)
Gm → H. To this setup we associate the following presheaves over O♦C:

1. W+H assigns to Spa(R,R+) → O♦C the set of sections Spec(W (R+)) → H ×A1
W (k)

Spec(W (R+)).

2. WH assigns to Spa(R,R+) → O♦C the set of sections Spec(W (R+)[1
ξ
]) → H ×Gm,W (k)

Spec(W (R+)[1
ξ
]).
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3. L+H assigns to Spa(R,R+) → O♦C the set of sections Spec(B+
dR(R])) → H ×A1

W (k)

Spec(B+
dR(R])).

4. LH assigns to Spa(R,R+) → O♦C the set of sections Spec(BdR(R])) → H ×Gm,W (k)

Spec(BdR(R])).

where the base change in all cases is given by the usual map on W (k) deduced from the
composition k → OC → R+ and given by t 7→ ξ.

Proposition 2.2.15. With the notation as above W+H, WH, L+H and LH are small
v-sheaves.

Proof. Let R ∈ {W+(O),W (O), B+
dR(O]), BdR(O])} denote one of the sheaves of rings of

definition 2.2.12. Suppose that H = Spec(W (k)[t][x1, . . . xn]/(f1(t, x), . . . , fm(t, x)). Notice

there is a map of v-sheaves O♦C
0−→ R corresponding to the constant 0 section. Consider the

following basechange diagram:

X O♦C

Rn Rm

0

F

Where F (r) = (f1(ξ, r), . . . , fm(ξ, r)). Whenever R is W+(O), W (O), B+
dR(O]), or BdR(O])

then X is isomorphic as presheaves to W+H, WH, L+H, or LH respectively. From this
diagram, it is clear that X is a small v-sheaf.

In our setup, ρ will induce maps of v-sheaves L+H ρ−→ LH and W+H ρ−→ WH. We get
the following diagrams of inclusions:

W (O) WH

W+(O) BdR(O]) W+H LH

B+
dR(O]) L+H

ρ

ρ

Moreover, if we let H denote the basechange H×A1
W (k)

Spec(W (k)) at t = 0 we get reduction

morphisms W+H → H(O],+)O♦
C

and L+H → H(O])O♦
C

.

Proposition 2.2.16. If H is smooth over Spec(W (k)[t]) then the reduction maps W+H →
H(O],+)O♦

C
and L+H → H(O])O♦

C
are surjective maps of v-sheaves.
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Proof. We claim that the map is surjective even at the level of presheaves. The (R,R+)-
valued points of H(O]) and H(O],+) can be seen as maps

Spec(R])→ HBdR(R])

and
Spec(R],+)→ HW (R+)

whose composition with the projections to Spec(BdR(R])) and Spec(W (R+)) are the usual
closed embeddings. By smoothness of H, for any n ∈ N the maps can be lifted to maps
Spec(BdR(R])/ξn)→ HBdR(R]) and Spec(W (R+)/ξn)→ HW (R+) respectively. Since H is an
affine scheme and since both BdR(R]) and W (R+) are (ξ)-adically complete we may pass to
the inverse limit by choosing compatible lifts.

Definition 2.2.17. 1. With the setup as above, consider the ring kC with the discrete

topology, we let W+
redH ∈ ˜SchPerfkC be the scheme-theoretic v-sheaf that assigns to

Spec(R) ∈ PCAlgopkC sections

Spec(W (R))→ H×A1
W (k)

Spec(W (R))

where the basechange is given by t 7→ p.

2. We let W+
red(O) : PCAlgopkC → Sets denote sheaf that sends Spec(R) to W (R). This

sheaf can also be expressed as W+
redA1

W (k)[t].

Remark 2.2.18. The scheme-theoretic v-sheaves W+
redH of definition 2.2.17 are the v-

sheaves that Zhu calls p-adic jet spaces in [59] 1.1.1. These sheaves are represented by
perfect affine schemes.

Proposition 2.2.19. With the notation as above the v-sheaf W+H is a p-adic kimberlite
and (W+H)red = (W+

redH).

Proof. Observe that W+(O) is represented by Spd(OC〈Tn〉n∈N, OC〈Tn〉n∈N), by proposition
1.4.23 and proposition 1.3.25 W+(O) is a p-adic kimberlite. Moreover, by proposition 1.3.20
W+(O)red is represented by Spec(kC [Tn]n∈N) which is W+

red(O). Lets move on to the general
case, recall from the proof of proposition 2.2.15 that if H = Spec(A) is presented as A =
W (k)[t][x]/I with I = (f1(t, x), . . . , fm(t, x)). Then W+H fits in the commutative diagram
with Cartesian square:

W+H O♦C

W+(O)n W+(O)m O♦C

0
id

F

We claim that all of these maps are formally adic, and in particular W+H is formally
p-adic. This follows from the fact that formal adicness is stable under basechange, that it has
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the 2-out-of-3 property and that, as we proved above, W+(O)→ O♦C is formally adic. Since

W+(O) is separated over O♦C the section O♦C
0−→ W+(O)m is a formally adic closed immersion.

We can conclude that W+H is a p-adic kimberlite by using lemma 1.4.30. Finally, since we
can basechange by Spec(kC)♦ → Spd(OC , OC) to compute reductions we get the following
Cartesian diagram:

W+Hred Spec(kC)

W+
red(O)n W+

red(O)m

0

F

which gives the isomorphism W+Hred =W+
redH.

2.2.3 Demazure kimberlites

In this subsection we use twisted loop sheaves to construct a family of kimberlites that
will allow us to understand how the specialization map for the p-adic Beilinson-Drinfeld
Grassmanians behave. We change the setup a little bit and fix some notation first:

1. Let H be a split reductive group over W (k), let T ⊆ B ⊆ H a choice of maximal split
torus and a Borel respectively.

2. Let (X∗,Φ, X∗,Φ
∨) be the root datum associated to (H,T ).

3. We let 〈·, ·〉 : X∗ ×X∗ → Z denote perfect pairing between roots and coroots.

4. Let Φ+ be the set of positive roots associated to B.

5. Let N be the normalizer of T in H.

6. Let W = N/T be the Weyl group of H.

7. We let A = A(H,T ) denote X∗(T )⊗Z R.

8. We let Ψ = {α + n | α ∈ Φ, n ∈ Z} denote the set of affine functionals on A coming
from the natural perfect pairing 〈·, ·〉 : X∗(T )×X∗(T )→ Z. We call them affine roots.

9. Given a point q ∈ A we let Φq = {α ∈ Φ | α(q) ∈ Z} this is clearly a closed sub-root
system. We let Mq be the generalized Levi subgroup of H containing T with root
datum given by (X∗,Φq, X∗,Φ

∨
q ).

10. Ψ defines a hyperplane structure on A, and for any point q ∈ A we can associate a
polysimplicial closed region of A that we will denote by Fq. In case H is semisimple
this region is bounded and forms a polytope. We let o denote the vertex associated
to the origin in A and C the unique alcove containing o and contained in the Bruhat
chamber associated to B.
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11. We denote by S the set of reflections along the walls of C, we let W aff the affine Weyl
group generated by S. Given any facet F ⊆ C we let SF be the subset of elements of
S fixing F and we let WF be the subgroup of W aff generated by SF .

12. We let W̃ denote the Iwahori-Weyl group of H. Recall that W aff ⊆ W̃ and that if we
let ΩH = π1(Hder) we have a decomposition W̃ = W aff o ΩH .

Fix a point q ∈ A. In ([42] §3) Pappas and Zhu use Bruhat-Tits theory and dilatation
techniques to construct smooth affine algebraic groups Hq over Spec(W (k)[t]) together with
an isomorphism ρ from Hq×W (k)[t] Spec(W (k)[t, t−1]) to H×W (k) Spec(W (k)[t, t−1]) with the
following list of properties:

a) For any discrete valuation ring V and a map W (k)[t] → V given by t 7→ π with
π ∈ V a uniformizer, the basechange Hq ×A1

W (k)
Spec(V ) is the parahoric group

scheme associated to q ∈ A(H,V [ 1
π
]) by Bruhat-Tits theory under the identification

A(H, V [ 1
π
]) = X∗(TV [ 1

π
])⊗ R = X∗(T )⊗ R.

b) For any root α ∈ Φ there are smooth connected closed subgroups U qα ⊆ Hq (respectively
T ⊆ Hq) extending the usual root subgroup Uα ⊆ H (respectively extending the torus
T ⊆ H). Over W (k)[t], the groups U qα are isomorphic to Ga and T is isomorphic to
Gn
m for some n.

c) There is an open cell decomposition:

Vq :=
∏
α∈Φ−

U qα × T ×
∏
α∈Φ+

U qα → Hq.

This map forms an open embedding onto a fiberwise Zariski-dense neighborhood of the
identity section.

d) The group multiplication map Vq × Vq
µ−→ Hq is smooth and surjective.

e) The basechange Hq := Hq ×A1
W (k)

Spec(W (k)) along t = 0 supports a split reductive

quotient HRed

q over W (k) with root datum canonically identified with (X∗,Φq, X∗,Φ
∨
q ).

In particular we can identify Mq with HRed

q .

f) If α ∈ Φq the composition U qα → H
Red

q at t = 0 defines an isomorphism onto the

root group of HRed

q corresponding to α. On the other hand, if α ∈ Φ \ Φq then the

composition U qα → H
Red

q factors through the identity section.

g) We have a commutative diagram of open cell decompostion:
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∏
α∈Φ\Φq Uα

∏
α∈Φ− Uα × T ×

∏
α∈Φ+ Uα

∏
α∈Φ−q

Uα × T ×
∏

α∈Φ+
q
Uα

Ker(m) Hq HRed

q

∼=

π

µ µ

m

where π is the projection map and the left vertical arrow is an isomorphism.

If we are given two points q1, q2 ∈ A such that Fq1 ⊆ Fq2 we also get a map of algebraic
groups f : Hq2 → Hq1 . This map has the following properties:

a) ρ1 ◦ f = ρ2 over W (k)[t, t−1].

b) The composition Hq2 → H
Red

q1
surjects onto the parabolic subgroup of HRed

q1
associ-

ated to the closed sub-root system given by Φq1.q2 := {α ∈ Φq1 | bα(q2)c = α(q1)}.
Moreover, the kernel of this map is fiberwise a vector group.

We are now prepared to define “parahoric” versions of the positive loop groups which we
will use to define Demazure kimberlites.

Definition 2.2.20. 1. We define the loop group LH to be as in definition 2.2.14 when
we consider H as a scheme over W (k)[t, t−1] by taking the appropriate basechange.

2. Given a point q ∈ A define the parahoric loop group to be L+Hq as in definition 2.2.14.

3. Associated to the same point we also define the formal parahoric loop group to be
W+Hq.

Notice that we have injective maps of v-sheaves W+Hq ⊆ L+Hq

ρ

⊆ LH.

Proposition 2.2.21. With the notation as above, for any point q ∈ A we have surjective
morphisms of v-sheaves in groups:

L+Hq → H
Red

q (O]X) = Mq(O]X)

W+Hq → H
Red

q (O],+X ) = Mq(O],+X )

Proof. This is a direct consequence of proposition 2.2.16 and proposition 2.2.10 since the

map H → HRed
is smooth surjective and consequently universally subtrusive.

We let LuHq and W uHq denote respectively the kernels of the morphisms of proposition
2.2.21 above.
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Proposition 2.2.22. If q1, q2 ∈ A are such that Fq1 ⊆ Fq2, then we get inclusions of v-
sheaves in groups:

LuHq1 ⊆ LuHq2 ⊆ L+Hq2 ⊆ L+Hq1 ⊆ LH

W uHq1 ⊆ W uHq2 ⊆ W+Hq2 ⊆ W+Hq1 ⊆ WH

Moreover, the map from L+Hq2 to Mq1(O]) surjects onto PΦq1,q2
(O]) ⊆ Mq1(O]). Analo-

gously, W+Hq2 surjects onto PΦq1,q2
(O],+) ⊆Mq1(O],+).

Proof. We will deal only with the case of parahoric loop groups since the other case is
completely analogous. Recall that we have a morphism of algebraic groups over W (k)[t],
f : Hq2 → Hq1 , such that ρ1 ◦f = ρ2. Functoriality of L+, gives us maps L+Hq2 → L+Hq1 →
LH, since L+Hq2 → LH is an injection, then L+Hq2 → L+Hq1 is also injective.

Now, since the map of affine schemes Hq2 → PΦq1,q2
is faithfully flat of finite presentation

it is universally subtrusive. This implies, by proposition 2.2.16 and proposition 2.2.10, that
the composition of L+Hq2 → Hq2(O]) with Hq2(O])→ PΦq1,q2

(O]) is surjective.

Finally, we claim that any map g : Spec(B+
dR(R])) → Hq1,B

+
dR(R]) whose reduction

Spec(R]) → Mq factors through the identity section lifts to a map Spec(B+
dR(R])) →

Hq2,B
+
dR(R]). Indeed, observe that Spec(R]) → Hq1 factors through the open cell Vq1 , which

implies that g is of the form

g = (
∏
α∈Φ−q1

uα(g)) · t(g) · (
∏
α∈Φ+

q1

uα(g))

with t(g) and {uα(g)}α∈Φ\Φq1 reducing to the identity.
We can verify directly from the construction of the map Hq2 → Hq1 that each of this

elements lifts uniquely to an element in Vq2 . Indeed, on the torus T and on Uα with α /∈ Φq1

f induces an isomorphism because Fq1 ⊆ Fq2 . For α ∈ Φq1 \Φq1,q2 we may, after making some
choices, write U q1α as Spec(W (k)[t, u]) and U q2α as Spec(W (k)[t, u

t
]). In this case f restricted to

U q2α is given by the natural inclusion of rings. The map of rings uα(g)∗ : W (k)[t, u]→ B+
dR(R])

with t 7→ ξ extends to a map W (k)[t, u
t
]→ B+

dR(R]) whenever ξ divides the image of u, but
this happens whenever uα(g) reduces to identity.

Proposition 2.2.23. Let q1, q2 ∈ A such that Fq1 ⊆ Fq2, then we have isomorphisms of
quotient v-sheaves L+Hq1/L

+Hq2 = W+Hq1/W
+Hq2. Moreover, we can identify both of

these quotients with (Flq1,q2,OC )♦, where Flq1,q2 denotes the flag variety Mq1/PΦq1,q2
when

thought of as a p-adic formal scheme.

Proof. We have sequence of equalities:

L+Hp1/L
+Hp2 = (L+Hp1/L

uHp1)/(L+Hp2/L
uHp1)

= Mp1(O])/PΦp1,p2
(O])

= Flp1,p2(O])
= Fl♦p1,p2
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The last equality follows from proposition 2.2.9.
Analogously:

W+Hp1/W
+Hp2 = (W+Hp1/W

uHp1)/(W+Hp2/W
uHp1)

= Mp1(O],+)/PΦp1,p2
(O],+)

= Fl♦p1,p2

Lemma 2.2.24. 1. Let F be a locally spatial diamond with a map F → O♦C and fix two
points q1, q2 ∈ A with Fq1 ⊆ Fq2. The natural map L+Hq1 ×O♦

C
F → Fl♦q1,q2 ×O♦

C
F

admits pro-étale locally a section.

2. If Spa(R,R+) is affinoid perfectoid and we are given a map Spa(R,R+)→ Fl♦q1,q2 then
the pullback L+Hq1 ×Fl♦q1,q2 Spa(R,R+) → Spa(R,R+) admits a section locally on the

analytic topology of Spa(R,R+)

Proof. We may reduce the first claim to the second one by [51] 11.24. Indeed, by proposition
2.2.23 the map in question forms a L+Hq2-torsor so it is enough to prove it is pro-étale locally
the trivial torsor. Since the map Fl♦q1,q2, → O♦C is representable in spatial diamonds we can
find a pro-étale cover Spa(R,R+)→ Fl♦q1,q2 ×O♦

C
F with Spa(R,R+) affinoid perfectoid.

Let us prove the second claim. The obstruction to the triviality of the L+Hq2-torsor over
Spa(R,R+) is an element obs in H1

v (Spa(R,R+), L+Hq2). We prove that this obstruction
vanishes after a localization in the analytic topology, recall the following two sequences of
maps:

(L+Hq1)→Mq1(O]X)→ Fl♦q1,q2

e→ LuHq1 → L+Hq2 → PΦq1,q2
(O]X)→ e

The map Mq1(O]X) → Fl♦q1,q2 is a PΦq1,q2
(O]X)-torsor with obstruction to triviality lying

in
H1
v (Fl♦q1,q2 , PΦq1,q2

(O]X)).

Since the map of schemes Mq1 → Flq1,q2 admits Zariski locally a section we may replace

Spa(R,R+) by an analytic cover for which obs in H1
v (Spa(R,R+), PΦq1,q2

(O]X)) is trivial.
Observe that obs comes from an element of H1

v (Spa(R,R+), LuHq1), we prove that in this
case it is already trivial. Consider the exact sequence

e→ Ker
(
L+Hq1 → Hq1(O])

)
→ LuHq1 → Ker

(
Hq1(O])→ HRed

q1
(O])

)
→ e,

we prove that after applying H1(Spa(R,R+),−) to the two groups in the extremes we obtain
the trivial pointed set.
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For the first group we construct a family {Lu,n}∞n=1 of groups filtering

Lu,1 := Ker
(
L+Hq1 → Hq1(O])

)
.

We define them as:

Lu,n(R,R+) := Ker
(
Hq1,B

+
dR(R])(B

+
dR(R]))→ Hq1,B

+
dR(R])(B

+
dR(R])/ξn)

)
Successive quotients Lu,n/Lu,n+1 get identified with the sheaves assigning to Spa(R,R+) the
groups:

Ker
(
Hq1,B

+
dR(R])(B

+
dR(R])/ξn+1)→ Hq1,B

+
dR(R])(B

+
dR(R])/ξn)

)
Since Spec(B+

dR(R])/ξn) → Spec(B+
dR(R])/ξn+1) is a first order nilpotent thickening, defor-

mation theory gives:

Lu,n/Lu,n+1 = Hom(e∗Ω1
Hq1
⊗W (k)[t] B

+
dR(R]), (ξn ·B+

dR(R])/ξn+1)) = Hom(e∗Ω1
Hq1
⊗R], R])

Since Hq1 has an open cell decomposition we can see explicitly that e∗Ω1
Hq1/W (k)[t] is a finite

free module over W (k)[t] (a priori it is only projective), and after fixing a basis we get an iden-
tification Lu,n/Lu,n+1 = (O])n. By ([51] 8.8) the cohomology group H1

v (Spa(R,R+),O]) = 0.
Let Iu,n be the image of H1

v (Spa(R,R+), Lu,n) in H1
v (Spa(R,R+), Lu,1). The argument above

shows that obs ∈
⋂
n∈N I

u,n. On the other hand,

Lu,1 = lim←−L
u,1/Lu,n

with transition maps that are surjective at the level of presheaves. One can use Čech coho-
mology to prove that

⋂
n∈N I

u,n = {e}. So far we have proved H1
v (Spa(R,R+), Lu,1) = {e},

but
H1
v

(
Spa(R,R+), Ker(Hq1(O])→ HRed

q1
(O]))

)
is also trivial since Ker(Hq1 → H

Red

q1
) is a vector group over W (k) and we may use [51] 8.8

again. This proves that H1
v (Spa(R,R+), LuHq1) = {e} and finishes the proof.

Definition 2.2.25. Let σr := {ri}1≤i≤n and σq := {qi}1≤i≤n denote a pair of sequences of
points in A such that Fri , Fri+1

⊆ Fqi, and let σ denote the tuple (σr, σq). To each σ of this
form we associate a v-sheaf that we call the Demazure kimberlite of σ. We define them as
the contracted group product:

D(σ) = L+Hr1

L+Hq1
×O♦

C
L+Hr2

L+Hq2
×O♦

C
. . .

L+Hqn−1

×O♦
C

L+Hrn/L
+Hqn

In what follows we will prove that for any σ as above the D(σ) are rich p-adic kimberlites
that are proper and smooth over O♦C .
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Proposition 2.2.26. The map of v-sheaves D(σ) → O♦C is representable in spatial dia-
monds, proper and `-cohomologically smooth for any ` 6= p.

Proof. Let σ be as above and let σ′ = ({ri}1≤i≤n−1, {qi}1≤i≤n−1) be the subsequence of the
first n− 1 points of σ. We have a projection morphism of v-sheaves f : D(σ)→ D(σ′) given
by forgetting the last entry corresponding to rn. It is enough to inductively show that this
map satisfies all of the properties in the hypothesis. Since the definition of D(σ)(R,R+)
is independent of R+ to prove the map is proper it is enough to prove it is quasi-compact
and separated over D(σ′). By ([51] 23.15, 10.11, 13.4) separatedness, quasi-compactness and
almost all of the requirements that a map needs to satisfy to be `-cohomologically smooth
([51] 23.8) can be checked v-locally. The following diagram is Cartesian with surjective
horizontal arrows:

L+Hr1×O♦
C
· · · ×O♦

C
L+Hrn−1 ×O♦

C
(L+Hrn/L

+Hqn) D(σ)

L+Hr1×O♦
C
· · · ×O♦

C
L+Hrn−1 D(σ′)

By proposition 2.2.23 we have that L+Hrn/L
+Hqn = Fl♦rn,qn,OC which is proper, representable

in spatial diamonds and `-cohomologically smooth over O♦C for any ` 6= p. This proves the
map in the left column of the diagram is representable in spatial diamonds, `-cohomologically
smooth and proper. It also proves that the map in the right column of the diagram satisfy
the properties that can be checked v-locally.

We now verify the finer properties that cannot be checked v-locally. Namely, we need to
check that f : D(σ) → D(σ′) is representable in spatial diamonds and that f has bounded
topological transcendence degree. By ([51] 13.4) the first property can be checked pro-étale
locally. Given a map from a spatial diamond F → D(σ′) we let X = F×D(σ′)D(σ). Applying
lemma 2.2.24 repeatedly to the quotients L+Hrk/L

+Hqk we get that pro-étale locally on F ,
X is of the form F ×O♦

C
Fl♦rn,qn which is a spatial diamond. Moreover, if F = Spa(C ′, C ′+)

with C ′ algebraically closed non-Archimedean field and C ′+ an open and bounded valuation
subring then X = Fl♦rn,qn,C′ and dim.trg.(f) = dim(Flrn,qn) <∞ (See [51] 21.7).

Proposition 2.2.27. Fix σ as above. The projection map π : W+Hr1×O♦
C
· · · ×O♦

C
W+Hrn →

D(σ) induced from the family of injections W+Hri ⊆ L+Hri is a surjective map of v-sheaves.
It induces an identification:

ι : D(σ) ∼= W+Hr1

W+Hq1
×O♦

C
. . .

W+Hqn−1

×O♦
C

W+Hrn/W
+Hqn

Consequently, D(σ) is v-formalizing.
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Proof. Consider the following basechange diagram:

W+Hr1×O♦
C
···×

O♦
C

(L+Hrn/L+Hqn ) L+Hr1×O♦
C
···×

O♦
C

(L+Hrn/L+Hqn ) D(σ)

W+Hr1×O♦
C
···×

O♦
C
W+Hrn−1 L+Hr1×O♦

C
···×

O♦
C
L+Hrn−1 D(σ′)

(2.8)

Proposition 2.2.23 gives the equality W+Hrn/W
+Hqn = L+Hrn/L

+Hqn and allow us to
conclude surjectivity by induction. Assume that we have an identification:

ι′ : D(σ′) ∼= W+Hr1

W+Hq1
×O♦

C
. . .

W+Hqn−2

×O♦
C

W+Hrn−1/W
+Hqn−1

Since W+Hqk ⊆ L+Hqk the map ι is defined and surjective, we need to prove that ι is
also injective. Let [g1] and [g2] be two maps

[g1], [g2] : Spa(R,R+)→ W+Hr1

W+Hq1
×O♦

C
. . .

W+Hqn−1

×O♦
C

W+Hrn/W
+Hqn

and suppose that they get identified after mapping to D(σ)(R,R+). By our inductive hy-
pothesis on D(σ′) we may locally for the v-topology find representatives g1 and g2 of [g1]
and [g2] whose projection to the first n − 1 coordinates is the same. That is gi are of the
form (g1

i , . . . , g
n
i ) in W+Hr1 ×O♦

C
· · · ×O♦

C
W+Hrn with gj1 = gj2 for j ∈ {1, . . . , n− 1}. Since

[g1] and [g2] get identified in D(σ) we must have that (v-locally) g1 and g2 are on the same
L+Hq1 ×O♦

C
· · · ×O♦

C
L+Hqn-orbit. Since g1 and g2 share all of their entries except possibly

the last we have that gn1 and gn2 are in the same L+Hqn-orbit. Since gn1 , g
n
2 ∈ W+Hrn and

W+Hqn = W+Hrn ∩ L+Hqn they are in the same W+Hqn-orbit which proves [g1] = [g2].
Finally, by proposition 2.2.19 each W+Hri is formalizing, proposition 1.4.11 implies the

same for the product, and since D(σ) is the quotient of a v-formalizing sheaf it is also
v-formalizing.

Lemma 2.2.28. Given two points r1, r2 ∈ A with Fr1 ⊆ Fr2 the projection map of perfect
schemes W+

redHr1 →W+
redHr1/W+

redHr2 = Flperfr1,r2
admits Zariski locally a section.

Proof. Let obs ∈ H1
v−Sch(Fl

perf
r1,r2

,W+
redHr2) be the obstruction to finding a section. Consider

the reduction morphism exact sequence:

e→WHu
r1
→W+

redHr2 → P perf
Φr1,r2

→ e

We also have Flperfr1,r2
= Mperf

r1
/P perf

Φr1,r2
and the cohomology class in H1

v−Sch(Fl
perf
r1,r2

, P perf
Φr1,r2

)

associated to the P perf
Φr1,r2

-torsor Mperf
r1
→ Flperfr1,r2

is the image of obs. Zariski locally on Flperfr1,r2

the P perf
Φr1,r2

-torsor is trivial. This is known for the classical flag variety Flr1,r2 over Spec(kC)
and the result will follow from taking perfection. Indeed, consider a commutative diagram
trivializing the PΦr1,r2

-torsor:
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U Flp1,p2

Mp1

ι

s

Any such diagram having ι as Zariski open cover will produce a similar diagram after we
take perfections and will trivialize the P perf

Φr1,r2
-torsor.

Fix an affine cover Spec(R) → Flperfr1,r2
trivializing red(obs). We claim that Spec(R) has

a section to W+
redHr1 ×Flperfr1,r2

Spec(R). By construction, we know that

obs ∈ H1
v−Sch(Spec(R),W+

redHr2)

is in the image of H1
v−Sch(Spec(R),WuHr1), but this pointed set is trivial. Indeed, we have

that H1
v−Sch(Spec(R),Ga) = {e} which is a particular case of theorem 4.1 in [5]. One can

finish the proof by using the argument given in lemma 2.2.24.

Proposition 2.2.29. The map D(σ) → O♦C is formally adic. Moreover, D(σ)red is repre-
sented by a qcqs scheme that is perfectly finitely presented and proper over Spec(kC) (See [5]
3.11 and 3.14 for definitions).

Proof. Let σ = ({ri}1≤i≤n, {qi}1≤i≤n) and let σ′ = ({ri}1≤i≤n−1, {qi}1≤i≤n−1). In any topos
pullback commutes with finite limits and colimits, so by proposition 2.2.19 we have:

D(σ)×O♦
C

Spec(kC)♦ = (W+
redHr1)♦

(W+
redHq1 )♦

×k♦C . . .
(W+

redHqn−1 )♦

×k♦C (W+
redHrn)♦/(W+

redHqn)♦

Since the functor (·)♦ is a left adjoint it commutes with colimits, so we get:

D(σ)×O♦
C

Spec(kC)♦ =

(
W+

redHp1

W+
redHq1
×kC . . .

