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Abstract
Specialization maps for Scholze’s category of diamonds
by
Ian Andrei Gleason Freidberg
Doctor of Philosophy in Mathematics
University of California, Berkeley

Professor Sug Woo Shin, Chair

The purpose of this thesis is to introduce and study the specialization map in the context
of Scholze’s category of diamonds and to prove some basic results on its behavior. Our
specialization map generalizes the classical specialization map that appears in the theory of
formal schemes. Afterwards, as an example of interest, we study the specialization map for
p-adic Beilinson-Drinfeld Grassmanians and moduli spaces of mixed-characteristic shtukas
associated to reductive groups over Z,. Finally, as an application of our theory, we describe
the geometric connected components of some moduli spaces of mixed-characteristic shtukas
and local Shimura varieties at infinite level. This confirms and generalizes conjecture 4.26
of [16] in the unramified case.
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Introduction

The purpose of this thesis is threefold, and each goal corresponds to a chapter. In the
first chapter we construct the specialization map in the context of Scholze’s category of di-
amonds, and we study abstract properties and related constructions in a very theoretical
framework. In the second chapter, we apply the theory developed in the first chapter to
study the specialization map for the p-adic Beilinson-Drinfeld Grassmanians and moduli
spaces of mixed-characteristic (or p-adic) shtukas. These moduli spaces were introduced in
the Berkeley notes ([53]) as some of the most important examples that motivated the devel-
opment of the theory of diamonds. In the final chapter we use our finding from the second
chapter to explicitly describe the structure of the set of connected components of a big class
of local Shimura varieties and moduli spaces of mixed-characteristic shtukas at infinite level.

To fix ideas let us recall the specialization map in a more classical setup. Let X be a
separated formal scheme topologically of finite type over Z,. One can associate to X a rigid
analytic space over Q,, that we will denote by X, := & xz Q,. We can also associate to X
a finite type reduced scheme over F,, that we denote by X = (X Xz, F,)d. Now, Huber’s
theory of adic spaces allows us to consider X, as an adic space and in particular assign to
it a locally spectral topological space |X,|. Moreover, one can construct a continuous and
spectral map of locally spectral spaces spy @ |X,| — |X|, where |X| is the usual Zariski
space underlying X (See [1] 7.4.12 or [36] 6.4). It is this specialization map that our work
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generalizes, we elaborate below.

In [51] Scholze sets foundations for the theory of diamonds which can be defined as certain
sheaves on the category of characteristic p perfectoid spaces endowed with a Grothendieck
topology called the v-topology. He associates to any pre-adic space X over Z, (not necessar-
ily analytic) a v-sheaf X°, and whenever X is analytic he proves that X is a (locally spatial)
diamond. Moreover, Scholze assigns to any v-sheaf F an underlying topological space |F]|
and whenever F = X he constructs a functorial surjective and continuous map |F| — | X|.
When X is analytic it is proven in [53] that this map is a homeomorphism, but as we will
discuss below this fails for non-analytic pre-adic spaces.

In the first chapter, we take as input what we call below a specializing v-sheaf F and
we assign to it: a scheme-theoretic v-sheaf 7! which is the analogue of the reduced special
fiber of a formal scheme, and a continuous map of topological spaces spr : |F| — |F*|
that we call the specialization map of F. If X is a separated formal scheme over Z,, we
can prove that X is a specializing v-sheaf, and in this case we have natural identifications
X, | = |X° Xz9 QY] and | X| = |(X9)rd| together with a commutative diagram:

| X0 x50 Q0 | —= | &, |

lSP X0 lSPX

| (X0t | —— | X |
It is in this sense that our specialization map generalizes the classical one.

The advantage of working in this broader context is that the categories of diamonds and
v-sheaves are much more flexible than those of formal schemes and rigid analytic spaces.
This allows us to construct interesting spaces that do not come from applying the {-functor
to pre-adic spaces. Actually, the main reason the author found the specialization map for
diamonds interesting is that it has applications to the study of moduli spaces of mixed-
characteristic shtukas. Typically, these moduli spaces are locally spatial diamonds that do
not come from a pre-adic space. In forthcoming work of the author, we use the tools devel-
oped here to describe the profinite set of geometric connected components of some moduli
spaces of p-adic shtukas at any chosen level (including infinite level). This work builds on
and generalizes the work of Chen on the geometric connected components of unramified
Rapoport-Zink spaces (See [3]).

To describe the main results of our second chapter, we fix some notation. Let ¢4 be a
reductive group over Z,, and denote by G the generic fiber of ¢ over Q,. Fix T C BC G a
maximal Q,-rationally defined torus and a Borel respectively, and let § be an algebraically
closed field extension of F,. We let X; denote the subset of dominant cocharacters in
X*(T@p), fix a p € X and an element b € G(W(f)[%]) Let E := E(u) be the reflex field
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of p. Since ¢ is reductive over Z, this is an unramified extension of Q,. Let .J, denote the
o-centralizer of b appearing in Kottwitz’ theory of isocrystals with G-structure [33]. Let F}
denote a complete non-Archimedean field extension of E, with ring of integers of O, and
residue field kp,. Let F» be a complete non-Archimedean field extension of W(f)[%] with
residue field kp,. To this data one can associate the following objects:

’_“'

a.- A spatial diamond Gr 5" proper over F,°, parametrizing p-bounded Bj;-lattices with

G-structure. Here B(TR is the de Rham period ring of Fontaine, and this moduli is the
Bar-Grassmanian of the Berkeley notes [53].

b.- A perfect scheme Grm;—k“ proper and perfectly finitely presented over Spec(kp, ) which

parametrizes u—bounded Witt-vector lattices with ¢-structure. This is Zhu’s Witt-
vector Grassmanian [59], [5].

c.- A locally spatial diamond Sht(g’b’ 1), F9 partially proper over F2<> , parametrizing mixed-
characteristic shtukas with G-structure that have relative position bounded by u, and
with level structure ¢(Z,). This is the moduli space of mixed-characteristic shtukas
at hyperspecial level that appears in the Berkeley notes [53]. It comes endowed with a
continuous J,(Q,)-action.

d.- A perfect scheme Xz u(b) locally perfectly finitely presented over kg,, which on geo-
metric points evaluates to affine Deligne-Lusztig sets of Rapoport [15]. This space also
comes equipped with a continuous .J,(Q,)-action.

Fix an algebraically closed non-Archimedean field C' over F; with ring of integers O¢
and let ko denote the residue field of O¢. In [1], Anschiitz constructs a map going from
GrG’—” (C,0¢) to Crly (k:c) which for now we denote sp 4,,,. Before this work, the map was
only known as a map of sets. Building on the work of Anschiitz we upgrade that spe(:lahzatlon

map to construct a specialization map of topological spaces spg @.<u : |GrG SHE| - |GI'W |
ofgl
making the following diagram commute:

Gr?% (C,00) —— | GrG Sk

SpGrg’S‘u
lspAns l O%'I
4,< ¢,<
Gryy k!; (kc) —— | Gy kil |
Here ¢ associates to a Spa(C, O¢)-valued point (ko-valued point respectively) its underlying

topological point. We prove the following properties about our specialization map.