W+
redHqn−1

×kC W+
redHpn/W+

redHqn

)♦

Lemma 1.3.35 proves that D(σ) → O♦C is formally adic and that D(σ)red = D(σ) ×O♦
C

Spec(kC)♦. In particular W+
redHrk/W+

redHqk = Flrk,qk .
We prove inductively that D(σ)red is represented by a qcqs scheme perfectly finitely

presented and proper over Spec(kC). Iterating lemma 2.2.28 we see that the map D(σ)red →
D(σ′)red is Zariski locally a trivial Flperfrk,qk

-bundle. Now, quasi-compactness, separatedness,
quasi-separatedness, representability in schemes, being perfectly of finite presentation and
being proper can all be checked Zariski locally on the target and are stable under basechange
and composition (See [56] Tag 02YJ). By induction, D(σ′) enjoys all of these properties over
Spec(k) and Flrn,qn ×kC Spec(A) enjoys them over Spec(A) for any affine open Spec(A) ⊆
D(σ′)red. This proves that D(σ) also enjoys them over Spec(kC), which finishes the proof.

Proposition 2.2.30. For any σ and any geometric point Spa(C ′, OC′)→ O♦C the base change
D(σ)×O♦

C
Spa(C ′, OC′) is a cJ-diamond.
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Proof. We prove by induction that D(σ) has enough facets, let σ = ({ri}1≤i≤n, {qi}1≤i≤n)
and let σ′ = ({ri}1≤i≤n−1, {qi}1≤i≤n−1). Suppose that D(σ′)C′ has enough facets, let S :=∐

i∈I Spd(Bi, B
◦
i ) with each Bi a topologically of finite type C ′-algebra and let f : S →

D(σ′)C′ be a surjective map. Let F = D(σ)C′ ×D(σ′)C′
S, we prove that F has a enough

facets. Analytically locally on S the projection map F → S is a trivial (Flrn,qn,C′])
♦-fibration.

The proof of this claim is an iteration of the argument given on lemma 2.2.24 together with
the observation that S is already a disjoint union of affinoid perfectoid spaces. We may
replace S by an analytic cover S ′ so that we get the expression:

F ′ = D(σ)C′ ×D(σ′)C′
S ′ =

∐
Spd(B′i, (B

′
i)
◦)×Spa(C′,OC′ )

(Flrn,qn,C′])
♦

By proposition 1.4.39 having enough facets is stable under products so F ′ has enough facets
and consequently D(σ) as well.

We can summarize this subsection with the following theorem:

Theorem 2.2.31. For any σ as in definition 2.2.25 the Demazure kimberlite D(σ) is a rich
p-adic kimberlite. The p-adic tubular neighborhoods are non-empty and connected, and the
structure morphism D(σ)→ O♦C is proper and `-cohomologically smooth.

Proof. Separatedness and the properties of the structure morphism were proven on proposi-
tion 2.2.26. That it is v-formalizing is proven in proposition 2.2.27. We have

(D(σ)red)♦ = D(σ)×O♦
C

Spec(kC)♦

this implies that the adjunction morphism (D(σ)red)♦ → D(σ) is a closed embedding. By
proposition 1.3.31 D(σ) is formally separated and specializing. By proposition 2.2.29 D(σ)red

is represented by a scheme. At this point we have proved that D(σ) is a p-adic pre-kimberlite.
Since D(σ)red is represented by a proper perfectly finitely presented scheme over kC then

|D(σ)red| is a Noetherian and spectral topological space. The analytic locus D(σ)an coincides
with the generic fiber D(σ)×O♦

C
Spa(C,OC) and by proposition 2.2.30 this is a cJ-diamond.

One can easily prove inductively over the map D(σ)→ D(σ′) that the specialization map is
surjective on closed points. By lemmas 1.4.43 and 1.4.44 it is a quotient map. This finishes
the proof that D(σ) is a rich kimberlite.

The connectedness of tubular neighborhoods will follow from lemma 2.2.32 below. Indeed,
we have already verified that all but conditions 4 and 5 of this lemma hold. Condition 5
holds by induction over the maps D(σ) → D(σ′) and condition 4 follows from the diagram
2.8 since each of the W+Hri is formalizing and basechanges along maps that factor through
W+Hr1×O♦

C
· · · ×O♦

C
W+Hrn−1 will give a trivial bundle.

Lemma 2.2.32. Let f : F → G be a map of kimberlites over O♦C, let X → Spec(OC]) be a
smooth projective scheme. Suppose the following properties hold:

1. f is `-cohomologically smooth for some ` 6= p.
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2. f is proper.

3. f : F → G is a X(O],+)-bundle locally trivial for the v-topology.

4. For any non-Archimedean field C ′ in characteristic 0 and any map t : Spa(C ′, OC′)→ G
there is a v-cover r : Spa(C ′′, OC′′) → Spa(C ′, OC′) such that G formalizes t ◦ r and
the base change F ×G O♦C′′ is isomorphic to X(O],+)×O♦

C
O♦C′′.

5. For any closed point x ∈ |Gred| the p-adic tubular neighborhood (Ĝ/x)η is connected.

6. Gred and F red are perfectly finitely presented (See [5] 3.10) over Spec(kC).

Then, for any closed point y ∈ |F red| the p-adic tubular neighborhood (F̂/y)η is also connected.

Proof. We observe that f is open and closed since it is `-cohomologically smooth and proper
(See [51] 23.11). Take a closed point y ∈ |F red| with x = f(y) and consider the map

f : (F̂/y)η → (Ĝ/x)η. Assume for the moment that given C ′ an arbitrary algebraically

closed non-Archimedean field and a map of the form Spa(C ′, OC′)→ (Ĝ/x)η the base change

(F̂/y)η×(Ĝ/x)η
Spa(C ′, OC′) is always non-empty and connected, we finish the proof under this

assumption. Observe that the map of topological spaces |(F̂/y)η| → |(Ĝ/x)η| is specializing,
and by assumption surjective on rank 1 points. Take two non-empty open and closed subsets
U and V with U∪V = |(F̂/y)η|. Then f(U)∪f(V ) = |(Ĝ/x)η| and consequently f(U)∩f(V ) 6=
∅. Since f is an open map f(U) and f(V ) must meet in a rank 1 point, this implies that U
and V also meet which finishes the proof under our assumption.

Let us prove our assumption holds. Take a map t : Spa(C ′, OC′) → (Ĝ/x)η and after re-
placing Spa(C ′, OC′) by a v-cover we can assume G formalizes the composition Spa(C ′, OC′)→
G and has the base change property of condition 4 with respect to the unique formalization
O♦C′ → G. We get a Cartesian diagram:

F̂/y ×G O♦C′ X(O],+)×O♦
C
O♦C′ O♦C′

F̂/y F G

After taking reduction functor of this diagram we get the following Cartesian diagram:

Z X × Spec(k′) Spec(k′)

Spec(k(y)) F red Gredy

Since F red → Gred is perfectly finitely presented and k is algebraically closed we have that k =
k(y) = k(x) and the composition y : Spec(k) → Gred is the closed immersion corresponding
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to the point x. Consequently Z → Spec(k′) is a closed immersion, therefore an isomorphism.
We have that

F̂/y ×G O♦C′ = X(O],+)OC′ ×F F̂/y = ̂(X(O],+)OC′ )/Z

by proposition 1.4.26. But Z → X × Spec(k′) is a closed point, so ( ̂X(O],+)OC′ /Z)η is

isomorphic to an open unit ball B<1
n over C ′], where n = dim(X) and C ′] is the untilt

determined by OC] . We have proved that the fibers are non-empty and connected.

2.2.4 Resolution of p-adic Beilinson-Drinfeld Grassmanians

In this subsection we discuss an analogue of the Demazure resolution for split reductive
groups in the context of v-sheaves (also known as Bott-Samelson resolution). We keep the
notation from the beginning of the previous subsection and we restrict our attention to
parahoric loop groups associated to points contained in our chosen alcove C. Given sj ∈ S
we denote by L+Hsj the parahoric loop group associated to the wall Fsj in C corresponding
to the reflection sj. For a point r ∈ C we let Jr ⊆ S denote the set {sj | r ∈ Fsj}. We will
denote by L+B the parahoric loop group associated C.

By functoriality of L(−) we can define a loop group version of the Weyl group by the
formula LW := LN/LT . We can also define the Iwahori-Weyl group as LW̃ := LN/L+T .
There is an exact sequence of v-sheaves in groups:

e→ LT/L+T → LW̃ → LW → e

One can prove by a direct computation that LW = L(N/T ) = W × O♦C and that
LT/L+T = X∗(T )× O♦C by using the Cartan decomposition. These two imply that LW̃ =

W̃ ×O♦C .
Since H is a split reductive group over W (k)[t, t−1], for any element w ∈ W we can find

a section nw : Spec(W (k)[t, t−1]) → N whose projection to W is w (See [10] 5.1.11). This
allow us to define a similar section nw : O♦C → LN ⊆ LH. Also for any µ ∈ X∗(T ) and
any Spa(R,R+)→ O♦C we can consider the element ξµ ∈ T (BdR(R])). This is functorial and
defines a section O♦C → LT mapping to µ ∈ X∗(T ) × O♦C . In particular, for any element

w̃ ∈ W̃ there is a section nw̃ : O♦C → LN projecting to w̃ in LW̃ . We can use nw̃ to construct
an automorphism nw̃ : GrH

O♦
C
→ GrH

O♦
C

with

nw̃(x · L+H) := nw̃ · x · L+H.

We will use this discussion in the proof of theorem 2.2.34.

Proposition 2.2.33. Let σ = (σr, σq) with σ as in the previous subsection except that we
require σr, σq ⊆ C. Suppose that L+Hqn = L+Hrn = L+H then the multiplication map
µ : D(σ)→ GrHOC = LH/L+H has geometrically connected fibers.

Proof. This proof follows the classical one. The key inputs are as follows, the basechange of
D(σ)→ O♦C by geometric points are proper spatial diamonds, rank 1 points are dense for any
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spatial diamond and the group of rank 1 geometric points of a parahoric loop group coincide
with the “parabolic subgroups” of a Tits-systems (or BN -pair). These two observations
together with ([51] 12.11) reduces the proof to the classical combinatorial case. Indeed,
properness (which includes quasi-compactness) will allow us to prove all surjectivity claims
at the level of rank 1 geometric points. We provide further details below for the convenience
of the reader.

Fix a geometric point Spa(C ′, OC′)→ O♦C , all of the objects considered in our argument
below are considered over Spa(C ′, OC′) but we omit the basechange from the notation. Let
us start by making some reductions, observe that since we are assuming that σq ⊆ C we have
L+B ⊆ L+Hqi so we get a surjective map:

D(τ) := L+Hr1

L+B
× . . .

L+B
× L+Hrn/L

+B → D(σ)

Surjectivity allows us to replace D(σ) for D(τ) so we may assume L+Hqi = L+B for all
i ≤ n. Now the flag varieties L+Hri,/L

+B admit a surjective map from a finite contracted
product of the form:

L+Hsj1 ,

L+B
× . . .

L+B
× L+Hsjm ,

/L+B → L+Hr1,/L
+B

Where sjk ∈ Jri and the product sj1 · · · · · sjm is a reduced expression for the longest word
in the finite Coxeter group generated by Jri . This lets us reduce to the case in which for all
i ≤ n, L+Hri = L+Hsj for some j. Moreover, in this case the map D(τ) → GrHC′ factors

through LH/L+B → GrHC′ which is a L+H/L+B-bundle.
We prove inductively that D(τ) → LH/L+B has connected geometric fibers. Write S(τ)

for the image of D(τ) in LH/L+B. The multiplication map factors as:

D(τ) = L+Hsj1 ,

L+B
× D(τ ′) → L+Hsj1 ,

L+B
× S(τ ′)→ S(τ)

If we assume inductively that the map D(τ ′) → S(τ ′) has connected geometric fibers, then

it suffices to prove that L+Hsj1 ,

L+B
× S(τ ′) → S(τ) also has connected geometric fibers.

Notice that by construction S(τ ′) ⊆ LH/L+B is a closed subsheaf that is stable under
the action of L+B. As in the classical case the L+B-orbits of geometric points in LH/L+B
are indexed W̃ . Given an element w ∈ W̃ we can consider C(w) the locally-closed subsheaf
of LH/L+B associated to this L+B-orbit and we can let S(w) =

⋃
w′≤w C(w′) where ’≤’

denotes the Bruhat order of the quasi-Coxeter system S ⊆ W aff ⊆ W̃ . We also assume in
our inductive hypothesis that S(τ ′) = S(w) for w ∈ W aff of the form w = sjk1

. . . sjkl where
sjk is a subsequence of elements in S of the sequence appearing in the definition of D(τ ′).

For the induction step we have two cases, either sj1 · w < w or sj1 · w > w. In the
first case we will have that the action of L+Hsj1

on LH/L+B stabilizes S(w) so that the
multiplication map

L+Hsj1

L+B
× S(w)→ S(w)
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decomposes as the composition of an isomorphism L+Hsj1

L+B
× S(w) → L+Hsj1

/L+B ×
S(w) followed by the second projection. In this case geometric fibers are isomorphic to
L+Hsj1 ,C

′′/L+BC′′
∼= (P1

C′′])
♦, and we have that S(τ) = S(τ ′) = S(w) which is of the form

assumed in our inductive hypothesis.
On the other hand, if sj1 · w > w we can consider the collection T of w′ < w for which

s · w′ < w′ we have that the multiplication map

L+Hsj1

L+B
× S(w) \

⋃
w′∈T

S(w′)→ S(sj1 · w) \
⋃
w′∈T

S(w′)

is an isomorphism while the map

L+Hsj1

L+B
×

⋃
w′∈T

S(w′)→
⋃
w′∈T

S(w′)

has geometric fibers as in the previous case since this set is also L+Hsj1
-stable. Moreover,

we have S(τ) = S(sj1 · w) which is again of the form assumed in our induction hypothesis,
this finishes inductive step and the proof.

Theorem 2.2.34. Let G be a quasi-split reductive group over W (k), T ⊆ B ⊆ G a Borel
and a maximal torus in G defined over W (k) and take a cocharacter µ ∈ X∗(T) defined over
an algebraic closure of W (k)[1

p
]. Let F be a non-Archimedean field extension of W (k)[1

p
]

containing E(µ) the reflex field of µ. We let OF the ring of integers of F and the residue
field kF , assume that F is complete for the p-adic topology and that kF is perfect. Then
GrG ,≤µ

O♦
F

is an rich p-adic kimberlite over O♦F . Moreover, the p-adic tubular neighborhoods of

GrG ,≤µ
O♦
F

at closed points are non-empty and connected.

Proof. In corollary 2.2.7 we show that GrG ,≤µ
O♦
F

is a p-adic kimberlite so the only thing left

to prove are the statements related to the structure of p-adic tubular neighborhoods. We
first prove the case in which F is a complete algebraically closed extension of W (k)[1

p
] which

we will denote instead by C. In this case G ×W (k) W (kC) is isomorphic to a split reductive

group, and since the functor GrG ,≤µ
O♦
C

only depends on the isomorphism class of GW (kC), we

may assume G = H with H split reductive. Furthermore, we discuss first the case in which
H is semisimple and simply connected, in this case W̃ = W aff .

Recall that we have inclusions X+
∗ (T) ⊆ X∗(T) ⊆ W̃ so we may think of µ as an

element of the Iwahori-Weyl group. By definition, GrH,≤µ
O♦
C

(R,R+) consists of those elements

in GrH
O♦
C

(R,R+) satisfying that for any geometric point q : Spa(C ′, C ′+) → Spa(R,R+) the

type of q, µq, is in the double coset

H(B+
dR(C ′]))\H(BdR(C ′]))/H(B+

dR(C ′])) = X+
∗ (T ) = Wo\W aff/Wo

satisfies that µq ≤ µ in the Bruhat order. Now given any element w ∈ W̃ we may consider
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the subsheaf GrG,≤w
O♦
C

⊆ GrG
O♦
C

given instead by the property that on a geometric point q :

Spa(C ′, C ′+)→ Spa(R,R+) the type of q, [wq], in the double coset

B(B+
dR(C ′]))\H(BdR(C ′]))/H(B+

dR(C ′])) = W aff/Wo

satisfies that [wq] ≤ [w] in the Bruhat order. The projection map π : W aff/Wo →
Wo\W aff/Wo is order preserving and π−1(µ) has a unique element [wµ] of largest length,
it has the property that v ≤ wµ if and only if π(v) ≤ µ. In particular, we have equalities

of sheaves Gr
H,≤wµ
O♦
C

= GrH,≤µ
O♦
C

. We prove that for any word w ∈ W aff the v-sheaf GrH,≤w
O♦
C

satisfies the conclusions of the theorem. If we find a reduced expression for w = sj1 . . . sjn
we can use the theory of BN-pairs to construct a Demazure kimberlite

D(w) := L+Hsj1

L+B
×O♦

C
. . . L+Hsjn

/L+H

for which the multiplication map m : D(w) → GrH
O♦
C

factors through GrH,≤w
O♦
C

and surjects

onto it at the level of rank 1 geometric points. But m is a proper map so that by ([51] 12.11)
it is actually a surjection of v-sheaves. Moreover, this also proves that GrH,≤w

O♦
C

is a closed

subsheaf of GrH
O♦
C

. Theorem 2.2.31 and proposition 2.2.33 combined with lemma 1.4.45 allow

us to conclude in this case.
Suppose now that H is an arbitrary split reductive group. In this case, µ ∈ W̃ can be

expressed as µ = (w, ω) with w ∈ W aff and ω ∈ ΩH for the decomposition W̃ = W affoΩH .
We may find a section nω : O♦C → LN projecting to (e, ω) in LW̃ , this section induces an

isomorphism between GrH,≤µ
O♦
C

and Gr
H,≤(w,e)

O♦
C

. But for any w ∈ W aff the v-sheaf Gr
H,≤(w,e)

O♦
C

admits a surjective map by a Demazure kimberlite as in the previous case.
Finally, let us deal with the general case in which F is not assumed to be algebraically

closed. Let C be the completion of an algebraic closure of F and F ′ the completion of the
maximal unramified subextension of F inside C. We have surjective maps of v-sheaves:

GrG ,≤µ
O♦
C

→ GrG ,≤µ
O♦
F ′
→ GrG ,≤µ

O♦
F

Lemma 1.4.45 implies that GrG ,≤µ
O♦
F

and GrG ,≤µ
O♦
F ′

are rich kimberlites. Moreover, we can infer by

proposition 1.4.26 that GrG ,≤µ
O♦
F ′

has connected p-adic tubular neighborhoods since we have an

identification (GrG ,≤µ
O♦
C

)red = (GrG ,≤µ
O♦
F ′

)red. On the other hand, the map GrG,≤µ
O♦
F ′
→ GrG ,≤µ

O♦
F

is a

π1
fét(Spec(OF ))-torsor and for any closed point x ∈ |GrG ,≤µ

O♦
F

red| the action of πfét1 (Spec(OF ))

will permute transitively the closed points y ∈ |GrG ,≤µ
O♦
F ′

red| over x. In particular, the action

permutes transitively the p-adic tubular neighborhoods associated to such y. This proves
that the tubular neighborhood over x is also connected.

We finish this section with the proof of theorem 1 which is just a rephrasing of theorem
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2.2.34 in less technical language. For the convenience of the reader we write the statement
again.

Theorem 2.2.35. With notation as in the introduction the following holds:

a) The specialization map
sp

GrG ,≤µ
O♦
F1

: |GrG,≤µ
F1

♦ | → |GrG ,≤µ
W,kF1

|

is a closed and spectral map of spectral topological spaces.

b) Given a closed point x ∈ |GrG ,≤µ
W,kF1

| let Tx := sp
GrG ,≤µ

O♦
F1

−1(x), then the interior T ◦x of Tx

in |GrG,≤µ
F1

♦ | is a dense subset of Tx.

c) Tx and T ◦x are connected.

Proof of theorem 1. We may apply theorem 2.2.34 and proposition 2.2.5 to the case in which
k = Fp to conclude that GrG ,≤µ

O♦
F1

is a rich p-adic kimberlite with generic fiber GrG,≤µ
F1

♦ and with

reduction GrG ,≤µ
W,kF1

. Since GrG ,≤µ
O♦
F1

is a kimberlite by proposition 1.4.20 the specialization map

sp
GrG ,≤µ

O♦
F1

: |GrG,≤µ
F1

♦ | → |GrG ,≤µ
W,kF1

|

is a spectral map of locally spectral spaces. Since GrG ,≤µ
O♦
F1

is rich, the map is surjective and

specializing, and since GrG,≤µ
F1

♦ is quasi-compact proposition 1.1.22 gives that the special-
ization map is closed, this finishes the proof of the first claim. For the second claim let

x ∈ |GrG ,≤µ
W,kF1

|, we can use proposition 1.4.29 to identify T ◦x with |(ĜrG ,≤µ
OF1 /x

)η|. Since GrG ,≤µ
OF1

is rich we can apply proposition 1.4.33 to prove that T ◦x is dense in Tx giving the second claim.
By 2.2.34 T ◦x is connected and since it is dense in Tx this later one is also connected.

2.3 Specialization for moduli of mixed characteristic

shtukas

For the rest of this section we will assume that k = Fp and that G is a reductive group over
Zp. We fix a torus and a Borel T ⊆ B ⊆ G . We fix f an algebraically closed field extension of
Fp and we let K0 = W (f)[1

p
], we fix an element b ∈ G (K0) and we let Gb : RepG

Zp → IsoCrysK0

denote the⊗-exact functor from the category of algebraic representations of G to the category
of isocrystals over K0 associated to b.

Definition 2.3.1. We define the moduli space of mixed characteristic shtukas associated to
Gb, which we denote by ShtGb

W (f), as the functor ShtGb
W (f) : Perf → Sets:

ShtGb
W (f)(R,R

+) = {(R], ι, f),T ,Φ, λ}/ ∼=
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Where (R], ι, f) denotes an untilt of R over Spa(W (f),W (f)), the pair (T ,Φ) is a shtuka as
in definition 2.1.22 and λ : T → Gb|YR+

[r,∞)
is an equivalence class of isogenies as in definition

2.1.23. Here Gb|YR+

[r,∞)
denotes the pullback along the natural map of locally ringed spaces

YR+

[r,∞) → Spec(K0) induced by f .

As with p-adic Beilinson-Drinfeld Grassmanians, moduli spaces of shtukas admit bounded
versions. Given a geometric point of our moduli Spa(C,C+)→ ShtGb

W (f) the torsor T can be

glued with Gb along YC+

[0,∞) to extend it to YC+ . This gives a G -torsor over YC+ by theorem

2.1.12. One can basechange this torsor to B+
dR(C]) where we can choose a trivialization of

τ : T → G . The morphism τ ◦Φ : φ∗T → G defines an element of G (BdR(C]))/G (B+
dR(C]))

whose image, µ(T ,Φ), in the double coset

G (B+
dR(C]))\G (BdR(C]))/G (B+

dR(C])) = X+
∗ (TQp)

does not depend on the choice of τ . We call µ(T ,Φ) the relative position of the shtuka at that
geometric point.

Definition 2.3.2. Let µ ∈ X+
∗ (TQp). We define the moduli space of mixed characteristic

shtukas associated to Gb and bounded by µ, which we denote by ShtGb,≤µ
W (f) , as the functor

ShtGb,≤µ
W (f) : Perf → Sets:

ShtGb,≤µ
W (f) (R,R+) = {(R], ι, f),T ,Φ, λ}/ ∼=

Where (R], ι, f) denotes an untilt of R over Spa(W (f),W (f)), the pair (T ,Φ) is a shtuka
whose relative position is point-wise bounded by µ in the Bruhat order and λ : T → Gb|YR+

[r,∞)

is an (equivalence class of) isogenies.

Remark 2.3.3. In definition 2.3.2, let E(µ) denote the reflex field of µ. Since G is reductive
over Zp, E(µ) is an unramified extension of Qp. Moreover, since f comes equipped with an
inclusion Fp → f we get an inclusion E(µ)→ W (f)[1

p
]. We are implicitly using this inclusion

of fields to compare the relative positions.

The purpose of this section is to prove that the ShtGb,≤µ
W (f) are rich p-smelted kimberlites

that have connected p-adic tubular neighborhoods.

2.3.1 Moduli spaces of shtukas are kimberlites

In this subsection we verify that the map ShtGb,≤µ
W (f) → W (f)♦ forms a p-smelted kimberlite.

We will need to define auxiliary spaces to simplify some of the arguments below:

Definition 2.3.4. We let LShtGb
W (f) denote the functor LShtGb

W (f) : Perf → Sets:

LShtGb
W (f)(R,R

+) = {(R], ι, f),M, λ}
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Where the triple (R], ι, f) denotes an untilt over Spa(W (f),W (f)), M ∈ G (W (R+)[ 1
ξ
R]

]) and

λ : GM → Gb is an equivalence class of isogenies defined over YR+

[r,∞] for some r. Here GM
denotes the tuple (G ,ΦM) with ΦM : φ∗G → G an isomorphism given by M and defined over
Spec(W (R+)[ 1

ξ
R]

]).

Notice that there is a natural map LShtGb
W (f) → ShtGb

W (f) given by restriction and assigning

(M,λ) 7→ (G ,ΦM , λ). We denote by W+G the sheaf in groups W+G (R,R+) = G (W (R+)),
notice that (W+G )OC = W+(G ⊗Zp Zp[t]) as in definition 2.2.14.

Proposition 2.3.5. 1. The functors ShtGb
W (f) and LShtGb

W (f) are small v-sheaves.

2. The map LShtGb
W (f) → ShtGb

W (f) is a W+G -torsor for the v-topology.

3. LShtGb
W (f) is formalizing and ShtGb

W (f) is v-formalizing.

Proof. To prove that it is a v-sheaf one has to prove that each of the entries descend.
A standard argument using 2.1.20 repeatedly proves this. Given N ∈ W+G (R,R+) and
(M,λ) ∈ LShtGb

W (f)(R,R
+) we let N · (M,λ) = (N−1Mφ(N), λ ◦ N). This specifies an

action of W+G on LShtGb
W (f) that makes the map LShtGb

W (f) → ShtGb
W (f) equivariant when the

target is endowed with the trivial action. It is enough to prove that the basechange of
LShtGb

W (f) → ShtGb
W (f) along product of points gives a trivial W+G -torsor.

Let Spa(R,R+) be a product of points, and take (T ,Φ, λ) ∈ ShtGb
W (f)(R,R

+). We can glue

T along λ over YR+

[r,∞) to extend to a G -bundle over YR+ , a meromorphic isomorphism Φ over

YR+ \ V (ξR]) and an isogeny λ over YR+

[r,∞]. We can use theorem 2.1.12 and theorem 2.1.18

to get a G -bundle over Spec(W (R+)) with a meromorphic Φ that restrict to the previous
ones. Since R+ is a product of valuation rings with algebraically closed fraction field any G -
bundle on Spec(W (R+)) is trivial. This is the case because Spec(W (R+)) splits every étale
cover. The choice of a trivialization specifies a section (M,λ) ∈ LShtGb

W (f)(R,R
+) and after

chasing definitions one can see that the natural action of W+G on the set of trivialization
acts compatibly with the action specified above.

We prove that LShtGb
W (f) is formalizing, this already implies that ShtGb

W (f) is v-formalizing

since the map LShtGb
W (f) → ShtGb

W (f) is surjective. Let Spa(S, S+) ∈ Perf, fix $S ∈ S+ a
pseudo-uniformizer and take

((S], ι, f),M, λ) ∈ LShtGb
W (f)(S, S

+)

Given a map f : Spa(L,L+) → Spd(S+, S+) we get a map of rings f : W (S+)[ 1
ξ
S]

] →
W (L+)[ 1

ξ
L]

], and we can let ML be f(M). Moreover, fix a pseudo-uniformizer $L ∈ L+, we

claim that for any such choice and for any r ∈ R there is a large enough r′ ∈ R for which
the following diagram is commutative:
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YL+

[r′,∞] YR+

[r,∞]

Spa(W (L+),W (L+)) Spa(W (S+),W (S+))

This map allows us to pullback the isogeny λ to Spa(L,L+). The equivalence class of
isogenies constructed this way does not depend of the choices of $S, $L, r or r′ and the
construction is functorial, so it defines a map Spd(S+, S+)→ LShtGb

W (f).