Theorem 1. a) The specialization map

8Dy <n |GrG <“| — |GI'€5V’§]€I;1
o%

is a closed and spectral map of spectral topological spaces.



b) Given a closed point x € |Gr§5\}§kﬁ; | let T, = spg,@.<u” ' (), then the interior Ty of T,
) 1 O<>

m
. G.<ui -
in |Gr . 5"| is a dense subset of T.
1

c) T, and T? are non-empty and connected.

Using a technique that we learned from reading [53] together with the work of Anschiitz,
we construct a second specialization map but now its source is a moduli space of mixed-
characteristic shtukas at hyperspecial level and the target is the affine Deligne-Lusztig variety
associated to (4,0, u).

Theorem 2. a) There is a continuous specialization map
) 9
SPgp o= - |Sht(f4,b,u)7F§>‘ - ’Xﬁu(b)"
Fo

this map s a specializing and spectral map of locally spectral topological spaces. It is a
quotient map and it is J,(Q,)-equivariant.

b) Given a closed point x € | XZ,(b)| let S, = SDg, @<n (2), then the interior Sy of S,
< &

as a subspace of Sht(y, F2<>] is dense in Sy.
c) S, and S are non-empty and connected.

d) The specialization map induces a J,(Q,)-equivariant bijection of connected components

SpShtZ;f“ : WO(Sht(%,b,u),on) — WO(qu(b))

The work of Scholze and Weinstein identifies the diamond associated to moduli spaces
of p-divisible groups as special instances of moduli spaces of mixed-characteristic shtukas
(See [53] 24.3.5). Under this light, the last part of theorem 2 is a generalization of Theorem
5.1.5.(i) of [9] that describes the connected components of unramified Rapoport-Zink spaces
at hyperspecial level. The study of the set of connected components of affine Deligne-Lusztig
varieties had a lot of progress in the past 10 years. In the case of unramified groups at hy-
perspecial level the problem is very well understood, and the refer the reader to §3.4, to [11]
theorem 1.1, to [9] theorem 1.1, or to [21] theorem 0.1, 0.2 for a concrete descriptions of
these sets.

Another of our main results compares the preimages of the specialization map of Grass-
manians to those of moduli spaces of shtukas. Before stating our result we mention a con-
jecture. The conjectural statement is philosophically aligned with Grothendieck-Messing’s
deformation theory of p-divisible groups and a weaker form of it is one of the key inputs in
the proof of theorem 2. The statement is:

Conjecture 1. If we let Fy = F,, then for a closed point x € |XZ,(b)| there is a closed point
Yy € ]Grf\;i‘é\ such that S, considered as an open subdiamond of Sht(%,b,,u),FZo is isomorphic
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. . G.< .
to T,) when considered as an open subdiamond of GrF;;”. Here S, and T, are as in theorems
2

2 and 1 respectively.
The weaker version that we are able to prove is as follows.

Theorem 3. With the notation as in conjecture 1 there is a local model diagram

M
f
AN
S T

and a v-sheaf in groups LG such that the maps f and g are LG-bundles.

Before we describe our results on connected components at infinite level, we give a short
summary of the theory of specialization of the first chapter and provide sketches of the proves
of the main results of the second chapter.

Given a Tate Huber pair (A, AT) with pseudo-uniformizer o € A™ the specialization
map sp, : Spa(4, AT) — Spec(AT/w) assigns to © € Spa(A, A") the prime ideal p, of
those elements a € A* for which |a|, < 1. This is a continuous and closed map of spectral
topological spaces and the construction is functorial in the category of Tate Huber pairs.
The central idea of our theory is that, regardless of the definition, the specialization map for
more general objects should also be functorial and should agree with the case of Tate Huber
pairs. This desideratum naturally leads to defining the specialization map as the only map
(if such a thing exists) that could be functorial. One is then forced to change perspective
and to look for hypotheses that would prove that a functorial map exists and for conditions
that would make this map unique.

The first question one needs to answer is what should the target and source of the spe-
cialization map be? The case of Tate Huber pairs may be a little bit misleading in that
Tate Huber pairs come, by design, with a canonical “integral model”. Namely, the integral
model for Spa(A, A") is simply given by Spa(A™, AT). For more general spaces there is
not a canonical “integral model” and one is forced to attach specialization maps to models
rather than to the objects that one makes models of. In the case of Tate Huber pairs the
specialization map can be extended to a map sp 4+ : Spa(A*, AT) — Spec(A™/w) with the
same formula. In the general case, one has to find an integral model for the diamond that
one wishes to study. The integral models we will consider will be a subcategory of v-sheaves
that satisfy some axioms.

An important result of the Berkeley notes proves that the {-functor is a fully-faithful
embedding of the category of characteristic p perfect schemes to Scholze’s category of v-
sheaves. Our observation is that, with the correct setup, this functor admits a right adjoint
which we call suggestively the reduction functor. Moreover, we compute directly that if B is
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a topological ring over Z, endowed with the I-adic topology for some finitely generated ideal
I, then (Spd(B, B))™ is given by the perfection of Spec(B/I). In particular, if (4, A") is a
uniform Tate Huber pair, then (Spd(A™, AT))™¢ is given by the perfection of Spec(AT/w@).
Recall that the underlying topological space of a scheme remains the same after taking its
perfection. This suggests that one can define the target of our specialization to be the result
of applying the reduction functor to the integral models that we want to associate a spe-
cialization map to. In general, the objects obtained in this way will not be perfect schemes
but they will be what we call below scheme theoretic v-sheaves. These scheme theoretic
v-sheaves come equipped with an underlying topological space that agrees with the Zariski
topology whenever the sheaf is represented by a perfect scheme.

Once we have established the source and target, the next step is to construct the map.
The key aspect that makes the specialization map for Tate Huber pairs functorial is that
every map of Tate Huber pairs Spa(A4, AT) — Spa(B, BT) automatically upgrades to a map
of “integral models” Spa(A*, A™) — Spa(B™, B*). This motivates the following definition:
given a v-sheaf F, an affinoid perfectoid space Spa(A, A*) and a map ¢ : Spa(A, A*) — F,
we say that F formalizes « whenever it factors through a map f : Spd(A*, AT) — F. We say
that F is v-formalizing if for every ¢ as above there is a v-cover g : Spa(B, BT) — Spa(A, A™)
such that F formalizes ¢ o g. Given a v-formalizing sheaf F one can try to define the
specialization map spz : |F| — |F™¢| so that for any “formalized” map f : Spd(A*, A*) —
F the following diagram is commutative:

| Spa(A, A*) | —— | Spd(A*+, A*) | —L— | F|

lSPA lsp}'

fred ‘o
| Spec(A™ /@) | r | Fred |

The recipe to compute the specialization map would then be the following: given x € |F| for
F v-formalizing we find an algebraically closed perfectoid field C' and an open and bounded
valuation ring C" together with a map ¢, : Spa(C,C") — F such that the closed point of
Spa(C,C™") maps to x under ¢,. After replacing Spa(C,C™") by a v-cover, we find a formal-
ization f, : Spd(CT,CT) — F of 1,. We apply the reduction functor to f, and obtain a map
fred : Spec(C* /w) — Frd. Finally, we look at the topological image of the unique closed
point of Spec(C* /) under 4. We define spx(x) to be this image.

The natural question becomes whether or not this construction is well defined. The
problem being that the map ¢, : Spa(C,C*) — F might have more than one formalization.
The naive guess would be that this doesn’t happen when F is separated as a v-sheaf. Un-
fortunately, this is false. At the heart of the problem is the following pathology: although
|Spa(C, CT)| is dense within |Spa(C™,C")| it is not true that |Spd(C, C")| is dense within
|Spd(C*, CT)| whenever the valuation ring C* has rank larger than 1.

Resolving this problem forces us to understand better the topological spaces of the form
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|Spd(A, A1)|. To do so, we introduce what we call below the olivine spectrum of a Huber
pair. The careful reader will notice that our work on the olivine spectrum of Huber pairs
is a technification of Scholze and Weinstein’s original approach to study perfect schemes as
a full subcategory of the category of v-sheaves. Our work allow us to improve Scholze and
Weinstein’s full faithfulness result to the following statement:

Theorem 4. Let Y be a perfect non-analytic adic space over F, and let X be a pre-adic
space over Zy,. The natural map
Y, X) — Hom(Y®, X9)

HomPreAd (

18 bijective. In particular, ¢ is fully faithful when restricted to the category of perfect non-
analytic adic spaces over IF,,.

After this rather subtle and long topological detour, we manage to identify a stronger
notion of separatedness that we call formal separatedness. The main feature of a formally
separated v-sheaf F is that a map ¢ : Spa(A, AT) — F has at most one formalization (if any).

Combining the two inputs we say that a v-sheaf is specializing if it is v-formalizing and
formally separated. We prove that specializing v-sheaves have a unique map that satisfies
the commutative diagrams as above for any formalizable map. We prove that this special-
ization map is functorial in the full subcategory of specializing v-sheaves and that these
specialization maps are continuous.

Although specializing v-sheaves produce the specialization maps that we are interested
in, they are too general for practical purposes. For this reason, we focus our attention on
a more restrictive class of v-sheaves that will have better behaved specialization maps. The
central objects of our study is what we call below kimberlites (and smelted kimberlites).
These will be specific kinds of specializing v-sheaves that satisfy other pleasant properties.
For example, kimberlites come equipped with a good notion of “analytic locus” that is, by
definition, an open subsheaf and a locally spatial diamond. The main advantage of kimber-
lites over more general specializing v-sheaves is that the specialization map of a kimberlite
(when we restrict to the analytic locus) is a spectral maps of locally spectral spaces (i.e.
continuous for the constructible topology). The author thinks of kimberlites as a first step
towards the goal of formulating the notion of an “integral model” for diamonds. This is in
the sense that if we wish to regard a v-sheaf as a “good” integral model for some (locally
spatial) diamond, then it should at least satisfy the axioms to be a kimberlite.

Let us move on and discuss the content of the second chapter.
The construction of the specialization maps for the moduli spaces that we study follows
from the general formalism that we discuss in the first chapter. To apply the theory one has

to find a specializing v-sheaf “interpolating” the source and target of the desired specializa-
tion map. The candidates are already provided in the Berkeley notes [53]. More precisely,
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with the setup as in the beginning, Scholze and Weinstein describe what we call here the
p-adic Beilinson-Drinfeld Grassmanians Gro’—“ as a v-sheaf over O<>1 whose generic fiber is

GrG’S“ Also, they describe a v-sheaf Sht"”<“ over O<> whose generic fiber is Shty ) ro.

We still call this v-sheaf the moduli space of mixed characterlstlc shtukas at hyperspecial
level.

The proof that these v-sheaves are specializing uses all the machinery of modern p-adic
Hodge theory as it is discussed in the Berkeley notes. Some key technical inputs are Kedlaya’s
work [29] and Anschiitz’ work (theorem 1.2 of [1]) on extending vector bundles and torsors
over the punctured spectrum of A;,;. Once we know these v-sheaves are specializing, our
theory produces the specialization maps. With more work, we prove that these specializing
v-sheaves are even nicer. Namely, we prove that p-adic Beilinson-Drinfeld Grassmanians are
kimberlites, and that moduli spaces of shtukas at hyperspecial level are smelted kimberlites.
We also prove the identities: (Grz’fl“ yred = Gr{f\;i‘; . and (Sht{é’;f“ )red = XZ,(b) which tell us
that the targets of the specialization maps that our formalism constructs are the desired ones.

After that work, the difficulty becomes to understand the preimages of the specialization
map. To tackle this difficulty we introduce some theoretical tools. In the first chapter, to a
kimberlite (or a smelted kimberlite) F and a chosen closed point z € |F™4| we attach the
tubular neighborhood of F at x which we denote by F /2~ Intuitively speaking, these tubular
neighborhoods are the subsheaves of points that specialize to z. In general it is true that F /x

is a subsheaf of F and that |F /2| € sprt(x), but the equality usually doesn’t hold. One has
to explore carefully the relation between these two sets. We identify a class of kimberlites
(respectively smelted kimberlites), which we call rich kimberlites (respectively rich smelted
kimberlites), for which tubular neighborhoods behave as nicely as possible. We prove that
p-adic Beilinson-Drinfeld Grassmanians and moduli spaces of shtukas at hyperspecial level
are rich kimberlites and rich smelted kimberlites, respectively. Being rich implies that |F/,|
is dense within sp-~'(x), which proves the density part of theorems 1 and 2.

Once we know that these v-sheaves are rich kimberlites most of the work required to
prove theorem 1 and theorem 2 is subsumed by our formalism. The last thing that remains
to be proved is that the preimages of the specialization map are non-empty and connected.
As we have briefly mentioned, one can apply theorem 3 to reduce the non-empty and con-
nected part of theorem 2 to the similar claim of theorem 1.

To better understand the preimages of the specialization map in the case of theorem 1 we
construct a “Demazure resolution” in the spirit of [53] §19.3. Contrary to the case of GL,,
for other reductive groups, the subset of dominant minuscule cocharacters doesn’t generate
the monoid of dominant cocharacters. This failure turns out to be a rather subtle matter and
forces us to discuss what we call below “parahoric loop groups” for Chevalley groups. These
groups are attached to points in the (Bruhat-Tits) apartment of G associated to 7. They
are subsheaves of the usual loop group given by the condition that their value on geometric



points Spa(C*, C'ﬁ) is precisely the corresponding parahoric subgroup of G(Bgr) that the
Bruhat-Tits theory attaches to the same point in the apartment and the (discrete valuation)
period ring Bi;.

The construction that we discuss relies on a group-theoretic construction of Pappas and
Zhu and on theorem 3.1 of [12]. The tradeoff to using parahoric loop groups is that now the
“Schubert varieties” are indexed by elements of the Iwahori-Weyl group, and they can all be
resolved using simple reflections in the affine Weyl group. Functoriality of the specialization
map will allow us to reduce questions on the target of the resolution to questions on the
source of the resolution. The v-sheaves that serve as source of this resolution, which we call
Demazure kimberlites, are easier to understand.

Let us describe the content of the third chapter. In [16] Rapoport and Viehmann pro-
pose that there should be a theory of p-adic local Shimura varieties. They conjectured that
there should exist towers of rigid-analytic spaces whose cohomology “understands” the local
Langlands correspondence for general p-adic reductive groups. In this way, these towers of
rigid-analytic varieties would “interact” with the local Langlands correspondence in a sim-
ilar fashion to how Shimura varieties “interact” with the global Langlands correspondence.
Moreover, they conjectured many properties and compatibilities that these towers should
satisfy.