Moduli spaces of shtukas satisfy the valuative criterion for partial properness over W (f)♦

since the definition of all of the data involved (via Tannakian formalism) takes place in the
exact category of vector bundles over YR+

[0,∞) which is equivalent (by an exact equivalence) to

the category of vector bundles over YR◦[0,∞).

Lemma 2.3.6. Let G1 → G2 be a closed embeddings of reductive groups over Zp and Gb an

isocrystal with G1 structure. Let G ′b = Gb
G1

× G2, the induced map LShtGb
W (f) → LSht

G ′b
W (f) is a

closed immersion.

Proof. It is enough to prove that the basechange by any totally disconnected perfectoid space
is a closed immersion. Let Spa(S, S+) in Perf be totally disconnected, and let (M,λ) ∈
LSht

G ′b
W (f)(S, S

+). Abusing notation we let λ denote a choice of representative of the equiv-

alence class of isogenies and we let r ∈ R such that λ is defined over YS+

[r,∞]. By unraveling

the definitions we can think of M as a ring map OG2 → W (S+)[ 1
ξ
S]

] and we think of λ as a

ring map OG2 → B
[r,∞]

S+ (with the notation as in lemma 2.1.24). Since G1 → G2 is a closed
embedding of affine algebraic groups we have that OG1 = OG2/I for some finitely generated
ideal I ⊆ OG2 . The basechange

Spa(S, S+)×
LSht

G ′
b

W (f)

LShtGb
W (f)

is representing the moduli of maps Spa(R,R+)→ Spa(S, S+) for which the compositions:

M : OG2 → W (S+)[
1

ξS]
]→ W (R+)[

1

ξR]
]

λ : OG2 → BS+

[r,∞] → BR+

[r,∞]

map elements of I to 0.
Let us prove that for any element t ∈ W (S+)[ 1

ξ
S]

] (or t ∈ B[r,∞]

S+ ) the moduli of points in

Spa(S, S+) where t is identically 0 forms a closed immersion. Fix t ∈ W (S+)[ 1
ξ
S]

], since ξS]

is not a zero-divisor the moduli of points where t is 0 is the same as that of ξn · t so we may
assume t ∈ W (S+). Using the Teichműller expansion we have t ∈ (S+)N and t is 0 if and only
if each entry is 0. This defines a Zariski closed subset of Spa(S, S+). We prove the other case,

fix t ∈ B[r,∞]

S+ ⊆ B
[r,∞)

S+ and let Z ⊆ |YR+

[r,∞)| be the set of valuations with |t|z = 0. We have a
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projection map of diamonds π : (YS+

[r,∞))
♦ → Spd(S, S+) which is `-cohomologically smooth

and consequently universally open (See [51] 24.5). The moduli of points we are considering
is given by maps to Spa(S, S+) that factor through Z ′ = |Spa(S, S+)| \ π(|YR+

[r,∞)| \Z) which
is a closed subset. Since the subset of interest is closed and generalizing, it defines a closed
immersion of Spa(S, S+) (See [51] 7.6).

Proposition 2.3.7. With notation as in lemma 2.3.6 the map ShtGb
W (f) → Sht

G ′b
W (f) is a closed

immersion. In particular, if we let G2 = G1 ×Zp G1 and we apply the result to the diagonal

embedding ∆ : G1 → G2 we deduce that ShtGb
W (f) is separated over W (f)♦.

Proof. We begin by proving that the map is injective. For this consider two sets of triples

ti = (Ti,Φi, λi) ∈ ShtGb
W (f)(R,R

+)with i ∈ {1, 2}

and suppose that the ti
G1

×G2 := (Ti

G1

×G2,Φi, λi) become isomorphic, we need to prove t1 ∼= t2.
Since products of points form a basis for the v-topology we can assume Spa(R,R+) to be a
product of points. For a product of points any map Spa(R,R+) → ShtGb

W (f) factors through

LShtGb
W (f) → ShtGb

W (f). Let Ti ∈ LShtGb
W (f)(R,R

+) factoring ti with Ti := (Mi, λi). The set of

choices for Ti mapping to ti forms a W+G1(R,R+)-torsors. Since t1
G1

× G2
∼= t2

G1

× G2 we have

that T1

G1

× G2 and T2

G1

× G2 are in the same W+G2(R,R+)-orbit. But λi ∈ G1(B
[r,∞)

R+ ) so that

λ1 ◦ λ−1
2 ∈ G1(B

[r,∞)

R+ ) ∩ G2(W (R+)), since W (R+) → B
[r,∞)

R+ is injective this intersection is
G1(W (R+)). This, together with the injectivity of lemma 2.3.6, proves that T1 and T2 are in
the same W+G1-orbit, which proves t1 = t2.

Once we know ShtGb
W (f) → Sht

G ′b
W (f) is injective it is enough prove that the map is proper

for it to be a closed immersion. Injectivity implies the map is a separated map of v-sheaves
and since each of them satisfies the valuative criterion of partial properness over F♦p , the
map between them is a partially proper map. We only have left to prove that the map

ShtGb
W (f) → Sht

G ′b
W (f) is quasi-compact. Consider the following commutative diagram:

LShtGb
W (f) LSht

G ′b
W (f)

ShtGb
W (f) Sht

G ′b
W (f)

The composition LShtGb
W (f) → Sht

G ′b
W (f) is a quasi-compact map, and the map LShtGb

W (f) →
ShtGb

W (f) is surjective which formally implies that the map ShtGb
W (f) → Sht

G ′b
W (f) is quasi-compact.

Proposition 2.3.8. For any µ ∈ X+
∗ (TQp) we have that ShtGb,≤µ

W (f) → ShtGb
W (f) is a closed

immersion. Moreover, ShtGb,≤µ
W (f) is v-formalizing.
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Proof. Let LShtGb,≤µ
W (f) denote the basechange of LShtGb

W (f) → ShtGb
W (f) by ShtGb,≤µ

W (f) . Given an

element (M,λ) ∈ LShtGb
W (f)(R,R

+), M naturally defines an (R,R+)-valued point of GrG
W (f)

when we think of M as an element of G (BdR(R])).
We have the following pair of Cartesian diagrams:

LShtGb,≤µ
W (f) LShtGb

W (f) LShtGb,≤µ
W (f) LShtGb

W (f)

GrG ,≤µ
W (f) GrG

W (f) ShtGb,≤µ
W (f) ShtGb

W (f)

Since being a closed immersion can be checked v-locally on the target (See [51] 10.11), and
since LShtGb

W (f) → ShtGb
W (f) is surjective ShtGb,≤µ

W (f) → ShtGb
W (f) is a closed immersion. Moreover,

by 2.2.5 the map GrG ,≤µ
W (f) → GrG

W (f) is formally adic which implies that LShtGb,≤µ
W (f) is formalizing

and consequently that ShtGb,≤µ
W (f) is v-formalizing.

In what follows we will prove that the functors (ShtGb,≤µ
W (f) )red are represented by affine

Deligne Lusztig varieties. We warn the reader that the definition that we take of affine
Deligne Lusztig varieties is not the standard one. Nevertheless, it is well known and easy to
establish that the definition we take defines the same objects as the standard definition.

Definition 2.3.9. Let Gb be an isocrystal with G -structure and µ : Gm,Q → TQp a cocharac-

ter. We define the v-sheaf XGb
≤µ : PCAlgop/f → Sets as:

XGb
≤µ(R) = {(T ,Φ, λ)}/ ∼=

Where T is a G -torsor over Spec(W (R)), Φ : φ∗T → T is an isomorphism defined over
Spec(W (R)[1

p
]) of relative position bounded by µ and λ : T → Gb is a φ-equivariant isomor-

phism over Spec(W (R)[1
p
])

Proposition 2.3.10. We have an identification XGb
≤µ = (ShtGb,≤µ

W (f) )red. Moreover, the map

(XGb
≤µ)♦ → ShtGb,≤µ

W (f) is injective and ShtGb,≤µ
W (f) is a specializing v-sheaf.

Proof. Given a map Spec(R)→ XGb
≤µ we construct functorially a map Spec(R)♦ → ShtGb,≤µ

W (f)

in what follows. The untilt is always the characteristic p untilt. For any perfectoid space
f : Spa(S, S+) → Spec(R)♦ we get a triple (f ∗T , f ∗Φ, f ∗λ) coming from the map of rings
f : W (R)→ W (S+) and by restriction to the appropriate loci YS+

[0,∞), YS
+

[0,∞) \V (p) and YS+

[r,∞)

respectively. This data defines functorially a map Spa(S, S+) → ShtGb,≤µ
W (f) , consequently a

map Spec(R)♦ → ShtGb,≤µ
W (f) . The construction of Spec(R)♦ → ShtGb,≤µ

W (f) is clearly functorial

in PCAlgop/k. By adjunction, this gives a map XGb
≤µ → (ShtGb,≤µ

W (f) )red, we claim this map is an
isomorphism.
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We begin by proving it is injective, since XGb
≤µ is represented by a perfect scheme

((XGb
≤µ)♦)red = XGb

≤µ

and we may prove that the map (XGb
≤µ)♦ → ShtGb,≤µ

W (f) is injective instead. Take two arbitrary

maps gi : Spa(R,R+)→ (XGb
≤µ)♦, it is enough to prove injectivity v-locally so we may assume

the maps factor through maps of the form g′i : Spec(R+)♦ → (XGb
≤µ)♦. The g′i are given by

data (Ti,Φi, λi) over Spec(W (R+)), Spec(W (R+)[1
p
]) and Spec(W (R+)[1

p
]) respectively and

the gi are given by restricting these data to YR+

[0,∞), YR
+

[0,∞) \ V (p) and YR+

[r,∞) respectively.
Nevertheless, we can recover g′i from gi since we can use λi to glue back the restricted data
as in the proof of proposition 2.3.5.

Let us now prove surjectivity. Let f : Spec(A)♦ → ShtGb,≤µ
W (f) and g : Spa(R,R+) →

Spec(A)♦ be a map with Spa(R,R+) a product of points and A ∈ PCAlgop/f . We will show
below how to construct the following commutative diagram:

Spa(R,R+) Spec(A)♦

(XGb
≤µ)♦ ShtGb,≤µ

W (f)

Since products of points are a basis for the topology, and since (XGb
≤µ)♦ → ShtGb,≤µ

W (f) is injective

this defines a map Spec(A)♦ → (XGb
≤µ)♦ factoring our original map to ShtGb,≤µ

W (f) and proves
the desired surjectivity.

Fix a pseudo-uniformizer $ ∈ R+, we let Spa(R∞, R∞
+) be a second product of points

defined as follows: R+
∞ =

∏∞
i=1R

+ with pseudo-uniformizer now given by $R∞ = ($i)∞i=1.
The product of points Spa(R∞, R∞

+) comes equipped with a family of closed embeddings
ιi : Spa(R,R+)→ Spa(R∞, R∞

+) given in coordinates by the projection onto the ith-factor.
The diagonal ring map ∆g : A →

∏∞
i=1R

+ induces a map ∆g : Spa(R∞, R∞
+) → Spec(A)♦

with the property that ∆g ◦ ιi = g for every i. Since Spa(R∞, R∞
+) is a product of points,

by proposition 2.1.19, the map f ◦∆g can be represented by a triple (GR∞ ,ΦR∞ , λR∞) with
GR∞ trivial. After choosing a trivialization for GR∞ we can think of λR∞ as a ring map

OG → BR∞+

[r,∞] . Moreover, since f ◦∆g ◦ ιi = f ◦∆g ◦ ιj we have that for all i the composition

λi : OG → BR∞+

[r,∞] → B
R+
i

[ri,∞] = BR+

[ri,∞]

lies in the same G (W (R+))-orbit. Clearly G (W (R∞
+)) =

∏∞
i=1 G (W (R+)) so after a change

of trivialization we may assume that ri = rj and that λi = λj =: λR for all 1 ≤ i, j <∞. We
claim that λR factors through the inclusion of rings W (R+)[1

p
] ⊆ BR+

[r,∞]. Take an element

t ∈ OG and consider s = λR∞(t) ∈ BR∞+

[r,∞] , after replacing r by a larger number if necessary we

may assume r = n ∈ N. In particular, pk · s lies in the p-adic completion of W (R∞
+)[

[$R∞ ]

pn
]

for some large enough k ∈ N. Let us write pk · s as
∑∞

j=0 x
n(j)[αj]p

j where x denotes
[$R∞ ]

pn
,

107



0 ≤ n(j) is a multiplicity, and αj ∈ R+
∞. We have that ιi(p

k · s) =
∑∞

j=0( [$]i

pn
)n(j)[ιi(αj)]p

j

with ιi(αj) ∈ R+. In particular,

pk · λR(t) ∈
⋂
i∈N

(H0(YR+

[n
i
,∞],O+)),

but this intersection is W (R+) proving the claim.
Since the elements of the triple (GR∞ ,ΦR∞ , λR∞) are defined over Spec(W (R+)) and

Spec(W (R+)[1
p
]) they define a map to Spec(R+) → XGb

≤µ. The composition Spa(R,R+) →
Spec(R+)♦ → (XGb

≤µ)♦ gives the factorization we were looking for.

That ShtGb,≤µ
W (f) is formally separated follows from lemma 1.3.32 and proposition 2.3.7, that

ShtGb,≤µ
W (f) is v-formalizing follows from proposition 2.3.8.

Lemma 2.3.11. The adjunction map (XGb
≤µ)♦ → ShtGb,≤µ

W (f) arising from the identification of
proposition 2.3.10 is a closed immersion.

Proof. We will use that XGb
≤µ admits a closed immersion into the Witt vector Grassmanian

GrG ,
W,f. We have that

(XGb
≤µ)♦ =

⋃
ν∈X∗(TQp

)

(XGb
≤µ ∩Gr

G ,≤ν
W,f )♦

and since each of this subsheaves are coming from a perfectly finitely presented proper scheme
over f, they are proper as v-sheaves over f♦. Consequently, the map (XGb

≤µ ∩ Gr
G ,≤ν
W,f )♦ →

ShtGb,≤µ
W (f) is proper and since it is injective a closed immersion.

Now, XGb
≤µ is a scheme which is locally perfectly of finite type (See [18] theorem 1.1),

and in particular each point admits an open neighborhood that is spectral and Noetherian
as a topological space. Using a compactness argument in the patch topology, to every
point x ∈ |XGb

≤µ| we may associate an open neighborhood Ux ⊆ XGb
≤µ and finite number of

νi ∈ X+
∗ (TQp) for which U = U ∩ (

⋃
i∈Ix Gr

G ,≤νi
W,f ). Indeed, if Ux is Noetherian every closed

subset is open in the constructible topology.
In proposition 2.3.10, we proved that ShtGb,≤µ

W (f) is a specializing v-sheaf, so by propo-

sition 1.4.15 we get a specialization map sp
Sht

Gb,≤µ
W (f)

: |ShtGb,≤µ
W (f) | → |XGb

≤µ|. We let Vx =

(sp
Sht

Gb,≤µ
W (f)

)−1(Ux) for x ∈ |XGb
≤µ| and Ux as above, this forms an open cover of ShtGb,≤µ

W (f) . Since

being a closed immersion is v-local on the target and Vx → ShtGb,≤µ
W (f) is a formally adic open

immersion it is enough to verify that (V red
x )♦ → Vx is a closed immersion. But the adjunction

map (Ux)
♦ → Vx fits in the following Cartesian diagram:
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U♦x U♦x Vx

(
⋃
i∈Ix Gr

G ,≤νi
W,f ∩X

Gb
≤µ)♦ (XGb

≤µ)♦ ShtGb,≤µ
W (f)

Id

Since the union of a finite number of closed immersions still defines a closed immersion we
can conclude by basechange that U♦x → Vx is also a closed immersion.

Proposition 2.3.12. With the notation as above the map ShtGb,≤µ
W (f) → W (f)♦ is a p-smelted

kimberlite as in definition 1.4.18.

Proof. Proposition 2.3.10 proves that ShtGb,≤µ
W (f) is a specializing v-sheaf, in proposition 2.3.10

we proved that (ShtGb,≤µ
W (f) )red is represented by a scheme and by lemma 2.3.11 the adjunction

map ((ShtGb,≤µ
W (f) )red)♦ → ShtGb,≤µ

W (f) is a closed immersion which finished the proof that ShtGb,≤µ
W (f) is

prekimberlite. Theorem 23.1.4 of [53] proves that (ShtGb,≤µ
W (f) )η is a locally spatial diamond.

2.3.2 Comparison of tubular neighborhoods

Recall that in this section G is a reductive group over Spec(Zp), letD = (D,ΦD) be a G -torsor
over Spec(W (f)) together with an isomorphism ΦD : φ∗D → D defined over Spec(W (f)[1

p
]),

and fix µ ∈ X+
∗ (TQp). We can define some objects associated to this data, which are nothing

but “coordinate-free” versions of the moduli we defined in the previous sections:

Definition 2.3.13. 1. We denote the functor GrDW (f) : Perf f → Sets with

GrDW (f)(R,R
+) = {((R], ι, f),T , ψ)}/ ∼=

Where (R], ι, f) is an untilt over W (f), T is a G -torsor over YR+ and ψ : T → D is
an isomorphism defined over YR+ \ V (ξR]) that is meromorphic along ξR].

2. We denote the functor ShtDW (f) : Perf f → Sets with

ShtDW (f)(R,R
+) = {((R], ι, f),T ,Φ, λ)}/ ∼=

Where (R], ι, f) is an untilt over W (f), (T ,Φ) is a shtuka with G -structure, and λ :
T → D is an isogeny.

The functors GrDW (f) and ShtDW (f) come with a canonical section canD : Spec(f)♦ → GrDW (f)

given by the data (φ∗D,ΦD) and canD : Spec(f)♦ → ShtDW (f) given by (D,ΦD, Id) respectively.

We point out that if we fix an isomorphism τ : D → G we get isomorphisms τ : GrDW (f) →
GrG

W (f), and τ : GrD,≤µW (f) → GrG ,≤µ
W (f) . Moreover, if we are given a section σ : Spec(f)♦ → GrG

W (f)

we can construct a pair (D,ΦD) and an isomorphism τ : D → G such that the following
diagram is commutative:
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GrDW (f)

Spec(f)♦

GrG
W (f)

τ

canD

σ

Analogously, if we find a φ-equivariant isomorphism τ : D → Gb over Spec(W (f)[1
p
]) we

get an isomorphism τ : ShtD,≤µW (f) → ShtGb,≤µ
W (f) , and given a section σ : Spec(f)♦ → ShtGb

W (f) we

can construct (D,ΦD) and τ making the following diagram commutative:

ShtDW (f)

Spec(f)♦

ShtGb
W (f)

τ

canD

σ

Since f is algebraically closed every tubular neighborhood of Grassmanians and moduli of
mixed characteristic shtukas at closed points are coming from the canonical one associated
to some pair (D,ΦD). Indeed, every closed point of XGb

≤µ and GrG
W,f is the image of a section

since the bounded version of these ind-schemes are locally perfectly of finite presentation
over Spec(f).

Theorem 2.3.14. Given (D,ΦD) and µ ∈ X∗(TQp) as above, and with notation as below we

have a local model diagram:

L̂Sht≤µD = L̂Gr≤µD

ŜhtD,≤µW (f) /canD
ĜrD,≤µW (f) /canD

Moreover, both arrows are L̂GD-torsors. In particular, ŜhtD,≤µW (f) /canD
is non-empty and con-

nected if and only if ĜrD,≤µW (f) /canD
is.

Before proving the theorem we will need some preparation.

Definition 2.3.15. 1. We let L̂GD denote the sheaf of groups over W (f)♦ given by

L̂GD(R,R+) = {((R], ι, f), g)}.
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Where (R], ι, f) is an untilt over W (f) and g : D → D is an automorphism of G -
torsors defined over Spec(W (R+)) for which there is a pseudo-uniformizer $g ∈ R+,
depending of g, such that g restricts to the identity over Spec(W (R+)/[$g]). We define

L̂Gφ∗D in a similar way exchanging the role of D for that of φ∗D.

2. We let L̂GrD be the v-sheaf over W (f)♦ assigning

L̂GrD(R,R+) = {(R], ι, f),T , ψ, σ}/ ∼=

Where (R], ι, f) is an untilt over W (f), T is a G -torsor over Spec(W (R+)), ψ : T →
D is an isomorphism over Spec(W (R+)[1

ξ
]) and σ : T → φ∗D is an isomorphism of G -

torsors over Spec(W (R+)) such that there is a pseudo-uniformizer $ ∈ R+ depending
on the data for which ΦD ◦ σ = ψ when restricted to Spec(W (R+)/[$]). We may also

add a boundedness condition on ψ to obtain L̂Gr≤µD .

3. We let L̂ShtD be the v-sheaf over W (f)♦ assigning

L̂ShtD(R,R+) = {(R], ι, f),T ,Φ, λ, σ}/ ∼=

Where (R], ι, f) is an untilt over W (f), T is a G -torsor over Spec(W (R+)), Φ :
φ∗T → T is an isomorphism over Spec(W (R+)[1

ξ
]), λ : T → D is an isogeny over

YR+

[r,∞] and σ : T → D is an isomorphism of G -torsors over Spec(W (R+)) such that

there is a pseudo-uniformizer $ ∈ R+ depending on the data for which σ = λ when
restricted to Spec(BR+

[r,∞]/[$]). We may also add a boundedness condition on Φ to

obtain L̂Sht≤µD .

Standard arguments using proposition 2.1.20 will prove that the objects in definition
2.3.15 are v-sheaves. Notice though, that the category of vector bundles over Spec(W (R+))
fibered over Perf does not form a stack for the v-topology. Nevertheless, the category fibered
over Perf that assigns to Spa(R,R+) the category of pairs (T , σ) where T is a G -torsor
over Spec(W (R+)) and σ : T → G is a trivialization does form a stack for the v-topology
on Perf.

There is a natural map L̂GrD → GrDW (f) that takes a triple (T , ψ, σ) and assigns the pair

(T , ψ) restricted to YR+

[0,∞) and YR+

[0,∞) \ V (ξ) respectively. This map is L̂Gφ∗D-equivariant

when we consider the left action L̂Gφ∗D × L̂GrD → L̂GrD sending an element (g, (T , ψ, σ))

to (T , ψ, g ◦ σ) and GrDW (f) is given the trivial L̂Gφ∗D-action.

Lemma 2.3.16. The natural map L̂GrD → GrDW (f) factors through ĜrDW (f)/canD
. Moreover,

the map L̂GrD → ĜrDW (f)/canD
is a L̂Gφ∗D-torsor.

Proof. We begin by proving that L̂GrD formalizes any map coming from an affinoid per-
fectoid space Spa(A,A+). Indeed, take a map Spa(A,A+) → L̂GrD given by an untilt
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and a triple (T , ψ, σ) and take a map f : Spa(B,B+) → Spd(A+, A+), we have to define

functorially a map Spa(B,B+) → L̂GrD. We can construct an untilt for B functorially
as in lemma 1.4.8. We have a map of affine schemes f : Spec(W (B+)) → Spec(W (A+))
along which we can pullback to get the triple (f ∗T , f ∗ψ, f ∗σ) where in this case f ∗T is
a G -torsor over Spec(W (B+)), f ∗ψ : f ∗T → D is an isomorphism over Spec(W (B+)[ 1

f(ξ)
]

and f ∗σ : f ∗T → φ∗D is an isomorphism over Spec(W (B+)). We need to verify that this
triple satisfies the constraints. Take a pseudo-uniformizer $A ∈ A+ for which ΦD ◦ σ = ψ in
Spec(W (A+)/[$A]). By continuity, f($A) is topologically nilpotent and there is a pseudo-
uniformizer $B ∈ B+ with f($A) = $B · t for some t ∈ B+. We have ΦD ◦ f ∗σ = f ∗ψ over
Spec(W (B+)/[$B]) proving the constraint holds.

To prove that L̂GrD → GrDW (f) factors through ĜrDW (f)/canD
it is enough to prove that for

any map Spd(R+, R+) → L̂GrD the map of reductions (Spd(R+, R+))red = Spec(R+
red)♦ →

(GrDW (f))
red factors through the canonical map canD : Spec(f)♦ → (GrDW (f))

red. After restrict-

ing the data (T , ψ, σ) to Spec(W (R+
red)) we get the identity ΦD ◦σ = ψ. After pullback, the

map Spec(R+
red)♦ → GrDW (f) is given by the tuple (T , ψ). Since this data is isomorphic via σ

to (φ∗D,ΦD), the map factors through canD : Spec(f)♦ → GrDW (f).

We now prove that L̂GrD → ĜrDW (f)/canD
is surjective. It is enough to prove this for a

product of points which we denote Spa(R,R+), with pseudo-uniformizer $ ∈ R+. In this
case, by proposition 2.1.19, a (R,R+)-valued point is given by (T , ψ) with T defined over
Spec(W (R+)) and ψ : T → D defined over Spec(W (R+)[1

ξ
]), with the additional condition

that (T , ψ) is isomorphic to (φ∗D,ΦD) when restricted to W (R+
red) and W (R+

red)[1
p
]. Such an

isomorphism σred : (T , ψ)→ (φ∗D,ΦD) is unique and has to be given by σred = Φ−1
D ◦ ψred,

since it has to satisfy the commutative diagram:

T

D

φ∗D

ψ

σred

ΦD

The morphism σ̃ = Φ−1
D ◦ ψ : T → φ∗D is defined over YR+

[r,∞] for r sufficiently big (so

that it avoids V (ξ)) and it restricts to σred. We can use lemma 2.1.25 to construct an
isomorphism σ : T → φ∗D such that σ = σ̃ when restricted to Spec(BR+

[r,∞]/[$
′]) for some

pseudo-uniformizer $′ ∈ R+. In particular ΦD ◦ σ = ψ over Spec(W (R+)/[$′]). The data

(T , ψ, σ) constructs a map Spa(R,R+) → L̂GrD which evidently composes to the original

map Spa(R,R+)→ ĜrDW (f)/canD
.

Finally, we need to prove L̂GrD ×GrDW (f)
L̂GrD ∼= L̂Gφ∗D ×W (f)♦ L̂GrD. Take two sets of
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data (Ti, ψi, σi) over Spa(A,A+) and suppose that

(T1|YA+ , ψ1|YA+\V (ξ)) ∼= (T2|YA+ , ψ2|YA+\V (ξ)).

The isomorphism must be given by ψ−1
1 ◦ ψ2 : T2 → T1 and by the fully-faithfulness part

of theorem 2.1.15 the isomorphism extends over Spec(W (A+)). Moreover, we can define
g = σ1 ◦ ψ−1

1 ◦ ψ2 ◦ σ−1
2 : φ∗D → φ∗D. By hypothesis, σ1 ◦ ψ−1

1 = Φ−1
D and ψ2 ◦ σ−1

2 = ΦD on
Spec(W (A+)/[$A] for some suitable choice of pseudo-uniformizer $A ∈ A+. Consequently

we can associate to the original data the tuple (g,T2, ψ2, σ2) ∈ L̂Gφ∗D ×W (f)♦ L̂GrD(A,A+).

On the other hand, to a tuple (g,T , ψ, σ) the action of L̂Gφ∗D associates the pair of tuples
(T , ψ, g ◦σ) and (T , ψ, σ). Since these two constructions are functorial and compose to the
identity they define isomorphisms.

For moduli spaces of shtukas we have a very similar story. We have a projection map

π : L̂ShtD → ShtDW (f), which we can construct by assigning to a tuple (T ,Φ, λ, σ) the

tuple (T |YR+

[0,∞)
,Φ|YR+

[0,∞)
\V (ξ)

, λ). Moreover, this projection is L̂GD-equivariant when we endow

L̂ShtD with the left action L̂GD × L̂ShtD → L̂ShtD sending the tuple (g, (T ,Φ, λ, σ)) to the
tuple (T ,Φ, λ, g ◦ σ) and when ShtDW (f) is given the trivial action.

Lemma 2.3.17. The natural map L̂ShtD → ShtDW (f) factors through ŜhtDW (f)/canD
. Moreover,

the map L̂ShtD → ŜhtDW (f)/canD
is a L̂GD-torsor.

Proof. The proves that L̂ShtD formalizes any map Spa(A,A+)→ L̂ShtD with Spa(A,A+) ∈
Perf, that the map L̂ShtD → ShtDW (f) factors through ŜhtDW (f)/canD

and that this later map is

surjective in that locus follow very similar arguments to those given in the proof of lemma
2.3.16. We omit the details.

Let us prove that L̂ShtD ×ShtDW (f)
L̂ShtD ∼= L̂GD ×W (f)♦ L̂ShtD. Take two sets of data

(Ti,Φi, λi, σi) over Spa(A,A+) and suppose that

(T1|YA+

[0,∞)
,Φ1|YA+

[0,∞)
\V (ξ)

, λ1) ∼= (T2|YA+

[0,∞)
,Φ2|YA+

[0,∞)
\V (ξ)

, λ2).

The isomorphism must be the unique lift of λ−1
1 ◦ λ2 : T2 → T1 to YA+

[0,∞). Glueing along the

λi we can also define a lift to YA+ . Since the Ti are defined over Spec(W (A+)) and by the
fully-faithfulness part of theorem 2.1.15 the isomorphism extends to Spec(W (A+). Moreover,
we can define g = σ1 ◦ λ−1

1 ◦ λ2 ◦ σ−1
2 : D → D. By hypothesis, σ1 ◦ λ−1

1 = Id = λ2 ◦ σ−1
2 over

Spec(BA+

[r,∞]/[$A]) for some suitable choice of pseudo-uniformizer $A ∈ A+. Consequently

we can associate to the original data the tuple (g,T2,Φ2, λ2, σ2) ∈ L̂GD×W (f)♦ L̂ShtD(A,A+).
The action map gives back isomorphic data.

We can now prove the theorem.
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Proof. (of theorem 2.3.14). For this proof we define ϕ to be the inverse of Frobenious, ϕ =

φ−1. We begin by observing there is an isomorphism θ : L̂GD → L̂Gφ∗D given by sending

g ∈ L̂GD(R,R+) with g : D → D to φ∗g : φ∗D → φ∗D. By definition of L̂GD, there is a
pseudo-uniformizer $g ∈ R+ for which g = Id in Spec(W (R+)/[$g]). One can verify that

φ∗g = Id in Spec(W (R+)/[$p]) so that φ∗g ∈ L̂Gφ∗D the inverse of this group homomorphism

is of course given by sending h ∈ L̂Gφ∗D(R,R+) to ϕ∗h. Using θ one can then endow L̂GrD
with a L̂GD action for which the projection π : L̂GrD → GrDW (f) of lemma 2.3.16 is a L̂GD-
torsor.

In what follows we construct an isomorphism L̂GrD → L̂ShtD. Take a perfectoid Huber
pair (A,A+) and tuple (T , ψ, σ) ∈ L̂GrD(A,A+). Consider the G -torsor ϕ∗T , and consider
the map Φ : T → ϕ∗T defined by Φ = (ϕ∗σ)−1 ◦ψ. We now construct a φ-equivariant map
λ : ϕ∗T → D. Consider the following (non-commutative!!!) diagram:

T φ∗D

ϕ∗T D

σ

Φ ΦD

ϕ∗σ

Each of the arrows of the diagram is defined over YA+

[r,∞] for big enough r avoiding V (ξ).

Moreover, by hypothesis there is a pseudo-uniformizer $ ∈ A+ for which ψ = ΦD ◦ σ over
Spec(W (R+)/[$]). We can see that ϕ∗σ◦Φ = ΦD ◦σ over Spec(BA+

[r,∞]/[$]) and in particular
the morphism ϕ∗σ : ϕ∗T → D is φ-equivariant over this locus. By lemma 2.1.27 there is
a unique isogeny over YA+

[r,∞] denoted λ : ϕ∗T → D such that λ = ϕ∗σ when restricted to

Spec(BA+

[r,∞]/[$]). We can associate to our original data:

(T , ψ, σ) 7→ (ϕ∗T ,Φ, λ, ϕ∗σ)

This construction is functorial when we let (A,A+) vary by the uniqueness of λ. This gives

a map Θ : L̂GrD → L̂ShtD. Moreover, we have g · (ϕ∗T ,Φ, τ, ϕ∗σ) = (ϕ∗T ,Φ, τ, g ◦ ϕ∗σ)

and g · (T , λ, σ) = (T , λ, φ∗g ◦ σ) so the map Θ is L̂GD-equivariant.

We construct explicitly the inverse Θ−1. Given a tuple (T ,Φ, λ, σ) ∈ L̂ShtD(A,A+) we
can assign:

(T ,Φ, λ, σ) 7→ (φ∗T , σ ◦ Φ, φ∗σ)

this construction is clearly functorial in (A,A+), and if $A ∈ A+ is such that λ = σ over
BA+

[r,∞]/[$A] then ΦD ◦ φ∗σ = σ ◦ Φ over Spec(W (A+)/[$A]) since λ is φ-equivariant. This

gives a map Ω : L̂ShtD → L̂GrD the composition Ω ◦ Θ is clearly the identity. One can
verify directly that Θ ◦ Ω(T ,Φ, λ, σ) = (T ,Φ, λ′, σ) for some λ′ nevertheless λ′ = σ = λ
over BA+

[r,∞]/[$] as φ-equivariant maps for some $ ∈ A+. By the uniqueness part of lemma
2.1.27 we have λ = λ′.

One can also verify directly by the construction of Θ that it preserves the boundedness
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condition so that Θ : L̂Gr≤µD → L̂Sht≤µD is also an isomorphism. Finally, we have

π0(ŜhtD,≤µW (f) /canD
) = π0(L̂Sht≤µD ) = π0(L̂Gr≤µD ) = π0(ĜrD,≤µW (f) /canD

)

since the v-sheaf in groups L̂GD is connected.

Let us prove that moduli spaces of mixed characteristic shtukas are rich p-smelted kim-
berlites.

Theorem 2.3.18. With the notation as in the beginning of this section we have that the map
ShtGb,≤µ

W (f) → W (f)♦ forms a rich p-smelted kimberlite with connected p-adic tubular neighbor-
hoods.

Proof. Proposition 2.3.12 proves this map forms a p-smelted kimberlite. In [53] 23.3.3 it is
proven that the period morphism ShtGb,≤µ

W (f) → GrG ,≤µ
W (f) is étale. By proposition 1.4.34 and

theorem 2.2.34 we know that ShtGb,≤µ
W (f)[ 1

p
]

is a cJ-diamond.

By theorem 1.1 of [18] we know that XGb
≤µ is locally Noetherian. By lemmas 1.4.43

and 1.4.44 to prove that the specialization map is a quotient and specializing map we only
need to prove that for any non-Archimedean field extension C/W (f)[1

p
] with C algebraically

closed the specialization map of the base change ShtGb,≤µ
OC

is surjective on closed points. It is

then enough to prove that for any such C the p-adic tubular neighborhoods of ShtGb,≤µ
OC

are
non-empty and connected.

This follows from combining theorems 2.2.34 and 2.3.14. Indeed, if fC denotes the residue

field of OC we may apply theorem 2.3.14 to compare ( ̂ShtGb,≤µ
W (fC)/x

)η with (ĜrG ,≤µ
W (fC)/y

)η for some
y.

Since C/W (fC)[1
p
] is purely ramified we have identifications |(ShtGb,≤µ

OC
)red| = |(ShtGb,≤µ

W (fC))
red|

and |(GrG ,≤µ
OC

)red| = |(GrG ,≤µ
W (fC))

red|. Moreover, for any x ∈ |(ShtGb,≤µ
OC

)red| and any y ∈
|(GrG ,≤µ

OC
)red| we have the identities

( ̂ShtGb,≤µ
OC /x

)η = ( ̂ShtGb,≤µ
W (fC)/x

)η ×W (f)♦ O
♦
C ,

and

(ĜrG ,≤µ
OC /y

)η = (ĜrG ,≤µ
W (fC)/y

)η ×W (f)♦ O
♦
C

which finishes the proof of the claim.

We finish this section with the proof of theorem 2 which is a rephrasing of 2.3.18 in less
technical language. For the convenience of the reader we write the statement again.

Theorem 2.3.19. With notation as in the introduction the following holds:
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a) There is a continuous specialization map

sp
Sht

Gb,≤µ
OF2

: |Sht(G ,b,µ),F♦
2
| → |XG

≤µ(b)|,

this map is a specializing and spectral map of locally spectral topological spaces. It is a
quotient map and Jb(Qp)-equivariant.

b) Given a closed point x ∈ |XG
≤µ(b)| let Sx = sp

Sht
Gb,≤µ
OF2

−1(x), then the interior S◦x of Sx

as a subspace of |Sht(G ,b,µ),F♦
2
| is dense in Sx.

c) Sx and S◦x are non-empty and connected.

d) The specialization map induces a Jb(Qp)-equivariant bijection of connected components

sp
Sht

Gb,≤µ
OF2

: π0(Sht(G ,b,µ),F♦
2

)→ π0(XG
≤µ(b))

Proof of theorem 1. We may apply theorem 2.3.18 and proposition 2.3.10 to conclude that
the pair (ShtGb,≤µ

O♦
F2

, Sht(G ,b,µ),F♦
2

) is a rich smelted kimberlite with reduction XG
≤µ(b). This

implies by proposition 1.4.20 that the specialization map sp
Sht

Gb,≤µ
OF2

: |Sht(G ,b,µ),F♦
2
| → |XG

≤µ(b)|

is a spectral map of locally spectral spaces. ShtGb,≤µ
O♦
F2

is rich, by definition the specialization

map is specializing and a quotient map. Moreover, Jb(Qp) acts on ShtGb,≤µ
OF2

by φ-equivariant

automorphisms of Gb, since the construction of the specialization map is functorial in the
category of smelted kimberlites the map is equivariant, this finishes the proof of the first

clam. Let x ∈ |XG
≤µ(b)|, we can use proposition 1.4.29 to identify S◦x with |( ̂ShtGb,≤µ

OF2 /x
)η|.

Since ShtGb,≤µ
OF2

is rich we can apply proposition 1.4.33 to prove that S◦x is dense in Sx giving

the second claim. By theorem 2.3.18 S◦x is connected and since it is dense in Sx this later
one is also connected giving the third claim. For the last claim we may apply proposition
1.4.42.
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Chapter 3

Geometric connected components at
infinite level.

3.1 Notation

Let us fix some notation for this chapter. We let k be a perfect field in characteristic p with
algebraic closure k. For most things the case of interest are when k = Fp or when k is a finite
field. In most subsections we will assume that k is algebraically closed, and we will point out
when this assumption is taken. We let W (k) (respectively W (k)) denote the ring of p-typical
Witt vectors of k, respectively k, and we let K0 = W (k)[1

p
], respectively K̆0 = W (k)[1

p
]. In

the sections in which we assume k = k we use the symbols K0 and K̆0 interchangeably.
We denote by σ the canonical lift of arithmetic Frobenious to K̆0 and abusing notation

we will also denote by σ its restriction to K0. We fix an algebraic closure K̆0 of K̆0, and we

let Cp denote the p-adic completion of K̆0. We use K (respectively K̆) to denote subfields

of Cp of finite degree over K0 (respectively K̆). We let ΓK (respectively ΓK̆) denote the

continuous automorphisms of Cp that fix K (respectively K̆). If K0 is the algebraic closure
of K0 in Cp then ΓK is canonically isomorphic to Gal(K0/K), since K0 is dense in Cp. We
will denote by ΓopK the opposite group which we identify with the group of automorphisms
of Spec(Cp) over Spec(K0).

We let WK̆0
denote the subset of continuous automorphisms of Aut(Cp) that stabilize

K̆0 and act as an integral power of σ on K̆0. We topologize WK̆0
so that ΓK̆0

is an open
subgroup. Suppose E ⊆ Cp is a field of finite degree over Qp, and let Qps be the maximal
unramified extension of Qp contained in E. The extension E/Qps is totally ramified and

E⊗Qps K̆0 is canonically isomorphic to the compositum Ĕ = E · K̆0 inside of Cp, since E and

K̆0 are linearly disjoint and have canonical inclusions into Cp. We define an automorphism

σ̂ ∈ Aut(Ĕ) as the automorphism that maps to Id ⊗ σ under this identification. We let
WĔ/E denote the continuous automorphisms of Cp that stabilize Ĕ, act on Ĕ as σ̂s·n for
some n ∈ Z. Notice that WĔ/E fixes E.
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Through out the text G will denote a connected reductive group over Qp. In certain sub-
sections we will add the additional assumptions that G is quasi-split or even stronger that
it is unramified over Qp. We will point out when one of these two assumptions are taken.
Whenever G is quasi-split we will denote by A a maximally split sub-torus of G defined over
Qp, T will denote the centralizer of A which is also a torus and B will denote a Qp-rational
Borel containing T . If G is assumed unramified we will sometimes also assume that G is
given as the basechange of a connected reductive group over Zp which we will still denote
by G.

We will often work in the situation in which we are given an element b ∈ G(K0) and/or
a cocharacter µ : Gm → GK . In these circumstances [b] always denotes the σ-conjugacy
class of b in G(K̆0) and [µ] denotes the unique geometric conjugacy class of cocharacters
[µ] ∈ Hom(Gm, GQp) that is conjugate to µ through the action of GCp . Moreover, we let
E/Qp denote the field extension contained in Cp over which [µ] is defined. We let E0 denote
the compositum of E and K0 in Cp.

3.2 The geometric perspective of crystalline represen-

tations

3.2.1 Vector bundles, isocrystals and crystalline representations.

Let K0, K and Cp be as in the notation. With this setup in [15], Fargues and Fontaine
construct a remarkable Qp-scheme, XFF,Cp , which is now known as “the fundamental curve
of arithmetic”.

Fargues and Fontaine justify why we can think of XFF,Cp as a “curve” despite the fact
that the structure morphism XFF,Cp → Spec(Qp) is not of finite type. Moreover, the “curve”
is “complete” in an appropriate sense which in particular implies that H0(XFF,Cp ,OX) = Qp.
The curve comes endowed with a section “at infinity” given by a map∞ : Spec(Cp)→ XFF,Cp

and it also has a ΓopK0
-action whose unique ΓopK -fixed point (for all finite extensions K/K0) is

∞. The completion of the stalk of the structure sheaf at∞, ÔX,∞, is canonically isomorphic
to Fontaine’s period ring B+

dR and compatibly with the ΓK0-action. Moreover, XFF,Cp \∞ is
an affine scheme and H0(XFF,Cp \ ∞,OX) = Be = Bϕ=1

crys , which is a principal ideal domain.
With this curve at hand Fargues and Fontaine reinterpret geometrically the classical p-adic
Hodge theory of Fontaine. We recall this geometric reinterpretation for the case of crystalline
representations and the connection with Scholze’s theory of diamonds.

Denote by ϕ−ModK0 the category of isocrystals over K0 that has as objects the pairs
(D,ϕ) where D is a finite dimensional K0 vector space and ϕ : σ∗D → D is an iso-
morphism. This is a Qp-linear Tannakian category. Fargues and Fontaine associate to
(D,ϕ) ∈ ϕ−ModK0 a vector bundle E(D,ϕ) that comes equipped with a ΓopK0

-action that is
compatible with the action on XFF,Cp (See [15] 10.2.1, 9.1.1). By this we mean that for any
γop ∈ ΓopK0

inducing the associated isomorphism θγop : XFF,Cp → XFF,Cp we are given a family
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of compatible isomorphisms

Θγop : θ∗γopE(D,ϕ)→ E(D,ϕ).

The Beauville-Laszlo theorem (see [54] Lemma 5.2.9), provides us with an equivalence
from the category of vector bundles over XFF,Cp to the category of triples (Me,M

+
dR, u)

where Me is a free module over Be, M
+
dR is a free module over B+

dR and u : Me ⊗Be BdR →
M+

dR⊗B+
dR
BdR is an isomorphism. This is Berger’s category of B-pairs. From this equivalence

we get a recipe to construct vector bundles by replacing (or modifying) M+
dR by some other

B+
dR-lattice Λ contained in MdR := M+

dR ⊗B+
dR
BdR. If we choose Λ to be stable under the

action of ΓK on MdR, then the new vector bundle produced in this way will have a ΓopK -action
compatible with the one on XFF,Cp . Fortunately, we can understand ΓK-stable lattices in a
concrete way as we recall below.

Given a finite dimensionalK vector space V we can let Fil•V denote a decreasing filtration
of K vector spaces. If Fil•V satisfies FiliV = V for i� 0 and Fili = 0 for i� 0, we say that
Fil•V is a bounded filtration. To such a filtration we can associate a B+

dR-lattice in V ⊗KBdR

denoted Fil0(V ⊗K BdR) and given by the formula:

Fil0(V ⊗K BdR) =
∑
i+j=0

FiliV ⊗K FiljBdR.

Proposition 3.2.1. (See [15] 10.4.3) Let V be a finite dimensional vector space over K. The
map that assigns to a bounded filtration Fil•V the B+

dR-lattice Fil0(V ⊗K BdR) in V ⊗K BdR

gives a bijection between the set of bounded filtrations of V and ΓK-stable B+
dR-lattices Λ in

V ⊗K BdR. If we let ξ denote a uniformizer of B+
dR then the inverse map is given by:

FiliΛ(V ) =
(
(ξi · Λ ∩ V ⊗K B+

dR)/(ξi · Λ ∩ V ⊗K ξ ·B+
dR)
)ΓK .

Remark 3.2.2. The careful reader may notice that the reference constructs FiliΛ(V ) in a
slightly different but equivalent way. We also point out the following. Let (a1, . . . an) denote a
decreasing sequence of integers and let µ : Gm → GLn the character defined by µ(t)·ei = taiei.
We let Fil•µ(Kn) denote the decreasing filtration associated µ with ej ∈ Filiµ if aj ≥ i. Then

the BdR lattice associated to Filiµ is generated by ξ−aiei. Notice the change of signs! Later
on we will need to keep track of this.

Denote by ϕ−ModFilK/K0 the category of filtered ϕ-modules that has as objects triples
(D,ϕ,Fil•DK) where (D,ϕ) is in ϕ−ModK0 and Fil•DK is a bounded filtration on D⊗K0 K.
To any triple as above Fargues and Fontaine associate a vector bundle E(D,ϕ,Fil•DK)
equipped with a ΓopK -action compatible with the action on XFF,Cp . It is constructed as a
modification of E(D,ϕ) as follows. There is a canonical ΓK-equivariant identification u
between D ⊗K0 BdR and the global sections of the restriction of E(D,ϕ) to Spec(BdR).
Letting Me = H0(XFF,Cp \ ∞, E(D,ϕ)), MdR = D ⊗K0 BdR and M+

dR = Fil0(DK ⊗K B+
dR)

then E(D,ϕ,Fil•DK) is given by (Me,M
+
dR, u) under the Beauville-Laszlo equivalence.
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This induces an exact and fully-faithful functor

ϕ−ModFilK/K0 ↪→ Vec
ΓopK
XFF,Cp

from the category of filtered isocrystals to the category of ΓopK -equivariant vector bundles

(See [15] 10.5.3). Any object of Vec
ΓopK
XFF,Cp

in the essential image of this functor is called a

crystalline vector bundle. Moreover, when the filtered isocrystal (D,ϕ,Fil•DK) is “weakly
admissible” Fargues and Fontaine prove that E(D,ϕ,Fil•DK) is semi-stable of slope 0 (See
[15] 10.5.2, 10.5.6). This in particular implies that E(D,ϕ,Fil•DK) without the ΓopK -action
is non-canonically isomorphic to OdX for d = dimK(D) so that H0(XFF,Cp , E(D,ϕ,Fil•DK))
is a d-dimensional Qp-vector space endowed with a continuous ΓK-action. This construction
recovers the classical functor of Fontaine Vcris : ϕ−ModFilw.a.K/K0

→ RepΓK
(Qp) that associates

to a weakly admissible filtered isocrystals a crystalline representation.

Remark 3.2.3. Since we will need this later, let us be more specific about how ΓK acts on

V := H0(XFF,Cp , E(D,ϕ,Fil•DK)).

Given an element γop ∈ ΓopK we have by definition of a ΓopK -equivariant vector bundle and by
adjunction a sequence of maps

E(D,ϕ,Fil•DK)→ θγop,∗θ
∗
γopE(D,ϕ,Fil•DK)

θγop,∗Θγop−−−−−−→ θγop,∗E(D,ϕ,Fil•DK).

We can pass to global sections and let H0(γop) : H0(E) = V → V = H0(θγop,∗E) denote the
operator obtained in this way. Notice that γop 7→ H0(γop) is contravariant and does not give
a group homomorphism. But the composition of maps of sets ΓK → ΓopK → Aut(V ) given by

γ 7→ Spec(γ) 7→ H0(Spec(γ))

is a group homomorphism.

3.2.2 Families of BdR-lattices

One can upgrade geometrically the situation using Scholze’s theory of diamonds, since this
theory allows us to consider “families” of B+

dR-lattices as a geometric object. Recall that
the Fargues-Fontaine curve XFF,Cp has a counterpart XFF,C[p in the category of adic spaces.
Moreover it also has relative analogues. If S be an affinoid perfectoid space in characteristic
p, Kedlaya and Liu (See [30] §8.7) associate to S an adic space XFF,S that they call the
relative Fargues-Fontaine curve. This construction is functorial in PerfFp , the category of
affinoid perfectoid spaces in characteristic p. Moreover, if (D,ϕ) is an isocrystal over K0 and
S is an affinoid perfectoid space over Spa(k, k) one can construct a vector bundle ES(D,ϕ)
over XFF,S. This construction is also functorial in Perfk and recovers E(D,ϕ) when S =
Spa(C[

p, OC[p
). Strictly speaking this also requires Kedlaya-Liu’s GAGA equivalence [30]

8.7.5, 8.7.7.
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In the world of diamonds we have a co-equalizer diagram

Spd(K,OK) = Coeq(Spa(C[
p, OC[p

)×Spd(K,OK) Spa(C[
p, OC[p

)⇒ Spa(C[
p, OC[p

))

and we also have an identification of affinoid perfectoid spaces

Spa(C[
p, OC[p

)×Spd(K,OK) Spa(C[
p, OC[p

) = ΓopK × Spa(C[
p, C

[,+
p ).

If we let S1 = Spa(Cp, OCp) and S2 = ΓopK0
× Spa(C[

p, OC[p
) then the Galois action of ΓopK0

on

XFF,Cp and E(D,ϕ) constructed by Fargues and Fontaine can be reinterpreted as glueing
datum

XFF,S2 ⇒ XFF,S1

over the pair of morphisms S2 ⇒ S1. Neither the Fargues-Fontaine curve as an adic spaces
nor the vector bundle E(D,ϕ) descend to an adic space or a vector bundle over K. But
as we will see one can perform some geometric constructions in this context that will make
sense as geometric objects over Spd(K,OK).

Now, given a perfectoid space S ∈ PerfFp the data of a map S → Spd(K0, OK0) induces
a “section” at infinity ∞ : S] → XFF,S. This is a closed Cartier divisor as in [53] 5.3.7 and
as such it has a good notion of meromorphic functions. We consider the moduli space of
meromorphic modifications of ES(D,ϕ) along ∞.

Definition 3.2.4. 1. We let Gr(E(D,ϕ)) denote the functor from PerfSpd(K0,OK0
) → Sets

that assigns:
(S], f) 7→ {((S], f),V , α)}/ ∼=

Where (S], f) is an untilt of S over Spa(K0, OK0), V is a vector bundle over XFF,S and
α : V 99K ES(D,ϕ) is an isomorphism defined over XFF,S \∞ and meromorphic along
∞.

2. Let GrGLn denote the functor from PerfQp → Sets that assigns:

(S], f) 7→ {((S], f),V , α)}/ ∼=

Where (S], f) is an untilt of S over Spa(Qp,Zp), V is a vector bundle over Spec(B+
dR(S]))

and α : V 99K O⊕n is an isomorphism defined over Spec(BdR(S])).

These moduli spaces are ind-proper ind-diamonds over Spd(K0, OK0) (and Spd(Qp,Zp)
respectively) and after fixing a basis of D we get an identification

GrGLn ×Qp Spd(K0, OK0) ∼= Gr(E(D,ϕ))

(See [19] 2.12). The second space is the Beilinson-Drinfeld Grassmanian that appears in the
Berkeley notes (See [54] 20.2.1).

We can re-interpret the canonical map Spa(Cp, OCp) → Spa(K0, OK0) that comes from
thinking of K0 as a subfield of Cp as a map m : Spd(C[

p, OC[p
) → Spd(K0, OK0). The
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basechange
Gr(ES(D,ϕ))×Spd(K0,OK0

),m Spd(C[
p, OC[p

)

gets identified through Beauville-Laszlo glueing with the moduli space that parametrizes
B+
dR-lattices contained in D⊗K0 BdR. This basechange comes equipped with ΓopK0

-action and
the set of ΓK-invariantB+

dR-lattices inD⊗K0BdR are in bijection with natural transformations
Spd(K,OK)→ Gr(ES(D,ϕ)).

Indeed, if we parametrize ΓK-invariant lattices using filtrations as in proposition 3.2.1,
then the B+

dR-lattice induced by a K-filtration Fil•DK allows us to construct a tuple

((Cp,m), E(D,ϕ,Fil•DK), α)

where α is the canonical meromorphic isomorphism

α : E(D,ϕ,Fil•DK) 99K E(D,ϕ)

over XFF,C\∞ coming from the construction of E(D,ϕ,Fil•DK) as a modification of E(D,ϕ).
A priori this tuple only defines a map Spa(C[

p, OC[p
) → Gr(E(D,ϕ)) but since α is ΓopK -

equivariant this descends to the desired map Spd(K,OK)→ Gr(E(D,ϕ)).

Going on with the story one defines Gradm(E(D,ϕ)) ⊆ Gr(E(D,ϕ)) to be the subsheaf
of tuples for which V is fiberwise semi-stable of slope 0. From Kedlaya-Liu’s semi-continuity
theorem (see [54] 22.2.1) we know that this defines an open subfunctor which is called
the admissible locus. Additionally, a map Spd(K,OK) → Gr(E(D,ϕ)) factors through
Gradm(E(D,ϕ)) if and only if it is coming from a weakly admissible filtration. A very
remarkable aspect of the situation is that if n = dimK0(D) then Gradm(E(D,ϕ)) admits a
pro-étale GLn(Qp)-local system L that “interpolates” between the n-dimensional crystalline

representations associated to (D,ϕ) (See [19] 2.14). Also See [38] for background on quasi-
pro-étale local systems.

Remark 3.2.5. To be more specific, a pro-étale local system L′ on Spd(K,OK) corre-
sponds to a local system L′

C[p
over Spa(C[

p, OC[p
) together with descent data along ΓopK ×

Spa(C[
p, OC[p

) ⇒ Spa(C[
p, OC[p

). But pro-étale local systems over Spa(C[
p, OC[p

) are trivial

and of the form L′
C[p

= Qp ⊗Qp V for a Qp-vector space V . Descent datum will correspond

to giving for any γop ∈ ΓopK an isomorphism Θγop : γop,∗L′
C[p
→ L′

C[p
in a continuous way. By

adjunction and passing to global sections as in remark 3.2.3 we get a ΓK-representation with
values on GL(V ).

The precise claim that we will use is the following.

Proposition 3.2.6. If Fil•DK is a weakly admissible filtration of (D,ϕ) and

ι : Spd(K,OK)→ Gradm(E(D,ϕ))
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is the map associated to Fil•DK, then ι∗L is isomorphic to Vcris(D,ϕ,Fil•) when we regard
ι∗L as a continuous ΓK-representation.

Proof. This follows from the definition of the local system L through Kedlaya-Liu’s equiv-
alence [54] 22.3.1, from the definition of the representation associated to a pro-étale local
system discussed in remark 3.2.5 and from the compatibility discussed in remark 3.2.3 to-
gether with the paragraph preceding it.