In the last decade, the theory of local Shimura varieties went through a drastic trans-
formation with Scholze’s introduction of perfectoid spaces and the theory of diamonds. In
[53] Scholze and Weinstein construct the sought for towers of rigid analytic spaces and gen-
eralized them to what are now known as moduli spaces of p-adic shtukas. Moreover, since
then, many of the expected properties and compatibilities for local Shimura varieties have
been verified and generalized to moduli spaces of p-adic shtukas. The study of the geometry
and cohomology of local Shimura varieties and moduli spaces of p-adic shtukas is still a very
active area of research due to their connection to the local Langlands correspondence. The
main aim of this chapter is to study the locally profinite set of connected components, and
prove new cases of conjecture 4.26 in [10].

Let us recall the formalism of local Shimura varieties and moduli of p-adic shtukas. Local
p-adic shtuka datum over Q, is a triple (G, [b], [i1]) where G is a reductive group over Q,, 1]
is a conjugacy class of geometric cocharacters i : G, — G and [b] is an element of Kottwitz
set B(G, [p]). Whenever [u] is minuscule we say that (G, [b], [1]) is local Shimura datum. We
let E/Q, denote the reflex field of [u]. Associated to (G, [b], [u]) there is a tower of diamonds
over Spd(E, O}), denoted (Shte ), u,k)c, Where K C G(Q,) ranges over compact subgroup
of G(Q,). Moreover, whenever [u] is minuscule and K is a compact open subgroup, then
(Shte p),[u,6)c is represented by the diamond associated to a unique smooth rigid-analytic
space M over E. The tower (M) is the local Shimura variety. Moreover if K = ¥4(Z,)
for a reducitve group ¢ over Z, then Shtg )4, = Sht(w s ), in the notation of theorem 2.

After basechange to a completed algebraic closure, each individual space (Shte )6 %
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C,)x comes equipped with continuous and commuting right actions by J,(Q,) and the
Weil group Wg. Moreover, the tower receives a right action by the group G(Q,) by us-
ing correspondances. When we let = {e} we obtain the space at infinite level, de-
noted Shtq p),(),00 X Cp, which overall comes equipped with a continuous right action by
G(Qp) x J(Qp) x WE.

This formalism is functorial on the group G in the following way. Whenever we are given
a morphism of algebraic groups f : G — H over QQ, we obtain a morphism of towers

(Shte, .k < Cplc = (Shtm, (o) roul.r00) X Cp) i)

and these maps are equivariant with respect to the action induced by the map

G(Qy) % Jy(Qy) x Wi — H(Qp) X J1)(Qp) x W,

Since the actions are continuous the groups G(Q,) x J,(Q,) x Wg act continuously on
To(Shte ), [u,00 X Cp) and our main theorem of chapter 3 describes explicitly this action
whenever G is an unramified reductive group over Q, and ([b], [¢]) is HN-irreducible. It is
very likely that the methods of this thesis could be combined with those of [19] and [17] to
remove the HN-irreducible condition. We do not pursue this generality.

Before stating this theorem we need to set more notation. Let (G, [b], [i]) be local p-adic
shtuka datum with G an unramified reductive group over Q,. Let G" denote the derived
subgroup of G and G*¢ denote the simply connected cover of G4, let N denote the image
of G**(Q,) in G(Q,) and let G° = G(Q,)/N. This is a locally profinite topological group
and it is the maximal abelian quotient of G(Q,,) when this later is considered as an abstract
group.

Let £ C C, be the field of definition of [u], let Artg : Wg — E* be Artin’s reciprocity
character from local class field theory. In §4 we associate to [u] a continuous map of topo-
logical groups Nmy,, : E* — G° and we associate to [b] a map det® : J,(Q,) — G°.

The general construction of N mfu] and det® uses z-extensions and we do not review it
in this introduction. Nevertheless, whenever G*¢ = G%" we can construct these maps as
follows. In this case G° = G*(Q,) where G® is the co-center of G, which is an algebraic
group of multiplicative type (or a torus). If we let det : G — G be the quotient map we
can consider the induced data p® = deto[u] and [b*] = [det(b)]. Then N mj, can be defined
as the following composition:

ab ng;g)
E* 5 GE) —5 G™(Q,) = G°.

Here for a torus T over @y, like G*, we are letting Nmf, o, : T*°(E) — T**(Q,) denote the
usual norm map

t I .

VEGal(E/Qp)

On the other hand, det® : J,(Q,) — G*(Q,) can be obtained as the composition det =
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Jyav © det, where the maps det, : J,(Q,) = Jy(Q,) and jyao : Jyar(Q,) — G° can be
described as follows. The map det, is obtained from functoriality of the formation of J,,
and jye is the isomorphism jyas : Jyar (Q,) = G®°(Q,) obtained from regarding Jy(Q,) and
G®(Q,) as subgroups of G®(Kj) and exploiting that G* is commutative.

Theorem 5. Let (G, [b],[p]) be local shtuka datum with G an unramified reductive group
over Q, and ([b], [u]) HN-irreducible. The following hold:

1. The right G(Q,) action on my(Shtgp [u),00 X Cp) is trivial on N = Im(G**(Q,)) and the
induced G°-action is simply-transitive.

2. If s € mo(Shtgp .00 X Cp) and j € J,(Q,) then
S n@) J = g, det*(71))
3. If s € mo(Shtgp, .00 X Cp) and v € Wy then
S Wy Y = 8 qev,) [Nm, o Artp(y)].

Let us comment on previous results in the literature. Before a full theory of local Shimura
varieties was available the main example of local Shimura varieties one could work with
were the ones obtained as the generic fiber of a Rapoport-Zink space studied in [11]. The
most celebrated examples of Rapoport-Zink spaces are of course the Lubin-Tate tower and
the tower of covers of Drinfeld’s upper half space. In [12] de Jong introduces his version
of the fundamental group in rigid-analytic geometry to describe the Grothendieck-Messing
period morphism. As an application of his theory of fundamental groups he computes the
connected components of the Lubin-Tate tower for GL,(Q,). In [58] Strauch computes by
a very different method the connected components of the Lubin-Tate tower for GL, (F') and
an arbitrary finite extension F' of Q, (including ramification).

In [7] M. Chen constructs 0-dimensional local Shimura varieties and studies their ge-
ometry. These are the local Shimura varieties associated to tori. In a later paper [3] she
constructs her “determinant” map and uses these O-dimensional local Shimura varieties to
describe connected components of Rapoport-Zink spaces of EL. and PEL type associated to
more general unramified reductive groups. We also use the determinant map, but in our
case it is automatically constructed for us from the functoriality (with respect to group mor-
phisms) of moduli spaces of p-adic shtukas. The central strategy of Chen’s result builds on
and improves the central strategy used by de Jong. Many steps in de Jong’s original strategy
fail or become technically more challenging when one passes from the Lubin-Tate tower to
more general Rapoport-Zink spaces and M. Chen introduces many new ideas to tackle those
cases. Two key inputs of Chen’s work to the strategy is the use of her “generic” crystalline
representations and her collaboration with Kisin and Viehmann on computing the connected
components of affine Deligne-Lusztig varieties [J].

Our central strategy builds on the central strategy of de Jong and Chen, but the versa-
tility of Scholze’s theory of diamonds and the fully functorial construction of local Shimura
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varieties allow us to make many simplifications and streamline the proof. This is of course
up to the fact that our arguments use Scholze’s theory of diamonds rather than rigid analytic
spaces. Our new main input to the central strategy is the use of specialization maps. To
be able to use specialization maps in a rigorous way we had to develop a formalism that
would allow us to use them. The details of this formalism are worked out in detail in the
first two chapters. Originally, our formalism of specialization maps was developed to address
a missing step in our efforts to adapt de Jong and Chen’s strategy to the context of diamonds.

Let us sketch the central strategy to prove theorem 5. Once one knows that 7 (Shte p,[,00 X
C,) is a right G°-torsor, computing the actions by Wx and J,(Q,) in terms of the G° action
can be reduced to the tori case using functoriality, z-extensions and the determinant map.
These uses mainly group theoretic methods and down to earth diagram chases. In the tori
case the J,(Q,) action is easy to compute and the Wg action can be bootstrapped to an
easier case as follows. For tori T', by the work of Kottwitz, we know that the set B(T, u) has
a unique element so that the data of b is redundant. We can consider the category of pairs
(T, ) where T is a torus over Q, and p is a geometric cocharacter whose field of definition is
E. The construction of moduli spaces of shtukas is functorial with respect to this category.
Moreover, this category has an initial object given by (Resg/q,(Gm), fta) where

Moy - Gm — ReSE/Qp(Gm)E
is the unique map of tori that on F-points is given by the formula

f= 1&g, f

After more diagram chasing one can again reduce the tori case to the “universal” case.
Finally, this case can be done explicitly using the theory of Lubin-Tate groups and their
relation to class field theory. As we have mentioned, the tori case was already handled by M.
Chen in [7], but for the convenience of the readers we recall the story in a different language.

Let us sketch how to prove that mo(Shte p [,],00 X Cp) is a G° torsor in the simplest case. For
this let G be semisimple and simply connected. Our theorem then says that Shtg )00 X C,
is connected.

The first step is to prove that G(Q,) acts transitively on m(Shtg 00 X Cp). Using
the Grothendieck-Messing period map one realizes that these is equivalent to proving that
the b-admissible locus of Scholze’s Bir-Grassmanian is connected. This fact is a result of
Hansen and Weinstein to which we give an alternative proof.

For the next step, let € my(Shtg 4,00 X C,) and let G, € G(Q,) denote the stabilizer of
z. Let K C G(Q,) be a hyperspecial subgroup of G. We claim that it is enough to prove that
G, is open and that G(Q,) = K - G,. Indeed, K surjects onto G(Q,)/G, so that this space
is discrete and compact therefore finite. By a theorem of Margulis [39], since we assumed G
to be simply connected, the only open subgroup of finite index is the whole group so that

Xiv



The proof that G, is open relies heavily on M. Chen’s main technical result on her
“generic” crystalline representations. To be able to apply her result in our context one uses
that for suitable p-adic fields K, every crystalline representation is realized as a Spd(K, Ok)-
valued point in Scholze’s Bggr-Grassmanian. For the convenience of the reader we include
a discussion on how to think of crystalline representations as Spd(K, O )-valued points.
Finally, proving that G(Q,) = K - G, is equivalent to proving that Shtg [, X Cp, the K-
level moduli space of shtukas, is connected. This is where our theory of specialization maps
gets used. Indeed, theorem 2 proves that the specialization map identifies the connected
components of moduli spaces of shtukas with the connected components of affine Deligne-
Lusztig varieties. To conclude we only need to know that these varieties are connected.

Fortunately for us, the connected components of affine Deligne-Lusztig varieties are now
very well understood by the work of many authors [9], [11] [22]. In the HN-irreducible case
they can be identified with certain subset of 71 (G). Since we assumed G to be simply con-
nected 7 (G) = {e} which finishes the sketch of the proof for the simply connected case.
The central strategy used for general unramified groups G is not very different in spirit and
only requires more patience.

Finally, let us comment on the organization of this thesis.

§1.1 We give a short review of the theory of diamonds, the v-topology and some facts about
spectral topological spaces. We also review Scholze’s ¢ functor that takes as input a
pre-adic space over Z, and returns as output a v-sheaf.

§1.2 We introduce and study what we call the olivine spectrum of a Huber pair (B, BT)
which we denote by Spo(B, B™). As we have mentioned already, for a pre-adic space
X over Z, Scholze and Weinstein construct a surjective map of topological spaces
| X% — |X|. This map is a homeomorphism whenever X is analytic, but the map
will not be injective whenever X is not analytic, and in pathological cases not even a
quotient map. The olivine spectrum is a very concrete topological space that one can
associate to any Huber pair without any mention to the theory of perfectoid spaces or
diamonds. We can summarize the results as follows:

1. If (B,B") is any complete Huber pair over Z, we construct a continuous and
bijective map |Spd(B, B™)| — Spo(B, BT).
2. Whenever this map is a homeomorphism we say that (B, B") is olivine.

3. Being olivine can be verified locally in the usual topology of Spa(B, BT) and it is
compatible with rational localization.

4. Affinoid fields (i.e. (K, K™') with K a field and K™ an open bounded valuation
subring) are olivine.

5. If (B, BT) is uniform (i.e. B° is bounded) and B is a finite type BT -algebra then
it is olivine.

Using the olivine spectrum we prove theorem 4.
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§1.3

§1.4

§2.1

§2.2

§2.3

§3.1

§3.2

§3.3

We introduce and study a reduction functor that takes as input a small v-sheaf in
the category of characteristic p perfectoid spaces, and returns a small v-sheaf in the
category of perfect schemes in characteristic p. This functor generalizes the construc-
tion that assigns to a formal scheme topologically of finite type over Z, the perfection
of its reduced special fiber. To the author’s knowledge, although this construction is
simple, it had not been considered in the literature before. As we have mentioned, this
reduction functor will construct the target of our specialization map.

We develop the theoretical framework to study the specialization map. We introduce
specializing v-sheaves, kimberlites, and smelted kimberlites. We introduce tubular
neighborhoods and relate them with preimages of the specialization map. We define
rich kimberlites which incorporate some “finiteness” conditions that are tailored to
control the behavior of the preimages of the specialization map.

We review the main geometric objects of modern p-adic Hodge theory. We review
Kedlaya and Liu’s theory of vector bundles on adic spaces, and the theorems of Kedlaya
and Anschiitz’ on extending vector bundles and G-torsors on the punctured spectrum
of Aj,r. One may think of Anschiitz’ result as a statement over a point, and Scholze
and Weinstein prove in [53] a small improvement to this theorem by considering what
we call here a product of points. We review Scholze and Weinstein’s proof with our
application in mind.

We study the specialization map for p-adic Beilinson-Drinfeld Grassmanians. We con-
struct parahoric loop groups and construct Demazure kimberlites, which are the source
of our “Demazure resolution”. We prove that Demazure kimberlites are rich kimber-
lites which allows us to prove that p-adic Beilinson-Drinfeld Grassmanians are also rich
kimberlites with non-empty connected tubular neighborhoods. We prove theorem 1.

We study the specialization map for moduli spaces of mixed-characteristic shtukas. We
prove that moduli spaces of mixed characteristic shtukas at hyperspecial level are rich
smelted kimberlites. We prove theorems 2 and 3.

Since the logic of chapter 3 is mostly independent of the previous chapters we reset
the notation for that chapter. This is done in the first section.