Remark 3.2.7. In a computation done below a change of sign will appear. In this remark we
discuss why this change of sign appears in a simple case. Let the notation be as in proposition
3.2.6, let n = dim(D) and let V = Vcris(D,ϕ,Fil•). If we fix a trivialization α : Qn

p → V we
may conjugate the action of ΓK on V by α to obtain a continuous map that we denote

ρH0,α : ΓK → GLn(Qp).

Now, let Triv(ι∗L) denote the moduli space of trivializations of ι∗L. It is a GLn(Qp)

right torsor over Spd(K,OK). The basechange Triv(ι∗L)Cp receives a semi-linear action by
ΓopK that we can express as:

γop : Triv(ι∗L)×Spd(K,OK) Spd(Cp, OCp)
(id,γop)−−−−→ Triv(ι∗L)×Spd(K,OK) Spd(Cp, OCp).

The topological space |TrivCp(ι∗L)| becomes a free GLn(Qp) right torsor. An element
α ∈ Triv(ι∗L)(Cp) defines a unique point |α| ∈ |Triv(ι∗L)Cp|. By functoriality of | · | we
obtain an element γop(|α|) ∈ |Triv(ι∗L)Cp|. Since GLn(Qp) acts simply transitively there is a
unique element gαγop ∈ GLn(Qp) with γop(|α|) = |α| · gαγop this defines a group homomorphism

ρ|·|,α : ΓopK → GLn(Qp).

The careful readers should convince themselves that

ρH0,α = ρ|·|,α ◦ (−)Spd,−1

where (−)Spd,−1 : ΓK → ΓopK is the group isomorphism γ 7→ Spd(γ−1).

3.2.3 Isocrystals with G-structure.

We keep the notation as above, we let G denote a connected reductive group over Qp and
RepG(Qp) denote the Tannakian category of Qp-linear algebraic representations of G. Recall
the following definition:

Definition 3.2.8. (See [35] §3) An isocrystal with G-structure F , is a ⊗-exact functor
F : RepG(Qp)→ ϕ−ModK0.

To an element b ∈ G(K0) and a representation (V, ρ) ∈ RepG(Qp) we associate the
isocrystal

(Db,ρ, ϕb,ρ) := (V ⊗K0, ρ(b) · (Id⊗ σ)),
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ranging this construction over (V, ρ) defines an isocrystal with G-structure

Fb : RepG(Qp)→ ϕ−ModK0 .

We say that two elements b1, b2 ∈ G(K0) are σ-conjugate to each other if b1 = g−1 · b2 · σ(g)
for some element g ∈ G(K0). This defines an equivalence relation and b1 is σ-conjugate to
b2 if and only if Fb1 is isomorphic to Fb2 .

Now, when k = k the set of equivalence classes of σ-conjugacy is the set B(G) defined
and studied by Kottwitz (See [35] §1.4). In this case, every isocrystal with G-structure is
isomorphic Fb for some b ∈ G(K̆0) and consequently B(G) parametrizes isomorphism classes
of isocrystals with G-structure. The key input in this case is Steinberg’s theorem which
shows the vanishing of the Galois cohomology set H1(ΓK̆0

, G(K̆0)) (See [57]). The set B(G)
has a very rich theory, we recall some of it below. For the rest of this subsection, we will
carry the assumption that k = k, so that K0 = K̆0.

Recall that the category of isocrystals over K0 is semisimple and the simple objects can
be parametrized by rational numbers λ ∈ Q. In particular, every object (D,ϕ) ∈ ϕ−ModK0

admits a canonical “slope” decomposition

(D,ϕ) =
⊕
λ∈Q

(Dλ, ϕλ).

If we let ωb denote the composition Forg ◦ Fb where

Forg : ϕ−ModK0 → Vec(K0)

denotes the forgetful functor to the category of vector spaces over K0, then the slope decom-
position defines ⊗-exact Q-grading of ωb. In turn, this grading can be interpreted as a slope
morphism νb : D→ GK0 of pro-algebraic groups, where D is the pro-torus with character set
X∗(D) = Q.

Consider the abstract group defined as a semi-direct product G(K0) o σ · Z where σ has
its natural action on G(K0).

Definition 3.2.9. (See [44] 1.8) For an element b ∈ G(K0) = G(K̆0) with conjugacy class
[b] ∈ B(G) we say that:

1. b is decent if there exists an integer s such that (bσ)s = (s · νb)(p)σs as elements of
G(K0) o σ · Z.

2. We say that b is basic if the map νb : D→ GK0 factors through the center of G.

3. We say that [b] ∈ B(G) is basic if all (equivalently some) element of [b] is basic.

Since we are assuming k = k and that G is connected reductive, every σ-conjugacy class
[b] ∈ B(G) contains a decent element (See [44] 1.11).
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Assume for the rest of the subsection that G is quasi-split over Qp, and fix subgroups
A ⊆ T ⊆ B ⊆ G as in the notation section.

For b ∈ G(K0) we can let νdomb denote the unique map νdomb : D→ TK0 in the conjugacy
class of νb that is dominant with respect to B. The map νdomb factors through A and is defined
over Qp, so we can write νdomb ∈ X+

∗ (A)Q = (X+
∗ (TQp)⊗ZQ)ΓQp (See [55] 3.2, Introduction of

[9]). This gives a well defined map N : B(G)→ X+
∗ (A)Q usually referred to as the Newton

map.
Recall Borovoi’s algebraic fundamental group π1(G) which can be defined as the quotient

of X∗(TQp) by the co-root lattice. This group comes equipped with ΓQp action and Kottwitz
constructs a map κG : B(G)→ (π1(G))ΓQp

that is usually referred to as the Kottwitz map.
An important result of Kottwitz [35] states that the map of sets

(νdomb , κG) : B(G)→ N × π1(G)ΓQp

is injective. This says that these invariants completely determine the isomorphism classes of
isocrystals with G-structure. Now, if we are given an element µ ∈ X∗(TQp) with reflex field
E we may define an element

µ ∈ X+
∗ (A)Q = X+

∗ (TQp)
ΓQp
Q

by averaging over the dominant elements inside a conjugacy class in the Galois orbit of µ:

µ =
1

[E : Qp]

∑
γ∈Gal(E/Qp)

µγ

We can now recall Kottwitz’ definition of the set B(G, µ) ⊆ B(G).

Definition 3.2.10. The set B(G, µ) consists of those conjugacy classes [b] ∈ B(G) for which
κG([b]) = [µ] in π1(G)ΓQp

and for which µ − νdomb ∈ X+
∗ (A)Q is a non-negative Q-linear

combination of positive co-roots.

3.2.4 G-bundles and G-valued crystalline representations

In this subsection we assume again that k is perfect but not necessarily algebraically closed.
We also assume that G is reductive over Qp but not necessarily quasi-split over Qp. Just as in
the case of schemes, one has a theory of G-bundles over the relative Fargues-Fontaine curve
that uses a Tannakian approach (See [53] Appendix to lecture 19 for the details). Given
S ∈ Perfk and F : RepG(Qp) → ϕ−ModK0 an isocrystal with G-structure we can define a
⊗-exact functor EF ,S : RepG(Qp)→ V ec(XFF,S) by letting

EF ,S(V, ρ) = ES(F(V, ρ)),

this defines a G-bundle over XFF,S. When we are given b ∈ G(K0) we write Eb,S instead of
EFb,S. This allow us to extend Tannakianly definition 3.2.4.
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Definition 3.2.11. 1. We let Gr(F) denote the functor from PerfSpd(K0,OK0
) → Sets that

assigns:
(S], f) 7→ {((S], f),G, α)}/ ∼=

Where (S], f) is an untilt of S over Spa(K0, OK0), G is a G-bundle over XFF,S and
α : G 99K EF ,S is an isomorphism defined over XFF,S \ ∞ and meromorphic along ∞.
When b ∈ G(K0) we write Gr(Eb) instead of Gr(Fb).

2. We let GrG denote the functor from PerfSpd(Qp,Zp) → Sets that assigns:

(S], f) 7→ {((S], f),G, α)}/ ∼=

Where (S], f) is an untilt of S over Spa(Qp,Zp), G is a G-bundle over Spec(B+
dR(S]))

and α : G 99K G is a trivialization defined over Spec(BdR(S])).

In the previous definition the meromorphicity condition asks that for every (V, ρ) ∈
RepG(Qp) the associated map of vector bundles ρ∗(α) : ρ∗G 99K E(Db,ρ, ϕb,ρ) is meromorphic
along ∞.

As with the GLn case, the two moduli spaces become isomorphic after basechange to
Spd(K0, OK0). Instead of fixing a basis one has to fix an isomorphism of the fiber functors:

(ωcan ⊗K0) ∼= ωF

Here ωF : RepG(Qp)→ ϕ−ModK0 → K0 −Vec denotes Forg ◦ F , and if b ∈ G(K0) we write
ωb instead of ωFb . A careful inspection of the construction of ωb shows that (in contrast with
ωF) there is a canonical choice of isomorphism ωb ∼= ωcan. We won’t really use this.

As with the GLn case we can define the admissible locus as the subsheaf Gradm(Eb) ⊆
Gr(Eb) of those tuples ((S], f),G, α) such that x∗G is the trivial G-bundle for every geomet-
ric point x : Spa(C ′, C ′+) → S. This is again an open subsheaf and it admits a pro-étale
G(Qp)-torsor which we will also denote by L (See [53] 22.5.2).

To make contact with crystalline representations one needs to recall how the Tannakian
formalism interacts with filtrations, we refer the reader to [48] for the details. Recall
that given a fiber functor ω : RepG(Qp) → V ec(S) one can consider ⊗-exact filtrations
Fil•(ω) which are sequences of ⊗-exact functors Filn(ω) : RepG(Qp) → V ec(S) indexed
by n ∈ N such that Filn(ω) ⊇ Filn+1(ω) and that are subject to various compatibility
conditions (See [48] chapitre IV §2.1.1, [11] 4.2.6). To such a filtration one can asso-
ciate a ⊗-grading (gr(Fil•(ω))) which produces a morphism of algebraic groups over S,
µFil•(ω) : Gm → Aut⊗(ω′) (See [48] chapitre IV §1.3 [11] 4.2.3). Here ω′ = (gr(Fil•(ω))),
denotes the ⊗-exact functor obtained from the grading after we forget the graded structure.
If x = Spec(C) is a geometric point of S, we may find an isomorphism ω′x

∼= ωx and this
defines a conjugacy class of cocharacters into Aut⊗(ωx). This conjugacy class is independent
of the isomorphism chosen and we can denote it [µFil•(ω)(x)].

Now, fix an isomorphism ωb ∼= ωcan, we get an isomorphism Aut⊗(ωb) ∼= GK0 . Further-
more, if we are given a conjugacy class [µ] of morphisms µ : Gm,K0

→ GK0
with field of
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definition E0/K0 (See [11] 6.1.2) contained in Cp, then we can consider the moduli functor
of filtrations of ωb of type [µ]. We denote this moduli space by

F lωbE0,[µ] : Sch/E0 → Sets,

it is given by the formula

F lωbE0,[µ](R) =
{

Fil•(ωb,R) | [µFil•(ω)(x)] = [µ] for all x ∈ Spec(R)
}

where Fil•(ωb,R) ranges over the set of ⊗-exact filtrations of ωb. This functor does not depend
of our choice of isomorphism ωb ∼= ωcan.

Since G is defined over Qp the conjugacy class [µ] will be defined over a finite exten-
sion E of Qp contained in Cp and F lωbE0,[µ] is isomorphic to the basechange of a similarly

defined moduli functor F lωcanE,[µ]. If F/E is a finite extension and µ ∈ [µ] is a representative
defined over F then µ defines a parabolic subgroup Pµ ⊆ GF and F lωcanF,[µ] is isomorphic to

the generalized flag variety G/Pµ. In particular, F lωcanE,[µ] and F lωbE0,[µ] are represented by

geometrically connected smooth projective schemes over Spec(E) and Spec(E0) respectively
(See [11] 6.1.4). The associated adic space (F lωbE0,[µ])

ad evaluates on a complete sheafy Huber

pair (R,R+) over Spa(E0, OE0) to the set:

(F lωbE0,[µ])
ad(R,R+) =

{
Fil•(ωb,R) | [µFil•(ω)(x)] = [µ] for all x ∈ Spa(R,R+)

}
This description relies on theorem 2.7.7 [30] of Kedlaya and Liu, and on the fact that a
morphism of adic spaces Spa(R,R+)→ (F lωbE0,[µ])

ad is given by a morphism of locally ringed

spaces Spa(R,R+)→ F lωbE0,[µ] by the construction of (F lωbE0,[µ])
ad ([24] 3.8). In particular, if

K/K0 is a complete non-Archimedean field extension then

(F lωbE0,[µ])
ad(K,OK) = F lωbE0,[µ](K).

Just as [µ] allows us to define F lωbE0,[µ] it also allows us to discuss boundedness conditions
for Scholze’s affine BdR-Grassmanians. Given an algebraically closed non-Archimedean field
C in characteristic p and C] an untilt over E we have an identification

G(BdR(C]))/G(B+
dR(C]) = GrG((C,C+))

([54] 19.1.2, 19.1.1). By the Cartan decomposition we have another identification

G(B+
dR(C])\G(BdR(C])/G(B+

dR(C]) = Hom(Gm,Qp , GQp)/G.

This identification sends a conjugacy class [µ] to the double coset defined by ξµ := µ(ξ)
where ξ ∈ B+

dR(C]) is a uniformizer. Notice that to define the map it is crucial to have a
fixed embedding E ⊆ C] so that the conjugacy class of µC] is well defined.

The set of conjugacy classes of cocharacters comes equipped with a partial order called
the Bruhat order. Given a map m ∈ GrG ×Qp Spd(E,OE)(R,R+) and a geometric point
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x : Spa(C,C+)→ Spa(R,R+) we say that m has relative position of type [µ] at x, (of type
≤ [µ] at x respectively), if the pullback x∗m lands in the double coset associated to [µ] (a
coset bounded by [µ] respectively). This allow us to define subsheaves

Gr
[µ]
G,E ⊆ Gr

≤[µ]
G,E ⊆ GrG × Spd(E,OE),

given by the condition that for every geometric point, the pullback x∗m has relative position
[µ] (bounded by [µ] respectively). The space Gr

≤[µ]
G,E is spatial diamond that is proper over

Spd(E,OE) and Gr
[µ]
G,E ⊆ Gr

≤[µ]
G,E is an open subdiamond.

We can now compare the affine BdR-Grassmanian to the flag variety. Recall that there
is a Tannakianly defined Bialynicki-Birula map ([54] 19.4.2),

π
[µ]
BB : Gr

[µ]
G,E → (F lωcanE,[−µ])

♦.

We emphasize that there is a change of signs which is a consequence of the change of signs that
appeared in remark 3.2.2 and of our convention on filtrations. Let us sketch the construction
of this map. Let m ∈ Gr[µ]

G,E(R,R+) and let (V, ρ) ∈ RepG(Qp) be a representation. Then

ρ∗(m) ∈ Gr[ρ◦µ]
GLn,E

(R,R+) is a tuple ((R], f),Vρ,m, αρ,m) where Vρ,m is a projective B+
dR(R])-

module and αρ,m an isomorphism of the form:

αρ,m : Vρ,m ⊗B+
dR
BdR(R])→ V ⊗E BdR(R])

Let Λρ,m denote αρ,m(Vρ,m) ⊆ V ⊗E BdR(R]) and identify V ⊗E R] with

(V ⊗E B+
dR(R]))/ξ · (V ⊗E B+

dR(R])).

We let

Filiρ,m(V ⊗E R]) = (ξi · Λρ,m ∩ V ⊗E B+
dR(R]))/(ξi · Λρ,m ∩ ξ(V ⊗E B+

dR(R]))).

Using the techniques discussed in ([54] 19.4.2) one can justify that each Filiρ,m(V ⊗E R]) is
a R]-vector sub-bundle of V ⊗E R] and that the family Fil•m(ωcan)[V, ρ] := Fil•ρ,m(V ⊗E R])

is a ⊗-exact filtration of ωcan over R]. Then, π
[µ]
BB(m) = Fil•m(ωcan).

Let E0 denote the compositum of E and K0 in Cp. With an analogous construction as
the one sketched above one can also construct the following variation of the Bialynicki-Birula
map

π
[µ]
BB : Gr

[µ]
E0

(Eb)→ F lωbE0,[−µ].

This allows the following group-theoretically enhanced rephrasing of proposition 3.2.1.

Proposition 3.2.12. Let b ∈ G(K0) let [µ] ∈ Hom(Gm, GQp)/G and let K/E0 be a finite
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field extension. Then, the Bialynicki-Birula map induces a bijection

π
[µ]
BB : Gr[µ](Eb)(K,OK) ∼= (F lωbE0,[−µ])

♦(K,OK),

of Spd(K,OK)-valued points.

Proof. One may take a faithful representation ρ : G → GL(V ), this induces the following
commutative diagram.

Gr
[µ]
E0

(Eb) (F lωbE0,[−µ])
♦

Gr
[ρ◦µ]
E0

(ρ∗Eb) (F l
ωρ(b)
E0,[−ρ◦µ])

♦

π
[µ]
BB

π
[ρ◦µ]
BB

In this diagram, the two vertical arrows are closed immersions. From proposition 3.2.1,
and by taking into account the boundedness conditions, one can deduce that the horizontal
bottom arrow induces a bijection

π
[ρ◦µ]
BB : Gr

[ρ◦µ]
E0

(ρ∗Eb)(K,OK)→ (F l
ωρ(b)
E0,[−ρ◦µ])

♦(K,OK).

Clearly the top horizontal arrow is injective since the vertical arrows will induce injections
on (K,OK)-points.

To prove surjectivity let m ∈ (F lωbE0,[−µ])
♦(K,OK). We may use that the construction

of proposition 3.2.1 and the Beauville-Laszlo theorem are functorial to produce from m a
ΓopK -equivariant modification of G-bundles

α : G 99K Eb,Cp .

This induces an element n : Spd(K,OK)→ Gr
[µ]
E0

(Eb) with π
[µ]
BB(n) = m.

Let RepcontΓK
(Qp) denote the category of continuous Galois representations. It is a neu-

tral Tannakian category with canonical fiber functor ωΓK
can(W, τ) = W . Recall that by the

Tannakian formalism to specify a continuous representation ρ : ΓK → G(Qp) (up to G(Qp)-
conjugation) it is sufficient to specify a ⊗-exact functor F : RepG(Qp) → RepcontΓK

(Qp) for
which ωΓK

can ◦ F is isomorphic to ωcan. Now, the full subcategory RepcrysΓK
(Qp) of crystalline

representations is Tannakian and we can define crystalline representations with G-structure
as those ⊗-exact functors F : RepG(Qp) → RepcontΓK

(Qp) such that F(V, ρ) is crystalline for
all (V, ρ) ∈ RepG(Qp).

Given a pair (b, µ) with b ∈ G(K0) and µ : Gm,K → GK we can construct a filtered
isocrystal with G-structure by defining a functor

Fb,µ : RepG(Qp)→ ϕ−ModFilK/K0
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such that
Fb,µ(V, ρ) = (Db,ρ, ϕb,ρ,Fil•µ)

with
Filiµ(Db,ρ ⊗K) = ⊕n≤i(V ⊗K)(ρ◦µ(t)·v=tn·v).

Definition 3.2.13. (See [44] 1.18). We say that a pair (b, µ) with b ∈ G(K0) and µ : Gm →
GK is admissible if the functor Fb,µ only takes values on weakly admissible filtered isocrystals.

In general, even if (b, µ) is admissible the functor Vcris◦Fb,µ might not define a crystalline
representation with G-structure. Indeed, the composition ωΓK

can ◦ Vcris ◦ Fb,µ might fail to be
isomorphic to ωcan. Nevertheless, this issue goes away if we impose that [b], the σ-conjugacy
class of b in G(K̆0), lies on the Kottwitz set B(G, µ) (See [11] 11.4.3).

Associated to the admissible pair (b, µ) there is a map yb,µ : Spd(K,OK) → F lωbE0,[−µ]

defined by the filtration Fil•µ on ωb, and we can let xb,µ : Spd(K,OK) → Gr
[µ]
E0µ

(Eb) denote
the unique lift of yb,µ of proposition 3.2.12. The following is a group-theoretic refinement of
proposition 3.2.6 and it is one of the key inputs from modern p-adic Hodge theory that we
will need later on.

Proposition 3.2.14. Suppose that (b, µ) is an admissible pair with [b] ∈ B(G, µ), then

the map xb,µ : Spd(K,OK) → Gr
[µ]
E0

(Eb) factors through the admissible locus Gr
[µ],adm
E0

(Eb).
Moreover, if L denotes the pro-étale G(Qp)-torsor on Gradm(Eb) then x∗b,µL agrees with the
crystalline representation with G-structure defined by the functor Vcris ◦ Fb,µ.

Proof. Let (V, ρ) ∈ Rep(Qp) and consider the ΓK-equivariant modification

α : Vx(b,µ),ρ 99K Eb,Cp(V, ρ)

associated to ρ ◦ xb,µ ∈ Gr(Eb(V, ρ))(K,OK). The admissibility of (b, µ) implies that Vx(b,µ),ρ

is a semi-stable vector bundle of slope 0. Moreover, by proposition 3.2.6 there is a canonical
identification

H0(XFF,Cp ,Vx(b,µ),ρ) = Vcris ◦ Fb,µ(V, ρ).

Since Vx(b,µ),ρ is semi-stable of slope 0 we have the identification

Vx(b,µ),ρ = OXFF,Cp
⊗H0(XFF,Cp ,Vx(b,µ),ρ).

Since [b] ∈ B(G, µ) then ωΓK
can ◦ Vcris ◦ Fb,µ(V, ρ) ∼= ωcan, and the functor

Vx(b,µ),− : RepG(Qp)→ V ecXFF,Cp

is isomorphic to ωcan(−) ⊗ OXFF,Cp
. Which says precisely that the G-torsor induced by a

geometric point over x(b,µ) is the trivial G-torsor so that x(b,µ) lies in the admissible locus.
For the last part of the statement we may reason as in 3.2.5 by observing that quasi-pro-

étale G(Qp)-local systems over Spd(C[
p, OC[p

) are trivial and that x∗b,µL can be interpreted as
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descent datum, which in turn can be interpreted as continuous Galois representations. Using
the identity

H0(XFF,Cp ,Vx(b,µ),ρ) = Vcris ◦ Fb,µ(V, ρ)

one can justify that we get the correct Galois representation.

3.2.5 M. Chen’s result on p-adic Hodge Theory

In this subsection we assume that k = k so that K0 = K̆0, we also assume that G is an
unramified reductive group over Qp. In this case the group is quasi-split and we may choose
groups A ⊆ T ⊆ B ⊆ G as we have done in the notation.

Definition 3.2.15. (See [8] 5.0.4, [9] 2.5.6) Recall the notation of definition 3.2.10. We
say that a pair ([b], [µ]) with [b] ∈ B(G, µ) and [µ] ∈ X∗(TQp) is HN-irreducible if all the

coefficients of µ− νdomb as a Q-linear combination of simple coroots are strictly positive.

In section §4 the following result of M. Chen will be a key ingredient.

Theorem 3.2.16. (See [8] 5.0.6)
Let µ : Gm → GK be a morphism and let b ∈ G(K0) be a decent element such that

[b] ∈ B(G, µ) and [µ] has reflex field E. Suppose that the map Spec(K)→ F lωb
Ĕ,[−µ]

induced

by the filtration defined by µ maps to the generic point of |F lωcanE,[−µ]| under the map

F lωb
Ĕ,[−µ]

= F lωcanE,[−µ] ×E Ĕ → F lωcanE,[−µ],

induced from the canonical isomorphism ωcan⊗Qps K0
∼= ωb. Assume further that the pair

([b], [µ]) is HN-irreducible, then the following hold:

1. The pair (b, µ) is admissible and defines a crystalline representation ξb,µ : ΓK → G(Qp),
well-defined up to conjugation.

2. The Zariski closure of ξb,µ(ΓK) ⊆ G contains Gder and ξb,µ(ΓK) contains an open
subgroup of Gder(Qp).

Remark 3.2.17. M. Chen’s result is slightly stronger, but this is the formulation that we
will use below. Observe that K has infinite transcendence degree over E, so it makes sense
for a K-point to lie topologically over the generic point of F lωcanE,[−µ].

Combining proposition 3.2.14 with Chen’s theorem 3.2.16 and using the fact that every
element b ∈ G(K0) is σ-conjugate to a decent one we can deduce the following statement.

Corollary 3.2.18. Let b ∈ G(K0) and µ ∈ X+
∗ (TQp). Suppose that [b] ∈ B(G, µ). For

every finite extension K/K0 there is a map x : Spd(K,OK) → Gr(Eb)[µ],adm
E such that if

ρx : ΓK → G(Qp) denotes the Galois representation associated to x∗L, then ρx(ΓK)∩Gder(Qp)
is open in Gder(Qp).
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3.2.6 The geometric realization of L and p-adic shtukas

In this section we assume k = k and we let G be any reductive group over Qp. We fix
b ∈ G(K0), [µ] ∈ Hom(Gm, GQp) and we let E0 = K0 · E denote the field of definition of
[µ] over K0. Let K ⊆ G(Qp) denote an open compact subgroup, recall the moduli space of
p-adic shtukas that appears in the Berkeley notes.

Definition 3.2.19. (See [53] 23.3.1) We define ShtG,b,[µ],K : Perfk → Sets as the presheaf
that assigns to S ∈ Perfk isomorphism classes of tuples

((S], f), E , α,PK, ι)

such that:

1. (S], f) is an untilt of S over E0.

2. E is a G-bundle on the relative Fargues-Fontaine XFF,S curve whose fibers on geometric
points of S are isomorphic to the trivial G-torsor.

3. α : E 99K Eb is a modification of G-bundles defined over XFF,S \ S] meromorphic along
S] and whose type is bounded by [µ] on geometric points.

4. PK is a pro-étale K-torsor and ι is an identification of PK×KG(Qp) with the pro-étale

G(Qp)-torsor that E defines under the equivalence of [53] theorem 22.5.2.

It is proven in [53] that the presheaves ShtG,b,[µ],K are locally spatial diamonds over
Spd(E0, OE0), and that whenever µ is a minuscule conjugacy class of cocharacters then
ShtG,b,[µ],K is represented by the diamond associated to a smooth rigid-analytic space over
Spa(E0, OE0). As Scholze and Weinstein prove ([53] 24.3.5) these moduli spaces are group-
theoretic generalization of (the generic fiber of) Rapoport-Zink spaces. Since all of our
arguments work for the general case of moduli spaces of p-adic shtukas we will not make
distinction with the minuscule case.

Scholze and Weinstein construct a family of “Grothendieck-Messing” period morphisms

πGM,K : ShtG,b,[µ],K → Gr
adm,≤[µ]
E0

(Eb)

given by the formula:
((S], f), E , α,PK, ι) 7→ ((S], f), E , α)

For every K this gives a surjective étale morphism of locally spatial diamonds. Moreover,
this family is functorial on K. That is, if K1 ⊆ K2 are two compact and open subsets then
we get a commutative diagram of étale maps,

ShtG,b,[µ],K1 ShtG,b,[µ],K2

Gr
adm,≤[µ]
E0

(Eb)

πK1,K2

πGM,K1

πGM,K2
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where the transition map πK1,K2 is the one deduced from assigning to PK1 the corresponding
K2-torsor PK1 ×K1 K2. Also, if K1 ⊆ K2 is normal of finite index then the transition maps
πK1,K2 are surjective and finite étale.

The flexibility of the category of diamonds allows us to define moduli spaces of p-adic
shtukas associated to an arbitrary compact subgroup K′ ⊆ G(Qp) including the case K′ = {e}
(which is usually referred to as the infinite level). Indeed, the set of compact open subgroups
K ⊆ G(Qp) containing K′ is co-filtered and has intersection equal to K′. We may define the
limit of diamonds ShtG,b,[µ],K′ = lim←−K′⊆K ShtG,b,[µ],K, together with a period map

πGM,K′ : ShtG,b,[µ],K′ → Gr
adm,≤[µ]
E0

(Eb).