We recall the relation between crystalline representations, Scholze’s theory of dia-
monds, and other geometric constructions that appear in modern p-adic Hodge theory.
This part of the thesis is mainly expository, but we consider it important for the rest
or the argument to have these relations in mind. We also include a discussion of Weil
descent data and the action of .J,(Q,) since the author found some of the details in
this part of the theory harder to grasp.

We reprove M. Chen’s results for tori. We do this for several reasons. On one hand, it
was a very instructive exercise for the author to do this computation concretely, on the
other hand the 0-dimensional local Shimura varieties that appear in Chen’s work are
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constructed in a very different way. It is not clear to the author if proving that Chen’s
local Shimura varieties agree with Scholze and Weinstein’s moduli spaces of shtukas is
or not essentially equivalent to doing this computation.

§3.4 We provide the details of the proof of theorem 5.
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A note on the terminology

The author would like to use this paragraph to make a small comment on the terminology.
Some of the terms introduced below come with a metaphor. The incorporation of these
metaphors into the text is nothing but a playful manner in which the author decided to
interact with the mineralogical history of the field. In particular, they shouldn’t be taken
seriously for any scientific or mathematical purposes.

The first term is the “olivine spectrum of a Huber pair”. Olivine minerals are a series of
mineralogical structures that can be found most commonly in mafic and ultramafic igneous
rocks, they are characteristic by their green olive like color. During the formation of a
diamond small minerals like olivine, garnet, and chromite among others get surrounded by a
host diamond. When these minerals get included in diamonds their morphology changes to
resemble the structure that is found in diamonds. Similarly, the olivine spectrum of a Huber
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pair is a very small variation of the usual adic spectrum that has a subtle diamond-like
change.

The second term that deserves an explanation is “kimberlite”. In mineralogy, kimberlites
are hybrid rocks that are known to contain diamonds. The formation of diamonds happens
in the depths of Earth and through geological processes, kimberlite magma pipes bring the
diamonds to the surface. The interest in mining kimberlites comes from the hope of finding
diamonds within. Similarly, the author thinks of kimberlites as a natural category for finding
integral models of diamonds.



Chapter 1

Theoretical aspects of the
specialization map

Throughout this thesis we assume that the reader is familiar with the basic theory of per-
fectoid spaces as discussed in ([53] §7) or ([51] §3). In most of our proofs we ignore the
set-theoretic subtleties that arise from the theory, but we inherit the usage of the term
“small” that is used to address such issues. We provide some indications on how to proceed
when set-theoretic carefulness is absolutely necessary.

1.1 The v-topology

1.1.1 Diamonds and small v-sheaves

We let Perfd denote the category of perfectoid spaces and Perf the subcategory of perfectoid
spaces in characteristic p. The following definition is taken from ([51] 7.8).

Definition 1.1.1. Given a map of perfectoid spaces f: Y — X we say:

1. f is affinoid pro-étale if Y = Spa(S,S™), X = Spa(R, R") and the map [ is a small
cofiltered limit of maps f; : Spa(S;, S;") — Spa(R, R") where each f; is étale.

2. f is pro-étale if for every y € Y, there is an open neighborhood V- C 'Y containing y
and an open U C X satisfying f(V) C U and f|y : V — U is affinoid pro-étale.

We can endow Perfd with two Grothendieck topologies, called the pro-étale topology and
v-topology respectively, as follows:

Definition 1.1.2. (See ([71] 8.1))

1. A family {f; : Yi — X }ier of maps in Perfd is a cover for the pro-étale topology if each
fi is pro-étale and for every quasi-compact open U C X there is a finite subset Iy C I
and quasi-compact open subsets V; CY; for alli € Iy, such that U = fi(V;)



2. A family {f; : Yi = X}ier of maps in Perfd is a cover for the v-topology if for every
quasi-compact open U C X there is a finite subset Iy C I and quasi-compact open
subsets V; CY; for alli € Iy, such that U = fi(V;)

Remark 1.1.3. To make the pro-étale and v topologies useful, it is important to add the
quasi-compactness hypothesis. Indeed, since open embeddings are étale the inclusion of points
are pro-étale, but we do not want to consider the collection of inclusions of points as a cover.

The following example of a cover for the v-topology will be used repeatedly.

Example 1.1.4. Let Spa(A, A") be an affinoid perfectoid space w € AY and a choice
of a pseudo-uniformizer, we consider the following construction. For every point x €
|Spa(A, AT)| consider the inclusion of affinoid residue field

Lz Spa(k(z), k(x)") — Spa(A4, AT).

Note that by ([/9] 6.7) each Spa(k(z), k(z)™) is perfectoid. We now consider

Rt:= ][] k@)
z€|Spa(A,AT)|

as a topological ring with the w-adic topology and let R = R*[X]. We have that Spa(R, RY) is
perfectoid and that the natural map Spa(R, R*) — Spa(A, A") is a cover for the v-topology.
Definition 1.1.5. Given a set I and a collection of tuples {(C;, C;T), @; }icr we construct an
adic space Spa(R, R™). Here each C; is an algebraically closed non-Archimedean field, the
Cit are open and bounded valuation subrings of C;, and w; is a choice of pseudo-uniformizer.
We let RT :=[],.; Ci", we let w = (w;)ier, we endow RY with the w-adic topology and we
let R := R*[%]. Any space constructed in this way will be called a product of points.
Remark 1.1.6. We point out that different choices of pseudo-uniformizers (w;);e; will give
rise to different adic spaces. Indeed, in general R C [[,.; C; but if I is infinite this is a proper
incluston and the image of this inclusion depends of the choice of pseudo-uniformizers.

Example 1.1.4 proves that products of points form a basis for the v-topology in the
category of perfectoid spaces. Recall the notion of totally disconnected spaces.

Definition 1.1.7. (See [51] 7.1, 7.15, 7.5) An affinoid perfectoid space Spa(R, R") is totally
disconnected if it splits every open cover. Moreover, it is strictly totally disconnected if it
splits every étale cover.

We have the following useful criterion:

Proposition 1.1.8. (See [01] 7.8, 7.16, 11.27) Let Y be an affinoid perfectoid space. Y is
represented by a strictly totally disconnected space if and only if every connected component
of Y is represented by Spa(C,C") for C' an algebraically closed field and C* an open and
bounded valuation subring.



Proposition 1.1.9. Product of points as in definition 1.1.5 are strictly totally disconnected
perfectoid space.

Proof. Take R := [[,.; C;" and pseudo-uniformizers w = (w;);er as in definition 1.1.5.
The closed-opens subsets of Spa(R, RT) are given by idempotents in R*, which in turn
are given by subsets of I. A connected component m € m(Spa(R, R')) is computed by
intersecting ("), U for some ultrafilter and it is a Zariski closed subsets cut out by the
ideal, Ir = (ly)veu, where the idempotents are indexed by the sets that do not belong
to the ultrafilter. To compute the structure sheaf of this connected component we have to
consider the w-completion of RT/I;. Let V.= R* /I, and V' be the completion of V' with
respect to w.

To prove that Spa(R, R") is a strictly totally disconnected perfectoid space it is enough,
by proposition 1.1.8, to prove that V' is a valuation ring with algebraically closed fraction
field. In general, if W is a valuation ring with algebraically closed fraction field and if a € W
is not a unit, then the (a)-adic completion of W is also a valuation ring with algebraically
closed fraction field. Applying this reasoning to V" and V', we see that it is enough to prove
V' is a valuation ring with algebraically closed fraction field.

To prove that V is a domain take two elements in vy, v, € RT with vy - vy = 0. If we let
I; C I with j € {1,2} be the subsets of i € I such that v; =0 in C;" then I; U, = I and
one of I or I\ I is in the ultrafilter, this implies that one of vy or v, equals 0 in V. Take an
element of v € Frac(V'), this element may be represented by an element of [],., C;. Since
each entry of the product defining R™ is a valuation ring one of the sets {i € I | v; € C;'}
or {i € I|v;' € C} is in the ultrafilter, this implies v € V or v™! € V and that V is a
valuation ring. One can prove in a similar way that Frac(V) = [[,.; Ci/I. In particular,
it is an ultraproduct of algebraically closed fields, so Frac(V) is algebraically closed. [

Scholze proves that the v-topology (and consequently the pro-étale topology) on Perfd
is subcanonical ([51] 8.6). To simplify notation, we denote a perfectoid space and the sheaf
it represents with the same letter. In case we need to make a distinction, whenever X is a
perfectoid space the sheaf it represents will be denoted by hy. From now on we will focus
most of our attention to the site Perf endowed with either the pro-étale or the v-topology.
Let us recall Scholze’s category of diamonds.

Definition 1.1.10. (See [71] 11.1) A pro-étale sheaf Y on Perf is a diamond if it can be
written as X/R where X and R are representable by perfectoid spaces and R C X x X s
an equivalence relation for which the two projections to X are pro-étale maps of perfectoid
spaces.

Given a diamond Y we can associate to it a topological space, denoted |Y'|, as follows:

Definition 1.1.11. We say that a map p : Spa(K, K™) — Y is a point if K is a perfectoid
field in characteristic p and K™ is an open and bounded valuation subring of K. Two points
pi - Spa(K;, K;7) — Y, i € {1,2}, are equivalent if there is a third point ps : Spa(Ks, K3©) —



Y, and surjective maps q; : Spa(Ks, K37) — Spa(K;, K;") making the following commutative
diagram:
Spa Kl, Kl )

%

Spa<K37 K3+)

T

Spa(K27 K2+>

We let |Y| denote the set of equivalence classes of points of Y.

Scholze proves that if Y has a presentation X /R, then there is canonical bijection of sets
between |Y| and |X|/|R| (where | X| and |R| are the topological space corresponding to the
perfectoid spaces X and R). This gives a surjective map | X| — |Y| and we give |Y| the
quotient topology for such a map.

Proposition 1.1.12. (See [51] 11.13) Let Y be a diamond. The topology on |Y| is indepen-
dent of the presentation of Y as a quotient Y = X/R, with X and R perfectoid spaces.

We remark that if X is a perfectoid space, then the sheaf hx represented by X is a
diamond and that |hx| is canonically homeomorphic to | X].

We refer to sheaves on Perf for the v-topology as v-sheaves and we say that a v-sheaf
X is small if it admits a surjective map from a representable sheaf. This is a set theoretic
condition.

Proposition 1.1.13. (See [71] 11.9) Every diamond is a small v-sheaf.

Recall that any Grothendieck site has an intrinsic notion of quasi-compactness. Quasi-
compact v-sheaves are other important examples of small v-sheaves.

We denote by Perf the category of small v-sheaves, it may be constructed as follows.
Given a cut-off cardinal x (see [71] §4 and §8 for details) we denote by Perf, the category
of k-small perfectoid spaces in characteristic p and by f’gr/f the topos of sheaves for the
v-topology on this category. Objects in this topos will be called x-small v-sheaves. We have
natural fully-faithful embeddings Perf, C Perf, for x < A and we define Perf = U. Perf, as
a big filtered colimit over all cut-off cardinals «.

Scholze associates to any small v-sheaf a topological space. The definition is almost
identical to 1.1.11, the key point being that if X — Y is a map of small v-sheaves with X
a diamond then R = X xy X is also a diamond and Y = X/R ([51] 12.3). Scholze then
defines |Y'| as | X|/|R| with the quotient topology.



Proposition 1.1.14. (See [51] 12.7) Let Y be a small v-sheaf. The set of equivalence classes
of points of Y is in canonical bijection with |X|/|R| for any presentation Y = X/R with X
and R diamonds. Moreover, the topology induced this way is independent of the presentation.

Given a topological space T" we can consider a presheaf on Perf, denoted T', defined as
T(R,RT)={f :|Spa(R,RT)| — T | fis continuous}

This forms a v-sheaf but we warn the reader that it might not be small. There is a natural
transformation:

X—>@

A morphism of small v-sheaves j : U — X is said to be open if it is relatively representable in
perfectoid spaces and after basechange by a perfectoid space it becomes an open embedding
of perfectoid spaces. The following proposition shows that this is a purely topological notion.

Proposition 1.1.15. (See [51] 11.15 and 12.9) Let Y be a small v-sheaf and let |V| C |Y|
be an open subset. Define V' as the Cartesian product:

vV —— |V

I

Y—>m

The following assertions hold:
1. The map V —Y 1is an open embedding of small v-sheaves.

2. The induced map |V| — |Y| is an open embedding of topological spaces and factors
through a homeomorphism to |V|'.

3. Every open embedding of small v-sheaves is isomorphic to one constructed in this way.
4. If Y is a diamond then V is also a diamond.

The concept of closed immersion is a little more subtle. It is not a purely topological
condition in the sense that closed subsheaves of F are not in one to one bijection with closed
subsets of |F].

Definition 1.1.16. (See [51] 10.7, 10.11, 5.6) A map of sheaves F — G is a closed immer-
sion if for every X = Spa(R, RT) a strictly totally disconnected space and a map X — G the
pullback X xzG C X 1is representable by a closed immersion.

The following result of Johanes Anschiitz, Joao Lourenco and Timo Richarz, that will
appear in [20], characterizes closed immersions.



Proposition 1.1.17. (See [20]) For a v-sheaf F we say a subset X C |F| is weakly gener-
alizing if for any geometric point f : Spa(C,CT) — F we have that f~1(X) C |Spa(C,C")|
1s stable under generization. For any v-sheaf F the rule

Xl—)./_"X@ng

gives a bijection between weakly generalizing closed subsets of |F| and closed subsheaves of

F.

1.1.2 Spectral spaces and locally spatial diamonds

The category of diamonds is too general for some purposes and one can construct many
“pathological” examples of diamonds that do not arise from an algebro-geometric context.
To control this flexibility Scholze considers some restrictions on the underlying topological
space of a diamond.

We begin by recalling the basic theory of spectral topological spaces. This material is taken
from section §2 of [51] where most of the proves can be found.

Definition 1.1.18. For topological spaces S, T and a continuous map f : S — T we say
that:

1. T is spectral if it is quasi-compact, quasi-separated, and it has a basis of open neigh-
borhoods stable under intersection that consists of quasi-compact and quasi-separated
subsets.

2. T 1s locally spectral if it admits an open cover by spectral spaces.
3. f is a spectral map of spectral spaces if S and T is are spectral and f is quasi-compact.

4. f is a spectral map of locally spectral spaces if S and T are locally spectral and for
every quasi-compact open U C S and quasi-compact open V- C T with f(U) C V the
function f|ly : U — V is spectral.