This sheaf has the structure of a locally spatial diamond. Moreover, although the period
map in general might not be étale it is always a quasi-proétale map (See [51] 10.1).

Moduli spaces of shtukas at infinite level (K ′ = {e}) have the following pleasant descrip-
tion,

ShtG,b,[µ],∞(S) = {(S], f), α : G 99K Eb}

where (S], f) denotes an untilt of S over E0, G denotes the trivial G-bundle over XFF,S and
α is a modification of G-bundles over XFF,S \ S], meromorphic along S] and whose type is
bounded by [µ] on geometric points. The natural action of G(Qp) on the trivial torsor G
induces a right action of G(Qp) on ShtG,b,[µ],∞ (See §2.8 to contrast the G(Qp)-action to more

obvious G(Qp)-action). Scholze and Weinstein prove that the period map πGM,∞ together
with the action of G(Qp) is the geometric realization of the pro-étale G(Qp)-torsor L over

Gr
adm,≤[µ]
E0

(Eb). In other words, they prove that the two definitions, the one given directly
and the one given in terms of a limit, agree.

3.2.7 Weil descent

In this section we discuss Weil descent datum and its induced Weil-group action, for this
subsection we assume k = k so that K0 = K̆0. Recall that we defined WĔ/E as the subset

of continuous automorphisms of Cp that act as σ̂ := IdE ⊗ σn·s on Ĕ = E ·K0. It evidently
contains ΓĔ and we may topologize WĔ/E so that ΓĔ ↪→ WĔ/E is a topological immersion
and an open map. We get a strict exact sequence of topological groups

e→ ΓĔ → WĔ/E → σ̂Z → e.

Whenever g ∈ WĔ/E we will write gop ∈ W op

Ĕ/E
for the morphism of spaces gop :

Spd(Cp, OCp) → Spd(Cp, OCp) induced by the map of fields. Note that if g1 = g2 ◦ g3 in
WĔ/E then gop1 = gop3 ◦ g

op
2 in W op

Ĕ/E
.

Definition 3.2.20. 1. Let G be a v-sheaf over Spd(Ĕ, OĔ), a Weil descent datum for G
is an isomorphism τ : G → σ̂op,∗G over Spd(Ĕ, OĔ).
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2. Given Weil descent datum for G and n ∈ N we define inductively

τn = σ̂op,∗(τn−1) ◦ τ : G → σ̂op,∗G → σ̂op,∗,nG.

For −n we define τ−n = σ̂op,∗,n([τn]−1) : G → σ̂op,∗,−nG. We also define τ 0 = IdG.

Weil descent datum will provide us with actions by W op

Ĕ
instead of only Γop

Ĕ
. In the

following sections we will need to endow our spaces with continuous actions rather than
plain actions by an abstract group. An efficient way to provide a v-sheaf with a continuous
action is to endow it with the action of the group sheaf W op

Ĕ
that parametrizes continuous

maps |Spa(R,R+)| → W op

Ĕ
.

Lemma 3.2.21. Suppose we are given a right ΓĔ-action on a v-sheaf,

m : F × ΓĔ → F ,

and suppose we are given a group homomorphism θ : W op

Ĕ
→ Aut(F) such that θ(γop) =

m(−, γ) for all constant elements γ ∈ ΓĔ ⊆ ΓĔ. Then there is a unique right WĔ/E-action

m′ : F × WĔ/E → F with m′|ΓĔ
= m and θ(γop) = m′(−, γ) for all constant elements

γ ∈ WĔ/E.

Proof. LetW disc
Ĕ/E

(respectively Γdisc
Ĕ

) denote the sheaf of locally constant maps |Spa(R,R+)| →
WĔ/E (respectively ΓĔ). We observe that any element g ∈ WĔ/E can be written as gdisc · γ
with γ ∈ ΓĔ and gdisc ∈ W disc

Ĕ
. Moreover if gdisc1 γ1 = gdisc2 γ2 then γ1 · γ−1

2 ∈ Γdisc
Ĕ

. To define

an action of WĔ/E it is enough to define actions of ΓĔ and W disc
Ĕ

that agree on Γdisc
Ĕ

because

WĔ/E(R,R+) = W disc
Ĕ/E

(R,R+) · ΓĔ(R,R+) and W disc
Ĕ

(R,R+) ∩ ΓĔ(R,R+) = Γdisc
Ĕ

(R,R+).

Now, θ defines an action mθ : F ×W disc
Ĕ
→ F and the hypothesis ensure that mθ agrees

with m on Γdisc
Ĕ

.

Proposition 3.2.22. If (G, τ) is a v-sheaf over Spd(Ĕ, OĔ) equipped with a Weil-descent
datum then G ×Ĕ Spd(Cp, OCp) comes equipped with a right action by WĔ/E.

Proof. We let ι : Spd(Cp, OCp) → Spd(Ĕ, OĔ) denote the map induced from the canonical
inclusion. By lemma 3.2.21 it is enough to specify a right action by ΓĔ and a homomorphism

of abstract groups f : W op

Ĕ
→ Aut(GCp). Since G is defined over Ĕ and Ĕ = Cp/ΓĔ we already

have a well-defined right ΓĔ-action on GCp . Let g ∈ WĔ/E restricting to σ̂n on Ĕ, we define

f(gop) as the gop-linear map that appears in the top triangle of the following commutative
diagram with Cartesian squares.
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GCp ι∗(σ̂op,∗,nG) = gop,∗(GCp) Spd(Cp, OCp)

GCp Spd(Cp, OCp)

G σ̂op,∗,nG Spd(Ĕ, OĔ)

G Spd(Ĕ, OĔ)

f(gop)

ι∗τn

gop

ι

gop

ιτn

σ̂op,n

Checking that f is a group homomorphism is a tedious diagram chase. To prove that
the right actions of ΓĔ and W disc

Ĕ
restricted to Γdisc

Ĕ
are compatible we recall that the action

ΓĔ on GCp is constructed as the limit of actions ΓF/Ĕ on GF over subfields F ⊆ Cp that

are Galois and of finite degree over Ĕ. Each of these actions by a finite discrete group are
constructed through a commutative diagram as the one above, except that for g ∈ ΓF/Ĕ we
have a canonical identification GF → gop,∗(GF ). The compatibility boils down to the fact
that we defined τ 0 = IdG.

Of course given two diamonds with Weil descent datum (Gi, τi) over Spd(Ĕ, OĔ) and a
map f : G1 → G2 satisfying a commutative diagram:

G1 G2

σ̂op,∗G1 σ̂op,∗G2

f

τ1 τ2

σ̂op,∗f

the corresponding map f : G1 ×Ĕ Spd(Cp, OCp) → G2 ×Ĕ Spd(Cp, OCp) will be WĔ/E-

equivariant.

We can give Weil descent datum to the moduli problems we have been working with.

Proposition 3.2.23. • There are canonical identifications of v-sheaves compatible with
inclusion and with the structure map to Spd(K0, OK0).

1. σop,∗GrK0(Eb) = GrK0(Eσ(b)).

2. σop,∗GradmK0
(Eb) = GradmK0

(Eσ(b)).

• There are canonical isomorphisms of v-sheaves compatible with the inclusion, with the
period morphism and with the structure map to Spd(Ĕ, OĔ).

1. σ̂op,∗Gr
≤[µ]

Ĕ
(Eb) = Gr

≤[µ]

Ĕ
(Eσs(b)).
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2. σ̂op,∗Gr
adm,≤[µ]

Ĕ
(Eb) = Gr

adm,≤[µ]

Ĕ
(Eσs(b)).

3. σ̂op,∗ShtG,b,[µ],∞ = ShtG,σs(b),[µ],∞

Proof. Recall that Spd(K0, OK0) = Spd(k, k) ×Fp♦ Zp♦ and that σop : Spd(K0, OK0) →
Spd(K0, OK0) gets identified with Frobop × id. Given an object

[S → Spd(K0, OK0)] ∈ PerfK♦
0

defined by an untilt (S], f) over Spa(K0, OK0) we let Sσ ∈ PerfK♦
0

be given by (S], σop◦f). For

any sheaf G over Spd(K0, OK0) the functor σop,∗G : PerfK♦
0
→ Sets is given by the formula

σop,∗G(S) = G(Sσ). We remark that although the construction of the relative Fargues-
Fontaine curve XFF,S does not depend on the structure map S → Spd(k, k), the construction
of the G-bundle Eb,S does. Actually, if (D,ϕ) ∈ ϕ−ModK0 then ESσ(D,φ) = ES(σ∗D, σ∗φ),
and for isocrystals of the form (Db,ρ, ϕb,ρ), with b ∈ G(K0) and (V, ρ) ∈ RepG(Qp), one can
compute explicitly that

(σ∗Db,ρ, σ
∗ϕb,ρ) = (Dσ(b),ρ, ϕσ(b),ρ),

so that the equalities Eb,Sσ = Eσ(b),S and Eb,Sσ̂ = Eσs(b),S hold.
From here the proof of each item is very similar and follows from applying the formula

σop,∗G(S) = G(Sσ) (or the analogous formula σ̂op,∗G(S) = G(Sσ̂)) to the different moduli

spaces. We only spell the details for σ̂op,∗Gr
adm,≤[µ]

Ĕ
(Eb) = Gr

adm,≤[µ]

Ĕ
(Eσs(b)).

Fix S = Spa(R,R+) together with a map S → Spd(Ĕ, OĔ) and a geometric point

x : Spd(C,C+) → S. Recall that σ̂ = Id ⊗ σs so that if ι : E → E ⊗Qps K0 = Ĕ is the

natural inclusion then σ̂ ◦ ι = ι. Recall that Gr
adm,≤[µ]

Ĕ
(Eb)(Sσ̂) parametrizes modifications

α : G 99K Eσ(b),S with G fiberwise the trivial bundle and α bounded on geometric points by

[µ]. Now, in the preceding description we use the map xσ̂ : Spa(C,C+) → Spd(Ĕ, OĔ) to
define the bijection

X∗(GQp)/G
∼=xσ̂ G(B+

dR(C]))\G(BdR(C]))/G(B+
dR(C]))

with which we compare against µ. Notice again that the set

G(B+
dR(C]))\G(BdR(C]))/G(B+

dR(C]))

does not depend of the structure morphism S → Spd(Ĕ, OĔ), and that the bijection only
depends on the composition x : Spd(C,C+)→ Spd(E,OE). Since σ̂◦ ι = ι we may conclude.

Now, observe that b and σ(b) are σ-conjugate by b. More precisely, the family of linear
maps

ρ(b) : (Dσ(b),ρ, ϕσ(b),ρ)→ (Db,ρ, ϕb,ρ)

is a functorial isomorphism of isocrystals that defines an isomorphism of ⊗-exact functors
φb : Fσ(b) → Fb. The morphism of isocrystals φb extends by functoriality to morphisms of
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G-bundles φb : Eσ(b) → Eb and allows us to endow our moduli of interest with Weil descent
datum, for example:

τb : GrK0(Eb)→ σop,∗GrK0(Eb) = GrK0(Eσ(b))

and
τb : ShtG,b,[µ],∞ → σ̂op,∗ShtG,b,[µ],∞ = ShtG,σs(b),[µ],∞

by the applications

[((S], f),G, α) 7→ ((S], f),G, (φ−1
b ) ◦ α)] [((S], f),G, α) 7→ ((S], f),G, (φ−1

b )s ◦ α)].

Moreover, it is not hard to see that the descent datum is compatible with the period mor-
phism πGM . An important feature of the situation is that the Weil descent datum on our
moduli spaces only depends on the isomorphism class of the isocrystal Fb. More precisely, if
b1 and b2 are σ-conjugate by g, b1 = g−1b2σ(g) then g induces a commutative diagram like
the one below

GrK0(Eb1) GrK0(Eb2)

σop,∗GrK0(Eb1) σop,∗GrK0(Eb2).

g

τb1 τb2

σop,∗(g)

Indeed, this follows from the identity σ(g)b−1
1 = b−1

2 g. The same applies to all the
spaces considered in proposition 3.2.23. Using proposition 3.2.22 we can endow ShtG,b,[µ],∞×
Spd(Cp, OCp) with a right WĔ/E-action. Moreover, the space ShtG,b,[µ],∞×Spd(Cp, OCp) with

its right WĔ/E-action are independent of the choice of b ∈ [b].

3.2.8 The action of Jb(Qp)

In this section we let k = k. In ([35] A.2) Kottwitz shows how to associate to the ⊗-
functor Fb : RepG(Qp)→ ϕ−ModK0 a connected reductive group Jb over Qp whose group of
Qp-valued points is the σ-centralizer of b,

Jb(Qp) =
{
g ∈ G(K0) | g−1 · b · σ(g) = b

}
.

Let us recall this construction. For any Qp-algebra R we let ϕ−ModK0 ⊗Qp R denote the
category whose objects are the same as in ϕ−ModK0 and morphisms are

HomR((D1, ϕ1), (D2, ϕ2)) := Homϕ−ModK0
((D1, ϕ1), (D2, ϕ2))⊗Qp R
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There is a natural ⊗-functor βR : ϕ−ModK0 → ϕ−ModK0 ⊗Qp R and Jb(R) is defined as
Aut⊗(βR ◦ Fb). With Jb defined in this way we have

Jb(Qp) = Aut⊗(Fb) ⊆ Aut⊗(Forg ◦ Fb) = G(K0).

Moreover, recall that the slope decomposition produces a map νb : D → GK0 , if we denote
Mb the centralizer of νb in GK0 then (Jb)K0 is isomorphic to Mb. Since the elements of
Jb(Qp) act on Fb then we get a homomorphism of abstract groups Jb(Qp) → Aut(Eb,S) this
already gives an action of Jb(Qp) on ShtG,b,[µ],∞×Spd(Cp, OCp) and the other spaces we have
considered, but from this description it is not clear, for example, if this action is continuous
with respect to the p-adic topology on Jb(Qp). A slightly better approach is to endow our
moduli spaces with an action of Jb(Qp). Let us sketch how to do this following the ideas that

the author learned from reading ([16] III.4.7). We point out that the reference does this in
a much cleaner but less concrete way.

We let Jb : PerfK♦
0
→ Sets denote the group sheaf that assigns to S → Spd(K0, OK0) the

group of automorphisms of Eb,S. This is a sheaf of groups and a locally spatial diamond over
Spd(K0, OK0). We can endow all of the moduli problems that appear in proposition 3.2.23
with an evident left action by Jb. Moreover, it is easy to see that this action commutes with
the right action of G(Qp) on ShtG,b,[µ],∞.

Recall that the category of isocrystals ϕ−ModK0 is naturally Q-graded. This gives a
family of compatible Q-gradings on Eb,S(V, ρ) for all (V, ρ) ∈ RepG(Qp) and all S ∈ PerfK♦

0
.

We let J ′b ⊆ Jb denote the subsheaf of automorphisms of Eb that respect the Q-grading.
In what follows we construct an injective map ιb : (Jb(Qp))K0 → Jb of group diamonds

over Spd(K0, OK0) that induces an isomorphism onto J ′b. We begin by explaining the vector
bundle case.

Suppose (D,ϕ) is an isocrystal in ϕ−ModK0 , and that

(D,ϕ) =
⊕
λ∈Q

(Dλ, ϕλ)

is its slope decomposition. The endomorphism object internal to the category of isocrystals
End((D,ϕ)) has as 0-graded piece⊕

λ∈Q

End((Dλ, ϕλ)) ⊆ End((D,ϕ)).

Analogously, if we fix S ∈ PerfK♦
0

we have identifications of internal objects

End(ES(D,φ)) = ES(End((D,ϕ))).

The right hand side is naturally graded and we have an injective map from the 0-graded
piece ⊕

λ∈Q

End(ES(Dλ, ϕλ)) ⊆ End(ES(D,φ)).
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Global sections of this later vector bundle are precisely the endomorphisms of ES(D,ϕ)
that respect the Q-grading. Now, each term End(ES(Dλ, ϕλ)) is an algebra whose underlying
vector bundle is trivial. This last implies

H0(XFF,S,
⊕
λ∈Q

End(ES(Dλ, ϕλ))) = Homcont(|S|,
⊕
λ∈Q

Endϕ−ModK0
(Dλ, ϕλ)).

Here the topology on Endϕ−ModK0
(Dλ, ϕλ) is the one obtained from knowing that it is a

finite dimensional Qp-vector space. Passing to units and recalling that⊕
λ∈Q

Endϕ−ModK0
(Dλ, ϕλ) = Endϕ−ModK0

(D,ϕ)

we get our desired map ι(D,ϕ) : Aut(D,ϕ) → Aut(ES(D,ϕ)) which identifies the left-hand
group with the automorphisms of ES(D,ϕ) that respect the Q-grading.

Let us discuss the general case. Given an object (V, ρ) ∈ RepG(Qp) we get a natural
map of algebraic groups Jb → Aut(Fb(V, ρ)). In particular, we get a continuous morphism
ψV : Jb(Qp) → Aut(Fb(V, ρ))(Qp). Given a continuous map f : |S| → Jb(Qp) we consider
the composition ψV ◦ f . This induces an automorphism of ES(Fb(V, ρ)) that respects the
Q-grading, namely ιFb(V,ρ)(ψV ◦ f). If we are given a morphism π : (V, ρV ) → (W, ρW ) we
obtain the following commutative diagram:

ES(Fb(V, ρV )) ES(Fb(W, ρW ))

ES(Fb(V, ρV )) ES(Fb(W, ρW ))

ιFb(V,ρ)(ψV ◦f)

E(Fb(π))

ιFb(V,ρ)(ψW ◦f)

E(Fb(π))

This gives overall an automorphism of Eb,S that respects Q-grading on each Eb,S(V, ρ).
This constructs the map ιb : Jb(Qp) → Jb which clearly factors through J ′b. Conversely,

assume we are given a map m ∈ J ′b(S). For all (V, ρ) ∈ RepG(Qp) we obtain a continuous
map

m(V,ρ) : |S| → Aut(Fb(V, ρ))(Qp) ⊆ Endϕ−ModK0
(Fb(V, ρ)).

Moreover, given an arrow (V, ρV )
π−→ (W, ρW ) we obtain two maps

|S| → Homϕ−ModK0
(Fb(V, ρV ),Fb(W, ρW )).

One is given as the composition of Fb(π) with the family of endomorphisms m(W,ρW ) and
the other as the composition of m(V,ρV ) with Fb(π) in the appropriate order. From the con-
struction of m(V,ρ) these two endomorphisms coincide. We claim this determines a unique
continuous map |S| → Jb(Qp). Indeed, Jb(Qp) is the subgroup of

∏
(V,ρ) Aut(Fb(V, ρ))(Qp)

that satisfies the commutativity constraints imposed by the arrows in RepG(Qp). This gives
a map |S| → Jb(Qp) which a priori is only continuous with respect to the weak topology
making the maps Jb(Qp) → Aut(Fb(V, ρ))(Qp) continuous. But if (V, ρ) is a faithful repre-
sentation of G then the map of algebraic groups Jb → Aut(V, ρ) is a closed immersion. This
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gives that the weak topology on Jb(Qp) is the p-adic topology.

Let us prove that the left action of Jb(Qp) on our moduli spaces through ιb commutes, in
an appropriate sense, with the Weil group action. The first thing we observe is that the group
Jb itself comes equipped with Weil descent datum. Indeed, σop,∗Jb is canonically identified

with Jσ(b) and the isomorphism of bundles Eσ(b)
φb−→ Eb induces a Weil descent datum

τb : Jb → σop,∗Jb = Jσ(b),

obtained from conjugating by φb. One readily verifies that the action map commutes with
Weil descent datum, as in the diagram below.

Jb ×K0 GrK0(Eb) GrK0(Eb)

σop,∗Jb ×K0 σ
op,∗GrK0(Eb) σop,∗GrK0(Eb)

m

(τb,τb) τb

σop,∗m

Indeed, both Weil descent data were defined by conjugating by φb. Mutatis mutandis
the same applies to all the moduli spaces that appear in proposition 3.2.23 and the variants
using σ̂.

The constant group Jb(Qp) is defined over Spd(Fp), this induces a canonical Weil descent

datum on (Jb(Qp))K0 . Let us prove that the morphism

ιb : Jb(Qp)→ Jb

is compatible with Weil descent datum. Let S ∈ PerfFp , let f : |S| → Jb(Qp) be a continuous
map and let S] denote an untilt of S over K0. For all (V, ρ) ∈ RepG(Qp) we obtain from
ιb and f an automorphism of ES(Fb(V, ρ)), and analogously we obtain from σ∗ιb and f an
automorphism of ESσ(Fb(V, ρ)) = ES(Fσ(b)(V, ρ)). By abuse of notation we let σ : Jb(Qp)→
Jσ(b)(Qp) denote the group isomorphism obtained from regarding Jb(Qp) and Jσ(b)(Qp) as
subgroups of G(K0) and letting σ act on this later group. Consider the following diagram.

(Jb(Qp))K0 (Jσ(b)(Qp))K0

Jb σ∗Jb = Jσ(b)

σ

σ∗ιb
ιb ισ(b)

τb

To prove that ιb is compatible with Weil descent datum one must verify that the lower
triangle commutes. One way to do this is to verify that the upper triangle commutes and
that the square commutes. Both commutativities are left to the verification of the careful
reader. The commutativity of the upper triangle ultimately follows from the fact that if
h : Kn

0 → Kn
0 is a K0-linear automorphism given by a matrix (hij), then σ∗h is given by the
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matrix (σ(hij)). The commutativity of the square ultimately follows from the fact that if
g−1 · b · σ(g) = b then the identity b−1 · g · b = σ(g) also holds.

From this we can conclude that the moduli spaces of proposition 3.2.23 come equipped
with a K0-linear (respectively Ĕ-linear) left action by Jb(Qp) that commutes with the σ-

linear (respectively σ̂-linear) right action of WK0 (respectively WĔ/E). Indeed, the action

map is compatible with Weil descent datum and since Jb(Qp) is a constant group defined
over Fp the Weil group action on it is trivial.

3.2.9 Group functoriality

We start this subsection discussing a convention. As we have discussed above the space
ShtG,b,[µ],∞ × Spd(Cp, OCp) comes equipped naturally with a left action by Jb(Qp) and right

actions by G(Qp) and WĔ/E. We have also justified that these three actions commute. We

may always replace the left Jb(Qp)-action by a right Jb(Qp)-action by defining α ·j := j−1 ·α.

In this way we can say more succinctly that ShtG,b,[µ],∞×Spd(Cp, OCp) comes equipped with
a right action by the group G(Qp) × Jb(Qp) ×WĔ/E. Moreover ShtG,b,[µ],∞ × Spd(Cp, OCp)

together with its right action by G(Qp) × Jb(Qp) × WĔ/E only depends on b through its

associated element [b] ∈ B(G).
In this section we briefly describe how this action behaves with respect to a morphism

of algebraic groups. Fix such a morphism f : G → H of reductive groups over Qp. Let
bH = f(b) ∈ H(L) and let [µH ] = [f ◦ µ]. From the Tannakian definition of Eb := E ◦ Fb and
the identity FbH = Fb ◦ f∗ we get a canonical identification of H-torsors f∗Eb = EbH which
defines a morphism

f∞,∞ : ShtG,b,[µ],∞ → ShtH,bH ,[µH ],∞

sending
[α : G 99K Eb] 7→ [f∗α : H 99K EbH ].

Associated to bH we can form JbH = Aut⊗(FbH ) and we get a morphism of algebraic
groups f : Jb → JbH . We get commutative diagrams

Jb(Qp) Jb(Qp) ShtG,b,[µ],∞ σ̂∗ShtG,b,[µ],∞

JbH (Qp) JbH (Qp) ShtH,bH ,[µH ],∞ σ̂∗ShtH,bH ,[µH ],∞.

ιb

f f

τb

f∞,∞ σ̂∗f∞,∞

ιbH τbH

We conclude that the basechange of f∞,∞ to Spd(Cp, OCp) is equivariant with respect to the
G(Qp) × Jb(Qp) ×WĔ/E-action, where G(Qp) × Jb(Qp) acts on ShtH,bH ,[µH ],∞ through the
map

f : G(Qp)× Jb(Qp)→ H(Qp)× JbH (Qp)

obtained from the map of algebraic groups f : G× Jb → H × JbH .
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We may also impose a level structure K ⊆ G(Qp) to get a family of morphisms

fK,f(K) : ShtG,b,[µ],K → ShtH,bH ,[µH ],f(K).

This family of maps ranges over the compact subgroups of G(Qp). Notice that even if K
is open in G(Qp), f(K) might not be open in H(Qp). Each morphism in this family is
Jb(Qp)-equivariant and its basechange to Spd(Cp, OCp) is WĔ/E-equivariant.

3.3 The case of tori

3.3.1 Norm morphisms

In this section we study ShtG,b,[µ],∞ ×Ĕ Spd(Cp, OCp) together with its action by G(Qp) ×
Jb(Qp) ×WĔ/E in the case in which G is a torus. We change our notation slightly and let

G = T for this case. We remark that this case was tackled by M. Chen in [7] and it was also
thoroughly discussed in [14]. We recall the story in a different language.

By the work of Kottwitz we know that every element of B(T ) is basic and that the
Kottwitz map κT : B(T ) → π1(T )ΓQp

= X∗(TQp)ΓQp
is a bijection. The sets B(T, µ) are

singletons and are determined by the image of µ in π1(T )ΓQp
.

Let us show that in the case of tori moduli spaces of p-adic shtukas are 0-dimensional.

Proposition 3.3.1. If b ∈ B(T, µ) then all the maps in the following diagram are isomor-
phisms:

Gr
adm,[µ]

Ĕ
(Eb) Gr

[µ]

Ĕ
(Eb) Gr

≤[µ]

Ĕ
(Eb)

(F lωb
Ĕ,[−µ]

)♦ Spd(Ĕ, OĔ)

πBB

Proof. The top and left arrows in the square are isomorphisms since µ is minuscule. Since T
is a torus the only parabolic subgroup of T is itself, this gives F lωb

Ĕ,[−µ]
∼= TĔ/TĔ = Spec(Ĕ).

Now, when b ∈ B(T, µ) the admissible locus Gr
adm,≤[µ]

Ĕ
(Eb) is non-empty and open within

Gr
[µ]

Ĕ
(Eb). Since |Spd(Ĕ, OĔ)| = {∗} we must have Gr

adm,[µ]

Ĕ
(Eb) = Spd(Ĕ, OĔ).

On geometric points the situation is very simple, we have that the natural structure map
Gradm,≤µCp

(Eb)→ Spd(Cp, OCp) is an isomorphism and

ShtT,b,[µ],∞ × Cp ∼= T (Qp)× Spd(Cp, OCp),

since on geometric points every right T (Qp)-torsor is trivial. It becomes more interesting

when we compare the action of Jb(Qp) and WĔ/E to that of T (Qp). We begin by discussing

the action of Jb(Qp).
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Recall that if b is basic then Jb is an inner form of T , and that since T is commutative
we must have T = Jb. More precisely we have a canonical inclusion Jb(Qp) ⊆ T (K0) that
induces an isomorphism onto T (Qp), we denote by jb this identification.

Proposition 3.3.2. The action of T (Qp) and Jb(Qp) are inverse to each other. In other

words, if S ∈ PerfCp, f : |S| → Jb(Qp) is a continuous map, and α ∈ ShtT,b,[µ],∞ × Cp then

α ·Jb(Qp) f = α ·T (Qp) jb(f
−1).

Before starting the proof of proposition 3.3.2 we recall the following lemma on Tannakian
formalism:

Lemma 3.3.3. Let X be a quasi-compact separated scheme over Qp, G an affine algebraic
group over Qp with center Z(G) and let T1, T2 be two G-torsors over X, let U be a Qp-linear
Tannakian category and let F : RepT (Qp)→ U denote an exact ⊗-functor.

1. There is a canonical injection ιF : Z(G)(Qp)→ Aut⊗(F)

2. There are canonical injections ιi : Z(G)(Qp)→ AutX(Ti) for i ∈ {1, 2}.

3. If T1 and T2 are isomorphic over X then the left action of Z(G)(Qp) on IsomU(T1, T2)
through AutX(T1) coincides with the right action of Z(G)(Qp) on Isom(T1, T2) through
AutX(T2). That is, α ◦ ι1(g) = ι2(g) ◦ α for every g ∈ T (Qp) and α ∈ IsomX(T1, T2).

Proof. The proof of the first claim and the second claim are very similar so we only prove the
second. Let ωT1 and ωT2 denote the fiber functors associated to T1 and T2 respectively. Con-
sider the identity functor Id : RepG(Qp)→ RepG(Qp), we have that Z(G)(Qp) = Aut⊗(Id) ⊆
Aut⊗(ωcan,Qp) = G(Qp). For any g ∈ Z(G)(Qp) we let ηg : Id→ Id denote the natural trans-

formation that acts on (V, ρ) by ρ(g). Notice that η
(V,ρ)
g ∈ HomRepG((V, ρ), (V, ρ)) since g is

central.
This gives the desired maps:

ιi : Aut⊗(Id)→ Aut⊗(ωTi ◦ Id)

g 7→ ωTi(ηg)

Let us prove the third claim, suppose now that α : ωT1 → ωT2 is an isomorphism and
let g ∈ Z(G)(Qp). We have by definition ιi(g) = ωTi(ηg). To prove the formula α ◦ ι1(g) =
ι2(g) ◦ α we must prove that the following diagram is commutative:

ωT1(V, ρ) ωT2(V, ρ)

ωT1(V, ρ) ωT2(V, ρ)

α

ωT1 (ηg) ωT2 (ηg)

α

But ηg : (V, ρ)→ (V, ρ) is a morphism in RepG(Qp), so by definition of natural transformation
the diagram must be commutative.
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Proof of proposition 3.3.2. We will justify the claim with the aid of the following commuta-
tive diagram which we explain below:

AutXFF,Cp
(Ee) T (Qp) AutXFF,Cp

(Eb)

Je(Qp) Jb(Qp)

T (K0)

ιEe
ιEb

ιFb
ιFe

ιe

jb

Recall that Fb and Fe denote isocrystals with T -structure, that Jb(Qp) = Aut⊗(Fb) and that
Eb = E ◦ Fb. The triangles on the left and right of the diagram correspond to the triangles:

Aut⊗(Id) Aut⊗(Fb ◦ Id)

Aut⊗(E ◦ Fb ◦ Id)

In particular, the triangles on the first diagram are commutative. The bottom square corre-
sponds to the concrete computation of Jb(Qp) as a σ-centralizer that is

Jb(Qp) = {g ∈ G(K0) | g−1bσ(g) = b},

since T is abelian this is T (K0)σ=Id = T (Qp). This implies that the maps ιFb and ιFe of
lemma 3.3.3 are isomorphisms and we have that jb = ι−1

Fb .
By lemma 3.3.3, for all α ∈ IsomXFF,Cp\∞(Ee, Eb) and all t ∈ T (Qp) we have ιFb(t) ◦ α =

α ◦ ιFe(t). We can compute the right action of Jb(Qp) as follows:

α ·Jb(Qp) j = j−1 ◦ α
= ιFb(jb(j

−1)) ◦ α
= α ◦ ιFe(jb(j−1))

= α ·T (Qp) jb(j
−1)

On the other hand,

ShtT,b,[µ],∞(Cp) ⊆ IsomXFF,Cp\∞(Ee, Eb),

and this inclusion is T (Qp)× Jb(Qp)-equivariant. Moreover, the natural map of sets

ShtT,b,[µ],∞(Cp)→ |ShtT,b,[µ],∞ × Cp|

is bijective and the Jb(Qp)-action is determined by the Jb(Qp)-action. This finishes the
proof.
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Let us study the Weil group action. In contrast to the actions of Jb(Qp) and T (Qp) the
action of WĔ/E on ShtT,b,[µ],∞ × Cp is not Cp-linear. In particular, we can only compare the
actions of WĔ/E and T (Qp) on those invariants of ShtT,b,[µ],∞×Cp that do not depend on the
structure morphism to Spd(Cp, OCp). In our case we compare the continuous actions on the
topological space of connected components. As we have seen above this topological space is
a topological right T (Qp)-torsor. Let x ∈ π0(ShtT,b,[µ],∞ × Cp) and γ ∈ WĔ/E. We have

x ·WĔ/E
γ = x ·G(Qp) gγ,x

for a unique element gγ,x ∈ T (Qp). Since the actions of WĔ/E and T (Qp) commute we get

a group homomorphism g−,x : W op

Ĕ
→ T (Qp). Since T (Qp) is commutative this morphism is

independent of x. Moreover, the naive map of sets γ 7→ gγ,x which would usually not be a
group homomorphism is a group homomorphism again by the commutativity of T (Qp). We
denote this later group homomorphism by

mT,µ : WĔ/E → T (Qp).

The following line of reasoning is taken from [44] lemma 1.22, which in turn is an elab-
oration of an argument in [34] page 413/41. Let E ⊆ Qp denote a finite field extension let
{ToriQp} denote the category of tori defined over Qp. Recall the functor X∗(−) : {ToriQp} →
Sets given by the set of maps Gm → TQp . Consider the subfunctor XE

∗ ⊆ X∗ given by
the subset of maps Gm → TQp whose field of definition is E. This functor is representable

by ResE/QpGm and comes equipped with a universal cocharacter µu ∈ XE
∗ (ResE/QpGm).

In other words, given a torus T ∈ {ToriQp} and µ ∈ XE
∗ (T ) there is a unique map

Nmµ : ResE/QpGm → T of algebraic groups over Qp such that Nmµ ◦ µu = µ in X∗(T ).
The universal cocharacter can be expressed on E-points as follows:

E×
e 7→e⊗e−−−−→ (E ⊗ E)×.

Associated to µu there is a unique element of [bu] ∈ B(ResE/QpGm, µu) since the Kottwitz

map κ : B(G)→ π1(G)ΓQp
is bijective for tori. We fix a representative bu ∈ ResE/QpGm(Q̆p)

and abreviate by mE,µu the map m(ResE/QpGm,µu) previously constructed.

We can compute the WĔ/E-action on |ShtT,b,[µ],∞ × Cp| by reducing it to the universal

case. Suppose we are given µ ∈ XE
∗ (T ) and b ∈ T (K0) with [b] ∈ B(T, µ), then automatically

(b, µ) is admissible as in definition 3.2.13 and from the functoriality of the Kottwitz map
we have that [Nmµ(bu)] = [b] in B(T ). We may replace b by Nmµ(bu) and we get a norm
morphism

Nmµ : ShtResE/Qp (Gm),bu,[µu],∞ × Cp → ShtT,b,[µ],∞ × Cp.

This map is E××WĔ/E-equivariant when the right space is endowed with the action induced

from the map Nmµ : ResE/Qp(Gm)(Qp) = E× → T (Qp). We can deduce the following.

Proposition 3.3.4. Let the notation be as above, for all T ∈ {ToriQp} and µ ∈ XE
∗ (T ) we

145



have
mT,µ = Nmµ ◦mE,µu

as maps WĔ/E → T (Qp).

Proof. Fix x ∈ π0(ShtResE/Qp (Gm),bu,[µu],∞ × Cp) with image y ∈ π0(ShtT,b,[µ],∞ × Cp) and

γ ∈ WĔ/E. The equivariance of the norm map with respect to E× and WĔ/E allow us to
compute:

y ·T (Qp) mT,µ(γ) = y ·WĔ/E
γ

= Nmµ(x ·WĔ/E
γ)

= Nmµ(x ·E× mE,µu(γ))

= y ·T (Qp) Nmµ(mE,µu(γ))

3.3.2 The Weil group action on the Lubin-Tate case

Our task now is to compute the action of WĔ/E on |ShtResE/Qp (Gm),bu,[µu],∞×Cp|. This is the

only section in which it will pay off to let k be a finite field. Let E ⊆ Qp be a finite field
extension of Qp, and fix a uniformizer π ∈ E. We let F ⊆ E denote the maximal unramified
extension, we let h = [E : Qp] and we let s = [F : Qp]. Let HLT,π denote a Lubin-Tate formal
group law with respect to π [37]. We may think of HLT,π as a p-divisible group defined over
OE and endowed with a strict OE-action ([13]). This means that the induced OE-action on
Lie(HLT ) is the canonical one. As a p-divisible group HLT has height h and dimension 1.

We let MLT = M(HLT,Fps ) denote the covariant Dieudonné module over F obtained from
Grothendieck-Messing theory [40]. We normalize the action of Frobenious on the covariant
Dieudonné theory as in [6], [54], [52]. LetMLT denote the Lie algebra of the universal vector
extension of HLT over OE. We have a canonical identification MLT [ 1

π
] = MLT ⊗F E, this

allows us to endow MLT with the usual one step filtration with Fil−1(MLT⊗FE) = MLT⊗FE
and

Fil−1(MLT ⊗F E)/F il0(MLT ⊗F E) = Lie(HLT )[
1

π
].

This data gives an object DLT = (MLT , ϕLT , F il
•(MLT ⊗F E)) in the category of weakly

admissible filtered isocrystals. Moreover, due to our normalization of Frobenious action, the
crystalline representation associated by Fontaine, Vcris(DLT ), gets identified on the nose with
the rational Tate module of H. That is, Vcris(DLT ) = Tp(HLT )[1

p
] as ΓE-representations, we

let VLT denote this representation.
The action of OE on HLT induces an action of E× on DLT and on VLT respecting all

structures, this way we may endow DLT and VLT with ResE/Qp(Gm)-structure if we reason
as in [43] remark 3.4. Since ResE/Qp(Gm) is a torus there is a unique cocharacter µLT ∈
XE
∗ (ResE/Qp(Gm)) defining the filtration on DLT . We compute µLT .

146



We may think of MLT as an E ⊗Qp F module endowed with Id⊗ σ-linear automorphism
ϕLT . We get a decomposition

MLT =
⊕
ι:F→E

(MLT )ι

of E-vector spaces where F -acts on (MLT )ι through the embedding ι : F → E. Since ϕLT
permutes these embeddings we get that each (MLT )ι has E-dimension 1. This in particular
implies that (MLT ) is a rank 1 free E ⊗Qp F -module. We get a decomposition

MLT ⊗F E =
⊕

e∈Idem

(MLT ⊗F E)e

of E⊗QpE-modules where e ranges over the idempotent elements of E⊗QpE. The cocharacter
µLT corresponds to a grading of MLT ⊗F E compatible with this decomposition. Moreover,
gr−1(MLT ⊗F E) maps isomorphically onto Lie(HLT )[ 1

π
]. Let e∆ denote the idempotent

associated to the diagonal map ∆ : E ⊗Qp E → E. Since the action of OE on HLT,π is strict
the action of E⊗QpE on Lie(HLT )[ 1

π
] is through ∆ (i.e. (e1⊗e2)·m = e1·e2·m). We have that

gr−1(MLT ⊗F E) = (MLT ⊗F E)e∆ and consequently gr0(MLT ⊗F E) =
⊕

e6=e∆(MLT ⊗F E)e.
The cocharacter Gm,E → ResE/Qp(Gm)E that defines this grading is on E-valued points the
following:

E×
−1−→ E×

e7→e⊗e−−−−→ (E ⊗ E)×

In other words, µLT = −µu. This information is already enough to compute the Weil group
action on ShtResE/Qp (Gm),bu,[µu],∞ × Cp.

Consider the following identity and notice again the change of signs coming from remark
3.2.2

Gr
adm,[µu]
E (EMLT

) = F l
ωbu
E,[µLT ] = Spd(E,OE).

On this space, L is characterized by the crystalline representation it defines since this space
consists of only one point. See remarks 3.2.3 and 3.2.5 and proposition 3.2.14. From the
compatibility of Fontaine’s functor with the Tate module we deduce that the crystalline
representation associated to L is the left action of ΓE on Tp(HLT,π)[1

p
].

After choosing a E ⊗Qp F basis for MLT and letting bu denote the action of ϕLT we get
an isomorphism

Triv(L)× Cp ∼= ShtResE/Qp (Gm),bu,[µu],∞ × Cp
where the space on the left denotes the moduli space of trivializations of L. The space
Triv(L)× Cp, being defined over Spd(E,OE), comes equipped with a canonical ΓopE -action,
but we emphasize that this action is not compatible with the Weil group action W op

Ĕ
⊆ ΓopE

on ShtResE/Qp (Gm),bu,[µu],∞ × Cp that we defined in section §2.7. Despite this, the canonical

action on Triv(L)× Cp will allow us to compute the WĔ/E-action we are interested in.
Let k denote an algebraically closed field extension of Fps and K0 as on the notation

section. The Weil group action on Triv(L) × Cp that we are interested in comes from
replacing the canonical Weil descent datum by the Weil descent datum τ induced from the
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automorphism
(ϕsLT )−1 : MLT → (Id⊗ σs)∗MLT = MLT .

Let γ ∈ WĔ/E with γ|K0 = σn·s, and let

Θcan,ΘWeil : W op

Ĕ/E
→ Aut(Triv(L)× Cp)

denote the action morphisms coming from the canonical and from the “ϕsLT -modified” Weil
descent data. Then Θcan(γ)−1 ·ΘWeil(γ) = τn with τn as in definition 3.2.20.

Now, recall that in the standard (or classical) normalization of covariant Dieudonné
theory one defines the isocrystal structure ψLT : σ∗MLT → MLT by defining ψLT = M(V)

where V : H
(p)
LT → HLT is the Verschiebung map. In the normalization we use we have

by definition ϕLT := ψLT
p

. Recall that ψLT ◦ M(FrobHLT ) = p, in other words ϕLT =

M(FrobHLT )−1. This gives ϕsLT coincides with M(Frob−sLT ). If we consider the multiplication
map [π] : HLT → HLT restricted to Spec(Fps) we see from the definition of a Lubin-Tate
formal group law that it agrees with the s-Frobenious automorphism of schemes. That is
Frob−sLT coincides with 1

π
as quasi-isogenies. Overall this implies that the action of ϕsLT on

MLT is multiplication by 1
π
⊗ 1, and consequently τ acts on Triv(L) via multiplication by

π ∈ E× = ResE/Qp(Gm)(Qp).
We claim now that mµ,E = ArtE where ArtE denotes Artin’s reciprocity map. Indeed,

since the crystalline representation associated to L is the Lubin-Tate character, the action of
Θcan on π0(Triv(L)×C) when restricted to the inertia subgroup IE is through the inverse of
the Lubin-Tate character. Notice again the sign change, this was discussed on remark 3.2.7.
This also gives the action of ΘWeil since Θcan and ΘWeil agree on IE. If σ̂π denotes the unique
lift of Frobenious on W ab

E with σ̂π|Eπ = Id with Eπ the Lubin-Tate extension associated to
π, we see that Θcan(σ̂π) acts trivially on π0(Triv(L)). This gives that ΘWeil(σ̂π) acts on
π0(Triv(L)) by τ which is multiplication by π. Specifying the action of IE and of σ̂π is one
way of characterizing Artin’s reciprocity map ArtE.

The following statement summarizes the results discussed on this section, for this state-
ment we let k = k:

Theorem 3.3.5. (Compare with [7] 4.1) Let T be a torus over Qp, b ∈ T (K0), µ ∈ X∗(T )
with [b] ∈ B(T, µ). Let E ⊆ Cp be the field of definition of µ, let ArtE : WE → (ΓE)ab → E×

denote Artin’s reciprocity character of local class field theory, let Nmµ : ResE/Qp(Gm) → T
be the unique map with Nmµ ◦ µu as discussed above and let ArtĔ/E denote the composition

ArtĔ/E : WĔ/E → WE
ArtE−−−→ E×, where the map WĔ/E → WE is the one induced by the

inclusion of fields E ⊆ Ĕ ⊆ Cp. Then the following hold:

1. ShtT,b,[µ],∞ × Cp is a trivial right T (Qp)-torsor over Spd(Cp, OCp).

2. If s ∈ π0(ShtT,b,[µ],∞ × Cp) and (g, j, γ) ∈ T (Qp)× Jb(Qp)×WĔ/E then

s · (g, j, γ) = s · (g · jb(j−1) · (Nmµ ◦ ArtĔ/E(γ)))

148



where jb : Jb(Qp) → T (Qp) is the isomorphism specified by regarding Jb(Qp) as a
subgroup of T (K0).

Since we have a full description of the Galois action we can easily compute from theorem
3.3.5 the connected components of ShtT,b,[µ],∞ as a space over Spd(Ĕ, OĔ). The computation
is easier to explain with the following lemma whose proof we leave to the reader:

Lemma 3.3.6. Let K be a locally profinite group, let L a p-adic field with Galois group ΓL and
LK a pro-étale K-torsor over Spd(L,OL). Define Triv(LK) as the moduli of trivializations
of LK. Then:

1. If C is the p-adic completion of an algebraic closure of L, then the choice of a map
α : Spd(C,OC)→ Triv(LK) determines a group homomorphism ρα : ΓopL → K.

2. For any k ∈ K we have ρα·k = k−1 · ρα · k.

3. The action of K on π0(Triv(LK)) is transitive.

4. If π0(α) denotes the unique connected component to which |α| maps to, then the stabi-
lizer subgroup is given by the formula Kπ0(α) = ρα(ΓopL ).

Proposition 3.3.7. Let K ⊆ T (Qp) denote the largest compact subgroup, the following
statements hold.

1. π0(ShtT,b,[µ],∞) is a free right T (Qp)/Nmµ(ArtĔ/E(ΓĔ))-torsor.

2. π0(ShtT,b,[µ],K) = π0(ShtT,b,[µ],K × Cp) and it is a free right T (Qp)/K-torsor.

Proof. The first statement follow directly from lemma 3.3.6 and theorem 3.3.5. The second
statement follows from the fact that the action of ΓĔ is continuous so the action of this
compact group factors through the maximal compact subgroup.

3.4 On the unramified case.

For this section k = k. The purpose of this section is to compute π0(ShtG,b,[µ],∞×Cp) together
with its right action by G(Qp) × Jb(Qp) ×WĔ/E-action under the assumption that G is an
unramified reductive group and that (b, µ) is HN-irreducible (See definition 3.2.15). We recall
that in this case the reflex field is of the form E = Qps for some s ∈ N and consequently

Ĕ = K0. Nevertheless, with the notation we have chosen, WĔ/E is the subgroup of WK0 of
those automorphisms of Cp that lift a power of σs : K0 → K0.
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3.4.1 Connected components of affine Deligne Lusztig Varieties

As it turns out, the connected components of moduli spaces of p-adic shtukas can be com-
puted from knowledge about the connected components of affine Deligne-Lusztig varieties.
In this section we recall the relation. Recall that if G is an unramified group then there is a
connected reductive group over Zp whose generic fiber is isomorphic to G. Let us fix such a

model and by abuse of notation denote it by G. We let K = G(Zp) and we let K̆ = G(OK0).
Since we are assuming k = k, the group GK0 is split over K0 and we have by the Cartan
decomposition a bijection

K̆\G(K0)/K̆ = X∗(TQp)

given by
µ 7→ pµ := µ(p) ∈ T (K0).

We may construct a map κG : G(K0) → π1(G)ΓQp
. Given an element b ∈ G(K0) there

is a unique µ′ ∈ X∗(TQp) with b ∈ K̆\pµ′/K̆. Then κG(b) is defined to be [µ′], the induced
class of µ′ in π1(G)ΓQp

. This map is a group homomorphism that is well-defined on σ-
conjugacy classes. Moreover, the map constructed in this way descends to the Kottwitz map
κG : B(G)→ π1(G)ΓQp

that we discussed on section §2.3.
Recall that associated to a pair (b, µ) one can associate an affine Deligne Lusztig variety

X≤µG (b). This is a perfect scheme (See [5]) over Spec(k) whose k-valued points can be
described as:

X≤µG (b)(k) =
{
g · K̆ ∈ G(K0)/K̆ | g−1 · b · σ(g) ∈ K̆\pµ′/K̆ with µ′ ≤ µ

}
In [9], [41] [22], the problem of determining connected components of affine Deligne

Lusztig varieties is thoroughly discussed. Although the description in full generality is com-
plicated, in our situation (G reductive and K hyperspecial) the problem is completely settled.
In the references provided above, the connected components are described in three steps. The
first step is to pass to the case of a simple adjoint group and it is done as follows:

Theorem 3.4.1. (See [9] 2.4.2) Let Gad denote the adjoint quotient of G, then there are
natural maps wG and wGad and elements cb,µ ∈ π1(G) (cbad,µad ∈ π1(Gad) respectively) well-
defined up to multiplication by π1(G)ΓQp (respectively π1(Gad)ΓQp ) making the following dia-
gram commutative and Cartesian:

X≤µG (b) X≤µad
Gad

(bad)

cb,µπ1(G)ΓQp × Spec(k) cbad,µadπ1(Gad)ΓQp × Spec(k)

wG w
Gad

In the statement above the two sets that appear on the lower horizontal arrow should be
interpreted as discrete topological groups so that the product is a disjoint union of copies of
Spec(k). Once one reduces the problem to the adjoint case, one can further simplify to the
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simple adjoint case by observing that if G = G1 ×G2 then we get a decomposition

X≤µG (b) = X≤µ1

G1
(b1)×k X≤µ2

G2
(b2).

This is how the first step is completed in the references.
The second step in the strategy is to reduce the general simple adjoint group case to the

case in which (b, µ) is HN-indecomposable. In this work we only consider the case in which
(b, µ) is already HN-irreducible which is a stronger condition to being indecomposable. For
this reason we do not review this step.

The third and final step is the determination of π0(X≤µG (b)) when G is simple adjoint and
(b, µ) is HN-irreducible or when it is HN-indecomposable but not HN-irreducible. Again, we
only review the HN-irreducible case.

Theorem 3.4.2. ([41] 1.1, [9] 1.1, [22] 8.1) If (b, µ) is HN-irreducible and G = Gad is
simple and adjoint then wG : π0(X≤µG (b))→ cb,µπ1(Gad)ΓQp is a bijection.

In what follows we rephrase these result in a form that will be more useful for our
purposes. For this let Gder denote the derived subgroup of G, let Gab := G/Gder the maximal
abelian quotient and denote by det : G → G/Gder the quotient map. We will often refer to
the quotient map G→ Gab as the determinant map.

Corollary 3.4.3. If Gder is simply connected the natural map det : X≤µG (b) → X≤µab
Gab

(bab)

induced from det : G → Gab gives a bijection of connected components π0(X≤µG (b)) ∼=
π0(X≤µab

Gab
(bab)) whenever (b, µ) is HN-irreducible.

Remark 3.4.4. Since X≤µab
Gab

(bab) is a disjoint union of copies of Spec(k) and Spec(k) is al-

gebraically closed, we could say instead that the map X≤µG (b)→ X≤µab
Gab

(bab) has geometrically
connected fibers.

Proof. For the convenience of the reader we provide an easy argument using theorems 3.4.2
and 3.4.1. A pair (b, µ) is HN-irreducible if and only if for every Qp-simple factor Gi of Gad

with projection map πi : G→ Gi the pair (bi, µi) := (πi(b), πi ◦µ) is HN-irreducible. Indeed,
the coefficient of µdom − νdomb associated to a positive root can be computed on the simple
factors of the adjoint quotient. From theorem 3.4.1 we get a Cartesian diagram:

π0(X≤µG (b)) π0(X≤µ1

G1
(b1))× · · · × π0(X≤µnGn

(bn))

cb,µπ1(G)ΓQp cb1,µ1π1(G1)ΓQp × · · · × cbn,µnπ1(Gn)ΓQp

wG wGi

The vertical right hand map is a bijection by theorem 3.4.2 which implies the vertical left
hand map is also a bijection by theorem 3.4.1.

The result follows from showing that in the commutative diagram below the bottom
horizontal arrow and the vertical right hand arrow are both bijective.
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π0(X≤µG (b)) π0(X≤µab
Gab

(bab))

cb,µπ1(G)ΓQp cbab,µabπ1(Gab)ΓQp

wG w
Gab

Since Gder is simply connected we have a ΓQp-equivariant identification π1(G)→ π1(Gab) so
the bottom map is easily seen to be a bijection. Moreover, the adjoint quotient of Gab is {e}
and theorem 3.4.1 says that wGab : X≤µab

Gab
(bab)→ cbab,µabπ1(Gab)ΓQp is an isomorphism in this

case.

Theorem 2 explains the role that affine Deligne-Lusztig varieties will play in our compu-
tation. Let us recall it in the notation of chapter 3.

Theorem 3.4.5. Let G be an unramified reductive group over Qp, µ a conjugacy class of
geometric cocharacters and [b] ∈ B(G, µ).

a) There is a continuous and Jb(Qp)-equivariant specialization map

Sp : |ShtG,b,[µ],∞ × Cp| → |X≤µG (b)|.

b) The specialization map induces a bijection of connected components

π0(Sp) : π0(ShtG,b,[µ],∞ × Cp)
∼=−→ π0(X≤µG (b)).

3.4.2 The simply connected case

In this subsection we compute π0(ShtG,b,[µ],∞) under the assumption that Gder is simply
connected.

Proposition 3.4.6. Suppose that G is as above. The determinant map induces a surjective
map of locally spatial diamonds

det : ShtG,b,[µ],∞ → ShtGab,bab,[µab],∞

Proof. We may verify surjectivity after basechanging to an algebraic closure. Moreover, we
can choose a section s : Spa(C,C+)→ Gr

adm,≤[µ]
K0

(Eb) and consider the following commutative
diagram.
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G(Qp)× Spa(C,C+) Gab(Qp)× Spa(C,C+)

ShtG,b,[µ],∞ ×Gr≤[µ]
K0

(Eb)
Spa(C,C+) ShtGab,bab,[µab],∞ ×K0 Spa(C,C+)

ShtG,b,[µ],∞ ×K0 Spa(C,C+)

∼= ∼=

We can consequently reduce to the surjectivity of G(Qp) → Gab(Qp). That is, we must

prove that can lift continuous maps f ∈ C0(|Spa(R,R+)|, Gab(Qp)) to a continuous map
f̃ ∈ C0(|Spa(R,R+)|, G(Qp)). The key point is, of course, that since Gder is simply connected
by Kneser’s theorem [31] the map of groups G(Qp)→ Gab(Qp) is surjective.

Now, let Z(G) denotes the center of G. We get a strict map of topological abelian groups
Z(G)[Qp] → Gab(Qp) with finite kernel and cokernel. Im(Z(G)[Qp]) is an open subgroups
and there is a finite number of elements g1, . . . , gn ∈ G(Qp) with ∪gigi · Im(Z(G)[Qp]) =
Gab(Qp). The map ∪gigi · Z(G)[Qp]) → Gab(Qp) is surjective and factors through G(Qp)
which finishes the proof.

Lemma 3.4.7. Let G be as above (unramified and such that Gder = Gsc). Let K ⊆ G(Qp)
be a hyperspecial subgroup. Suppose (b, µ) is HN-irreducible, then

det : ShtG,b,[µ],K → ShtGab,bab,[µab],det(K)

has geometrically connected fibers.

Proof. Since G splits over an unramified extension, we can construct an exact sequence

e→ Gder → G → Gab → e

of reductive groups over Zp. Indeed, this evident for split groups and we may use étale descent
from Spec(Zps) to Spec(Zp) in the general case. An application of Lang’s theorem proves
that det(K) = Gab(Zp) which is the maximal bounded subgroup of Gab. By functoriality our
results on chapter 1 and 2 we have a commutative diagram of specialization maps:

| ShtG,b,[µ],K × Cp | | ShtGab,bab,[µab],det(K) × Cp |

| X≤µG (b) | | X≤µab
Gab

(bab) |

det

SpG SpGab

det

The vertical maps give bijections of connected components by theorem 3.4.5 and the lower
horizontal map induces a bijection of connected components by corollary 3.4.3.

The following proposition is a particular case of an unpublished result of Hansen and
Weinstein that follows from the work done in [19]. We provide an alternative proof that
follows the steps of the analogous statement in [8] Lemme 6.1.3.
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Proposition 3.4.8. Let G be as above and let (b, µ) be HN-irreducible. Then Gr
adm,≤[µ]
K0

(Eb)
is geometrically connected over Spd(K0, OK0).

Proof. Let Spa(C,OC)→ Spd(K0, OK0) be a map with C a non-Archimedean algebraically
closed field, K ⊆ G(Qp) a hyperspecial subgroup, and letM denote a connected component
of ShtG,b,[µ],K × Spd(C,OC). We consider the restriction of the period morphism πGM,K,C :

M→ Gr
adm,≤[µ]
C (Eb). By lemma 3.4.7,M is an open subdiamond of ShtG,b,[µ],K×Spd(C,OC)

and by étaleness of πGM,K,C the set U := πGM,K,C(M) is a connected open subset of

Gr
adm,≤[µ]
C (Eb). We claim, and prove below, that this open subset doesn’t depend on the

choice of M. This already implies Gr
adm,≤[µ]
C (Eb) = πGM,K,C(M) and in particular that it is

connected.
Let us prove the claim, for this we take a connected component M∞ of ShtG,b,[µ],∞ ×

Spd(C,OC) that maps toM. Notice that π∞,K(M∞) =M since the groups K′ ⊆ K of finite
index are cofinal and for those the transition maps

ShtG,b,[µ],K′ × Spd(C,OC)→ ShtG,b,[µ],K × Spd(C,OC)

are finite étale and surjective so that on topological level the transition maps are open and
closed. This also implies U = πGM(M∞).

By lemma 3.4.7 π0(ShtG,b,[µ],K×Spd(C,OC))→ π0(ShtGab,bab,[µab],det(K)) is a bijection. Let
M′ denote some other connected component, and let z and z′ denote the elements defined
by M and M′ in π0(ShtG,b,[µ],K × Spd(C,OC)). Now, Gab(Qp) acts transitively on

π0(ShtGab,bab,[µab],∞ × Spd(C,OC))

and consequently Gab(Qp)/det(K) acts transitively on

π0(ShtGab,bab,[µab],det(K) × Spd(C,OC)).

This allow us to find an element g ∈ G(Qp) with det(z) · det(g) = det(z′). Let x :
Spd(C,C+) → U be a geometric point and let x : Spd(C,C+) → M∞ be a lift of x.
Consider x · g. On one hand it is a lift of x, and on the other hand its projection to
ShtG,b,[µ],K × Spd(C,OC) lands on M′. Indeed, we have a commutative diagram:

ShtG,b,[µ],∞(C,C+) ShtGab,bab,[µab],∞(C,C+)

ShtG,b,[µ],K(C,C+) ShtGab,bab,[µab],det(K)(C,C
+)

det

π∞,K π∞,det(K)

det

We have:

det ◦ π∞,K(x · g) = π∞,det(K) ◦ det(x · g)

= π∞,det(K)[det(x) · det(g)]

= π∞,det(K) ◦ det(x) · det(g)
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This map lands on det(z) ·det(g) which is det(z′). This implies that π∞,K(x ·g) is a geometric
point on M′.

This proves that any topological point of U also comes from a point in M′, and that
πGM(M) ⊆ πGM(M′). Since the roles ofM andM′ in the proof can be reversed the converse
also holds.

Lemma 3.4.9. Let K be a hyperspecial subgroup of G(Qp) and let Kder = K∩Gder(Qp). Let
m ∈ π0(ShtGab,bab,[µab],∞ × Spd(C,OC)) and let Xm denote the space defined by the following
Cartesian diagram:

Xm Spd(C,OC)

ShtG,b,[µ],∞ × C ShtGab,bab,[µab],∞ × C.

m

det

Then Kder acts transitively on π0(Xm).

Proof. Since ShtGab,bab,[µab],∞×Spd(C,OC) is 0-dimensional, the space Xm is the collection of
connected components of ShtG,b,[µ],∞×Spd(C,OC) that map to m. Let x, y ∈ π0(Xm), using
lemma 3.4.7 we see that π∞,K(x) = π∞,K(y), we let M denote this connected component.
Since ShtG,b,[µ],∞×Spd(C,OC) is a K-torsor over ShtG,b,[µ],K×Spd(C,OC), K acts transitively
on the set of connected components of ShtG,b,[µ],∞×Spd(C,OC) overM. In particular, there
is an element g ∈ K with x · g = y. Since det(x) = det(y) we must have that m · det(g) = m,
but the action of Gab(Qp) on π0(ShtG,b,[µ],∞ × Spd(C,OC)) is simple so det(g) = e and
g ∈ Gder(Qp) as we wanted to show.

We can now describe connected components at infinite level.

Theorem 3.4.10. Suppose G is an unramified group over Qp, suppose that Gder is simply
connected and suppose that (b, µ) is HN-irreducible, then the determinant map

det∞,∞ : ShtG,b,[µ],∞ → ShtGab,bab,[µab],∞

has connected geometric fibers.

Proof. Since ShtGab,bab,[µab],∞ × Spd(Cp, OCp) is isomorphic to Gab(Qp) × Spd(Cp, OCp), we
may prove instead that the determinant map induces a bijection

π0(det) : π0(ShtG,b,[µ],∞ × Spd(Cp, OCp))→ π0(ShtGab,bab,[µab],∞ × Spd(Cp, OCp)).

Indeed, we may use [51] 16.2 which says that cohomology of a locally spatial diamond is
invariant under the change of geometric point. In particular, this applies to the set of
connected components since it is a cohomological invariant.

Let x ∈ π0(ShtG,b,[µ],∞×Spd(Cp, OCp)). Given K a finite extension of K0 we let xK denote
the image of x on π0(ShtG,b,[µ],∞ × Spd(K,OK)) and let f : Spd(K,OK) → Gradm,≤[µ](Eb)
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be a point whose associated crystalline representation is as in corollary 3.2.18. Let Sf :=
Triv(f ∗(L)) the geometric realization of f ∗L. This space is also the fiber over f of the
infinite level Grothendieck-Messing period map. Let s ∈ π0(Sf ) be an element mapping to
xK . In summary we have taken a commutative diagram as follows:

∗ π0(ShtG,b,[µ],∞ × Spd(Cp, OCp))

π0(Sf ) π0(ShtG,b,[µ],∞ × Spd(K,OK))

x

s xK

f

We let Gder
x (respectively Gder

xK
and Gder

s ) denote the stabilizer in Gder(Qp) of its action
on π0(ShtG,b,[µ],∞ × Spd(Cp, OCp)) (respectively π0(ShtG,b,[µ],∞ × Spd(K,OK)) and π0(Sf )).

By Chen’s theorem 3.2.16 (phrased in terms of lemma 3.3.6) Gs is an open subgroup of
Gder(Qp) and we have inclusions Gder

x , Gder
s ⊆ Gder

xK
. By lemma 3.4.9, Gder

x · Kder = Gder(Qp)
which implies that Gder

xK
· Kder = Gder(Qp) as well. In particular, the projection map Kder →

Gder(Qp)/G
der
xK

is surjective.
Since Gder(Qp)/G

der
xK

has the discrete topology and Kder is compact, we get that Gder
xK

is closed and of finite index within Gder(Qp). Moreover, since Gder is quasi-split (even
unramified) all of the simple factors of Gder are isotropic. By Margulis theorem [39] II 5.1
we can conclude that Gder

xK
= Gder(Qp). Since the argument doesn’t depend on the choice of

x the action of Gder(Qp) on π0(ShtG,b,[µ],∞ × Spd(K,OK)) is trivial.
Now, Spd(Cp, OCp) = lim←− Spd(K,OK) and we may use [51] 11.22 to compute the action

map
Gder(Qp)× |ShtG,b,[µ],∞ × Spd(Cp, OCp)| → |ShtG,b,[µ],∞ × Spd(Cp, OCp)|

as the limit of the action maps

lim←−
K⊆Cp

[Gder(Qp)× |ShtG,b,[µ],∞ × Spd(K,OK)| → |ShtG,b,[µ],∞ × Spd(K,OK)|]

Since in the transition maps |ShtG,b,[µ],∞ × Spd(K1, OK1)| → |ShtG,b,[µ],∞Spd(K2, OK2)|
every connected component on the source surjects onto a connected component on the tar-
get we have that π0(ShtG,b,[µ],∞ × Spd(Cp, OCp)) = lim←− π0(ShtG,b,[µ],∞ × Spd(K,OK)). In

particular, Gder(Qp) acts trivially on the set of connected components. This defines a transi-
tive action of Gab(Qp) on π0(ShtG,b,[µ],∞ × Spd(Cp, OCp)). The map π0(det) is surjective and
equivariant for this action. Since Gab(Qp) acts freely on π0(ShtGab,bab,[µab],∞× Spd(Cp, OCp)),
π0(det) must be a bijection.

Corollary 3.4.11. For G, b and µ as in theorem 3.4.10 and any compact subgroup K ⊆
G(Qp) the map

ShtG,b,[µ],K → ShtGab,bab,[µab],det(K)

has non-empty connected geometric fibers.
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Proof. One can deduce the claim for arbitrary compact K from the identity

ShtG,b,[µ],K = ShtG,b,[µ],∞/K.

Indeed, the formation of π0 commutes with colimits, so that

π0(ShtG,b,[µ],K) = π0(ShtG,b,[µ],∞)/K

which is π0(ShtGab,bab,[µab],∞)/det(K).

Using functoriality and equivariance for the three actions we can describe the actions by
the three groups on π0(ShtG,b,[µ],∞ × Cp) in the spirit of theorem 3.3.5.

Theorem 3.4.12. (Compare with [7] 4.1) Let G, b and µ as in theorem 3.4.10. Let E ⊆ Cp
be the field of definition of [µ], let ArtĔ/E : WĔ/E → E× be as in theorem 3.3.5, let Nmµab :

ResE/Qp(Gm)→ Gab be the norm map associated to µab then:

1. The G(Qp) right action on π0(ShtG,b,[µ],∞×Cp) makes it a trivial right Gab(Qp)-torsor.

2. If s ∈ π0(ShtG,b,[µ],∞ × Cp) and j ∈ Jb(Qp) then

s ·Jb(Qp) j = s ·Gab(Qp) det(j
−1))

where det = jbab◦detb with detb : Jb(Qp)→ Jbab(Qp) the map obtained from functoriality
of the formation of Jb, respectively Jbab, and where the map jbab is the isomorphism
jbab : Jbab(Qp) ∼= Gab(Qp) obtained from regarding Jbab(Qp) as a subgroup of Gab(K0).

3. If s ∈ π0(ShtG,b,[µ],∞ × Cp) and γ ∈ WĔ/E then

s ·WĔ/E
γ = s ·Gab(Qp) [Nmµab ◦ ArtĔ/E(γ)].

3.4.3 z-extensions

In this subsection we extend theorem 3.4.10 to the case in which G is not necessarily simply
connected but we still assume that G is unramified and (b, µ) is HN-irreducible. In what
follows we will denote by Gsc the central simply connected cover of Gder and we denote by
G◦ = G(Qp)/Im(Gsc(Qp)). Notice that when Gder is simply connected G◦ = Gab(Qp). In
general, G◦ surjects onto Gab(Qp) and the kernel is a finite group.

Recall the following definition used extensively by Kottwitz:

Definition 3.4.13. A map of connected reductive groups f : G′ → G is a z-extension if:

• f is surjective.

• Z = ker(f) is central in G′.

• Z is isomorphic to a product of tori of the form ResFi/QpGm for some finite extensions

Fi ⊆ Qp.
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• G′ has simply connected derived subgroup.

By [32] lemma 1.1 whenever G is an unramified group over Qp that splits over Qps , there
exists a z-extension G′ → G with Z isomorphic to a product of tori of the form ResQps/QpGm.
In particular, it is unramified as well.

In [35] Kottwitz proves that for any reductive group G and cocharacter µ the natural
morphism B(G) → B(Gad) induces a bijection B(G, µ) ∼= B(Gad, µad). From here we can
easily deduce the following:

Lemma 3.4.14. Let A ⊆ T ⊆ B ⊆ G as in the notation section. Assume that Qps is a
splitting field for G. Let µ ∈ X+

∗ (T ), [b] ∈ B(G, µ), and f : G′ → G a z-extension with
Z = ker(f) isomorphic to a finite product of copies of ResQps/QpGm. Let T ′ = f−1(T ) denote
the maximal torus of G′ projecting onto T . Then:

1. For any choice of µ′ ∈ X∗(T ′)+ lifting µ there is a unique lift [b′] ∈ B(G′) lifting [b]
with [b′] ∈ B(G′, µ′).

2. For b′ and µ′ as in the previous claim (b, µ) is HN-irreducible if and only if (b′, µ′) is
HN-irreducible.

3. If E is the field of definition of µ with Qp ⊆ E ⊆ Qps then there is a lift µ′ ∈ X∗(T ′)+

with field of definition E.

Proof. The first claim follows directly from the identifications

B(G, µ) = B(Gad, µad) = B(G′, µ′).

The second claim follows from the first claim, from the fact that Z := ker(f) is central and
from the fact that HN-irreducibility can be checked on the adjoint quotient once it is known
that b′ ∈ B(G, µ′) holds.

For the third claim consider the exact sequence of ΓQp-modules:

e→ X∗(Z)→ X∗(T
′)→ X∗(T )→ e

Since G and G′ split over Qps the subgroup ΓQps ⊆ ΓE ⊆ ΓQp acts trivially on all
of these groups. We treat this as an exact sequence of Gal(Qps/E)-modules. Since Z =∏n

i=1 ResQps/Qp (Gm) for some n, we can conclude that X∗(Z) is an induced Z[Gal(Qps/E)]-

module and by Shapiro’s lemma H1(Gal(Qps/E), X∗(Z)) = 0. This implies that

X∗(T
′)ΓE = X∗(T

′)Gal(Qps/E) → X∗(T )Gal(Qps/E) = X∗(T )ΓE

is surjective as we wanted to prove.

Proposition 3.4.15. Suppose that G′ is an unramified group, (b′, µ′) a pair with [b′] ∈
B(G′, µ′), suppose that Z ⊆ G′ is a central torus, and let G = G′/Z with projection map
f : G′ → G. Let b = f(b′) and µ′ = f ◦ µ the following hold:

158



1. Gr≤[µ′](Eb′)→ Gr≤[µ](Eb) is an isomorphism.

2. Gradm,≤[µ′](Eb′)→ Gradm,≤[µ](Eb) is an isomorphism.

3. If LG′ (respectively LG) denotes the pro-étale G′(Qp)-torsor (respectively G(Qp)-torsor)
then LG = f∗LG′.

Proof. BothGr≤[µ′](Eb′) andGr≤[µ](Eb) are spatial diamonds that are proper over Spd(K0, OK0),
any morphism between them is qcqs and by [51] 12.5 it is enough to prove the map is a bijec-
tion at the level of geometric points. In this case after fixing an isomorphismBdR(C) ∼= C((t))
we may reason as in the classical case. That is,

Gr(Eb′)(C,C+) ∼= G′(C((t)))/G′(C[[t]]),

also
Gr(Eb)(C,C+) ∼= G(C((t)))/G(C[[t]])

and the map
G′(C((t)))/G′(C[[t]])→ G(C((t)))/G(C[[t]])

is a Z(C((t)))/Z(C[[t]])-torsor. On the other hand Z(C((t)))/Z(C[[t]]) ∼= X∗(Z) and we
have an exact sequence:

e→ X∗(Z)→ X∗(T
′)→ X∗(T )→ e,

and the lifts of µ also form a X∗(Z)-torsor. Given a point x ∈ Gr(Eb)(C,C+) of type
µ ∈ X+

∗ (T ) and a lift µ′′ ∈ X+
∗ (T ′) there is a unique y ∈ Gr(Eb)(C,C+) of type µ′′ this

finishes the proof of the first claim.
Let us prove the second claim, by the previous claim Gradm,≤[µ′](Eb′) and Gradm,≤[µ](Eb)

are two open sub-diamonds of Gr≤[µ](Eb). By [51] 11.15 it is enough to understand the un-
derlying topological space of this open subsheaves. We prove that Gradm,≤[µ′](Eb′)(C,C+)→
Gradm,≤[µ](Eb)(C,C+) is a bijection.

If we represent an element x ∈ Gr≤[µ′](Eb′)(C,C+) by a modification (αx : Ex 99K Eb′),
then f(x) is represented by (f∗αx : f∗Ex 99K Eb). By definition x ∈ Gradm,≤[µ′](Eb′)(C,C+)
when Ex is a trivial G′-torsor this implies f∗Ex is trivial so that f(x) ∈ Gradm,≤[µ](Eb)(C,C+).
Assume instead f(x) ∈ Gradm,≤[µ](Eb)(C,C+), and let [b′x] ∈ B(G′) be the unique element
with Eb′x ∼= Ex. We need to prove [b′x] = [e]. We begin by proving that κ([b′x]) = κ([b′])− [µ′].
Indeed using ([14] 2.15) we can deduce that κ(Ex) is independent of x ∈ Gr≤[µ](Eb′)(C,C+)
since Gr≤[µ](Eb′) is connected. It is then enough to prove κ([b′x]) = κ([b′]) − [µ′] when
x ∈ Gr≤[µ](Eb′)(C,C+) is the point associated to ξµ. This is precisely the content of ([27]
6.4.1).

By the assumption b′ ∈ B(G′, µ′) we have κ([b′x]) = [e] ∈ π1(G′)ΓQp
, so that to prove

[b′x] = [e] it is enough to prove that [b′x] is basic. But f([b′x]) = [e] so νb′x must factor through
X∗(Z)⊗Q, and since Z is central [b′x] is basic.

For the last claim, recall that for any (V, ρ) ∈ RepG′(Qp) and x ∈ Gradm,≤[µ](Eb′)(R,R+),
ρ∗LG′(x) evaluates to H0(XFF,R, ρ∗Ex). When ρ = τ ◦ f we get H0(XFF,R, τ∗Ef(x)) which is
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the evaluation of LG at (V, τ) ∈ RepG(Qp).

Proposition 3.4.16. If (b, µ) is HN-irreducible then the following hold:

1. Gradm,≤[µ](Eb)× Spd(C,OC) is connected

2. The right action of G(Qp) on π0(ShtG,b,[µ],∞ × Spd(C,OC)) makes this set into a G◦-
torsor.

Proof. Using lemma 3.4.14 we may find a z-extension f : G′ → G and lift (b, µ) to a pair
(b′, µ′) over G′ which is also HN-irreducible. The first claim now follows from proposition
3.4.15 and by proposition 3.4.8 applied to G′, since by definition of z-extension (G′)der is
simply connected.

Let Z = Ker(f), since this is an induced torus Hilbert’s 90 theorem together with
Shapiro’s lemma proves the surjectivity of the map f : G′(Qp)→ G(Qp). Using this together
with proposition 3.4.15 we see that

f : ShtG′,b′,[µ′],∞ × Spd(C,OC)→ ShtG,b,[µ],∞ × Spd(C,OC)

is Z(Qp)-torsor. In particular, the map of sets of connected components is also surjective.

Since Gradm,≤[µ](Eb) is connected the action of G(Qp) on π0(ShtG,b,[µ],∞×Spd(C,OC)) is tran-
sitive. Let x ∈ π0(ShtG,b,[µ],∞ × Spd(C,OC)) and denote by Gx the stabilizer of x in G(Qp).
Let y ∈ π0(ShtG′,b′,[µ′],∞× Spd(C,OC)) a lift of x, we wish to prove that Im(Gsc(Qp)) = Gx.

By theorem 3.4.10 the stabilizer of y in G′(Qp) is (G′)der(Qp). By equivariance of f with
respect the actions of G′(Qp) and G(Qp), we have that Im((G′)der(Qp)) ⊆ Gx. Since G′ is
a z-extension Im((G′)der(Qp)) = Im(Gsc(Qp)). On the other hand, any g ∈ Gx has a lift
g′ ∈ G′(Qp) and we may write f(y · g′) = x · g = x. Since f(y · g′) = f(y), there is an
element z ∈ Z(Qp) with y · g′ · z = y. In other words, z · g′ ∈ (G′)der(Qp) which implies that
g ∈ Im(Gsc(Qp)) finishing the proof.

As we have done in previous subsections we can describe the action of Jb(Qp) and WĔ/E

on π0(ShtG,b,[µ],∞ × Spd(C,OC)) in terms of the action of G◦. We first describe the action
of Jb(Qp). To do this we need to construct a map det◦ : Jb(Qp) → G◦ that generalizes the
determinant map det : Jb(Qp)→ Gab(Qp) that appears in theorem 3.4.12. A peculiar aspect
of the situation is that G◦ does not necessarily have algebraic structure (its not the Qp-points
of an algebraic group). Consequently det◦ is does not come directly from a map of algebraic
groups. The map is constructed as follows: Given G and b ∈ G(K0) we may choose an
unramified z-extension f : G′ → G and a lift b′ ∈ G′(K0) with f(b′) = b. Let Z = Ker(f).
We get a sequence of maps of reductive groups

e→ Z → Jb′ → Jb → e.

Since Z is an induced torus, by Hilbert’s theorem 90 and Shapiro’s lemmaH1(Qp, Z) = {0} so
that we obtain a surjection Jb′(Qp)→ Jb(Qp). We can construct the following commutative
diagram of topological groups:
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Z(Qp) G′(Qp) G(Qp)

Jb′(Qp) (G′)ab(Qp) G◦

Jb′ab(Qp)

Jb(Qp)

f

det

f

fab

∼=j

det◦

Now, det◦ is defined as the unique morphism that could make this diagram commutative.
More explicitly, if j ∈ Jb(Qp) we pick a lift j′ ∈ Jb′(Qp), and we define det◦(j) := fab(det(j′)).
This doesn’t depend on the choice of j′. Indeed, two lifts of j differ by an element of Z(Qp)
but the induced map Z(Qp) → G◦ is the 0 map, since it factors through the map to G.
Similarly the construction of det◦ does not depend of the choice of b′ ∈ G′(K0) lifting b since
the possible choices differ by an element of Z(K0). Finally, we justify that the construction
of det◦ doesn’t depend on the choice of z-extension G′ → G taken. This will follow from the
fact that the category of z-extensions of G is cofiltered. Given two z-extensions G1, G2 → G
we may find a third z-extension making the following diagram commutative:

G2

G3 G

G1

f2

f1

Choosing a lift of b3 ∈ G3(K0) and defining bi = fi(b3) we obtain the following diagram:

Jb3(Qp) Jbi(Qp) Jb(Qp)

Gab
3 (Qp) Gab

i (Qp) G◦

fi

det det det◦i det◦3

It is easy to verify det◦i = det◦3.

Remark 3.4.17. Another way one can define det◦ is as follows. Since G is quasi-split
we may define groups A ⊆ T ⊆ B ⊆ G as in the notation section §2.2. The domi-
nant Newton point νdomb is a Qp-rationally defined map D → A and we may define Mb

as the centralizer of νb in G. One may then reconstruct Jb as a twisted inner form of
Mb. Using z-extensions one may construct an isomorphism from Jb(Qp)/[Jb(Qp), Jb(Qp)]
and Mb(Qp)/[Mb(Qp),Mb(Qp)] (the maximal abelian quotients when regarded as an abstract
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groups). The inclusion Mb(Qp) ⊆ G(Qp) induces a map Mb(Qp)→ G◦ which overall gives a
map Jb(Qp)→ G◦. Again, one must justify that this morphism didn’t depend of the choices
made.

By functoriality, equivariance and theorem 3.4.12 we can do the following computation.
Pick G′, b′ and µ′ as in the proof of proposition 3.4.16. We obtain a map

f : ShtG′,b′,[µ′],∞ × Spd(C,OC)→ ShtG,b,[µ],∞ × Spd(C,OC),

let x ∈ π0(ShtG,b,[µ],∞ × Spd(C,OC)) and let y ∈ π0(ShtG′,b′,[µ′],∞ × Spd(C,OC)) be a lift of
x. Let j ∈ Jb(Qp), and let j′ ∈ Jb′(Qp) be an element lifting j. We have:

x ·Jb(Qp) j = f(y ·Jb′ (Qp) j
′)

= f(y ·G′(Qp) jb′(detb′(j
−1)))

= x ·G◦ det◦(j−1)

We now describe the action of WĔ/E, we will also need to introduce a variant of the
norm map discussed for tori. Given a connected reductive group G and a conjugacy class
of cocharacters [µ] with reflex field E we define a norm map Nm◦[µ] : E× → G◦ as follows.
Since is G is quasi-split we may fix Qp-rationally defined Borel a maximal torus T ⊆ B ⊆ G
and the unique dominant cocharacter µ ∈ X+

∗ (T ) representing [µ] and defined over E. We
get a norm map Nmµ : E× → T (Qp) and we may define Nm◦[µ] as the composition:

Nm◦[µ] : E×
Nmµ−−−→ T (Qp)→ G(Qp)→ G◦.

We claim that this map is independent of the choice of B and T . Indeed, recall that
the action of G(Qp) on the set of pairs (B, T ) with B a rationally defined Borel and T a
rationally defined maximal torus contained in B is transitive. If (B2, T2) = g · (B1, T1) · g−1

for some element g ∈ G(Qp) then Nm◦g·µ·g−1 = g · Nmµg
−1, and since G◦ is abelian we get

Nm◦[g·µ·g−1] = Nm◦[µ].

Proposition 3.4.18. With notation as in proposition 3.4.16 the action of WĔ/E on

π0(ShtG,b,[µ],∞ × Spd(C,OC))

is given by the map Nm◦[µ] ◦ ArtĔ/E : WĔ/E → G◦. More precisely, if

x ∈ π0(ShtG,b,[µ],∞ × Spd(C,OC))

and γ ∈ WĔ/E then:
x ·WĔ/E

γ = x ·G◦ Nm◦[µ](ArtĔ/E(γ)).

Proof. We let f : G′ → G be a z-extension and we let (b′, µ′) be a pair over G′ lifting (b, µ),
and let Z = ker(f). By 3.4.14 we can always choose G′ and µ′ so that µ′ has the same field
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of definition as µ. We get a morphism

ShtG′,b′,[µ′],∞ → Sht(G′)ab,b′ab,[µ′],∞.

Let A ⊆ T ⊆ B ⊆ G as above and let T ′ = f−1(T ). Recall that for tori the set B(T ′, µ′) has
a unique element, we fix a representative bµ′ . This allows us to construct a map

ShtT ′,bµ′ ,[µ′],∞ → Sht(G′)ab,b′ab,[µ′],∞

and by functoriality we also get map

ShtT ′,bµ′ ,[µ′],∞ → ShtT,bµ,[µ],∞

We can collect all of these maps in the following commutative diagram of spaces.

ShtG′,b′,[µ′],∞ Sht(G′)ab,b′ab,[µ′],∞ ShtT ′,bµ′ ,[µ′],∞

ShtG,b,[µ],∞ ShtT,bµ,[µ],∞

Since G′ is simply connected we get an equivariant bijection of geometric connected compo-
nents

π0(ShtG′,b′,[µ′],∞ × Spd(C,OC))→ π0(Sht(G′)ab,b′ab,[µ′ab],∞ × Spd(C,OC)).

After forming geometric connected components and choosing a base point

x ∈ π0(ShtT ′,bµ′ ,[µ′],∞ × Spd(C,OC))

the above diagram looks like this:

x ·G′ab(Qp) x ·G′ab(Qp) x · T ′(Qp)

x ·G◦ x · T (Qp)

∼=

All of the maps are equivariant with respect to the groups involved. Since the map
T ′(Qp) → G◦ factors through the map T ′(Qp) → T (Qp), we get a canonical surjective and
WĔ/E-equivariant map

π0(ShtT,bµ,[µ],∞ × Spd(C,OC))→ π0(ShtG,b,[µ],∞ × Spd(C,OC)).

By theorem 3.3.5, the action on π0(ShtT,bµ,[µ],∞) is through Nmµ ◦ArtĔ/E. Equivariance
and the definition of Nm◦[µ] imply that the action of WĔ/E on π0(ShtG,b,[µ],∞ × Spd(C,OC))
is through Nm◦[µ] ◦ ArtĔ/E.
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