Theorem 1.1.19. (Hochsteter) For a topological space T' the following conditions are equiv-
alent:

1. T 1s spectral.
2. T 1s homeomorphic to the spectrum of a ring.
3. T is a projective limit of finite Ty topological spaces.

Moreover, the category of spectral topological spaces with spectral maps is equivalent to the
pro-category of finite Ty topological spaces.



Given a spectral space T, we say that a subset S is constructible if it lies in the Boolean
algebra formed by quasi-compact open subsets of T'. For a locally spectral space T, a subset S
is constructible if for every quasi-compact open subset U C T the subset SNU is constructible
in U. The patch (or constructible) topology on T is the one in which constructible subsets
form a basis for the topology. A spectral space is Hausdorff and profinite for its patch
topology and a locally spectral space is Hausdorff and locally profinite for the patch topology.

Proposition 1.1.20. A continuous map of locally spectral spaces f : S — T 1is spectral if
and only if it 1s continuous for the patch topology.

Definition 1.1.21. 1. A map of topological spaces f : S — T is generalizing if for ele-
ments t1,ta € T and s; € S such that f(s1) =t and ty generalizes t1, there exists an
element sy generalizing s; with f(sg) = to.

2. A map of topological spaces f : S — T is specializing if for elements t,to € T and
s1 € S such that f(s1) = t1 and ty specializes from ty, there exists an element g
specializing from s; with f(sy) = to.

For a locally spectral space T' we say that a subset is pro-constructible if it is closed for
the patch topology, or equivalently if it is an arbitrary intersection of constructible subsets.
The following will be really useful for our purposes.

Proposition 1.1.22. (See [71] 2.4) Let T' be a spectral space and S C T a pro-constructible
subset. The closure S of S in T consists of the points that specialize from a point in S.

Corollary 1.1.23. Let f : S — T be a spectral map of spectral spaces. If f is specializing
then it 1s also a closed map.

We warn the reader that the analogue of 1.1.23 for locally spectral spaces does not hold.

Proposition 1.1.24. (See [71] 2.5) Let f : S — T be a spectral map of spectral topological
spaces. Assume f is surjective and generalizing, then it is a quotient map.

One can think of spectral spaces as the topological spaces that arise from an algebro-
geometric situation. For this reason we will restrict our attention to diamonds that have this
behavior.

Definition 1.1.25. (See [71] 11.17) Let X be a diamond. We say that X is a spatial
diamond if it is quasi-compact, quasi-separated and |X| has a basis of open neighborhoods
of the form |U| where U C X is a quasi-compact open embedding. We say that X is locally
spatial if it has an open cover by spatial diamonds.

As promised, the topology of spatial diamonds is spectral. Nevertheless, we remark
that a diamond that has a spectral underlying topological space might not necessarily be
spatial since the quasi-compactness and quasi-separatedness conditions of definition 1.1.25
are imposed on the topos-theoretic sense.



Proposition 1.1.26. (See [51] 11.18, 11.19) Let X and Y a be locally spatial diamonds and
f: X =Y a morphism of v-sheaves. The following assertions hold:

1. |X| is a locally spectral topological space.
2. Any open subfunctor U C X is a locally spatial diamond.

3. | X| is quasi-compact (respectively quasi-separated) as a topological space if and only if
X is quasi-compact (respectively quasi-separated) as a v-sheaf.

4. The topological map |f| is spectral and gemeralizing. In particular, if |X| is quasi-
compact and | f| is surjective then by proposition 1.1.24 it is also a quotient map.

1.1.3 Pre-adic spaces as v-sheaves

The theory of diamonds is mainly of “analytic” nature. On the other hand, we will need
to consider some spaces that have a scheme-theoretic and formal-scheme-theoretic flavor
instead. The category of v-sheaves allows us to consider these three types of spaces at the
same time. In what follows, we show (following the Berkeley notes) how to consider any
pre-adic space over Z, as a v-sheaf. Interestingly, this functor is by construction far from
being fully-faithful, but we will justify below why the new morphisms are mostly of analytic
nature.

Let us give a quick recollection of the appendix to lecture 3 of [53]. Let Caff”” denote the
opposite category to the category of complete Huber pairs. This category can be regarded as
a site when we consider the topology generated by rational covers. Although the topology in
this site is not subcanonical any Huber pair (A, A*) € Caff”” defines a sheaf Spa(A, AT)Y :
Caff”” — Sets by taking sheafification of the functor (B, BT) — Homgcagz((A4, A1), (B, BT)).
Scholze and Weinstein define the category of Yoneda-adic spaces as sheaves F : Caff”” — Sets
that are locally isomorphic to Spa(A, A™)Y for a suitable notion of open immersion of sheaves.
Recall the category (V)™ whose objects are triples (X, 0% (| - (z)])zex) where X is a
topological space, O%¢ is a sheaf of ind-topological rings and |- ()| is an equivalence class of
valuations on Oy . For a Huber pair (A, A*) Scholze and Weinstein define Spa™*(A4, A*) to
be the object in (V"4) with underlying topological space Spa(A, A*) and with O? defined
as the sheafification of the structure presheaf of Spa(A4, A") in the category of ind-topological
rings. A pre-adic space is an object X € (V4) that is locally of the form Spa™?(A, A*).

Proposition 1.1.27. (See [75] 8.5.3) For a pre-adic space X, the functor
hx = ((A, A%) = Homyinay(Spa™ (A4, AT), X))

1s a Yoneda adic space. The functor X — hx is an equivalence of categories between pre-adic

spaces and Yoneda-adic spaces. This equivalence preserves the notions of open immersions
and the functor associated to Spa™@ (A, AT) gets identified with Spa* (A, AT).



Certain things are easier to think in one perspective than in the other. An important
aspect is that every pre-adic space X has an underlying topological space, and we can define
the open analytic locus |X|** and the non-analytic locus | X|™ in the naive way. That is,
a point = € | X| is analytic if for every open affinoid z € Spa™?(A, At) C |X| (equivalently
one affinoid) x is analytic in Spa(A, AT).

Proposition 1.1.28. Given a pre-adic space X there is a reduced non-analytic adic space
X" and a map X™ — X which is final in the category of maps Y — X with Y a reduced
non-analytic adic space. Moreover, the map | X" — | X|"®* is a homeomorphism.

Proof. In the affinoid case we have that Spa™?(A, A*)" is given by
Spa(A/A% . A, A* A% . A™).

Observe that since A/A%° - A is discrete it is sheafy. Moreover if (B, BT) has the dis-
crete topology then Hom(Spa™?(B, B*)),Spa™?(A, AT)) are given by maps of Huber pairs
(A, AT) — (B, B") and all topological nilpotents must map to 0 in B proving the universal
property. The claim of topological spaces is clear.

For general pre-adic space X we define X™* to have underlying topological space | X
and if V C | X "] is of the form UN|X|"® for U C | X| open and of the form U = Spa™?(A, AT)
we let

’na

O (V) == ORU(U) /A% - ORU(U).
ind

Since the construction A — A/A°° is compatible with rational localization O (V) is well-
defined and glues to a sheaf of ind-topological rings on X™*. Moreover, locally the ind-
topological rings are constant because A/A°° is sheafy. This implies X™* is an adic space. [

Definition 1.1.29. 1. We define the presheaf Zg on Perf as the moduli of untilts, more
precisely:
Zy(Y) ={(Y* )}/ =

Where Y* is a perfectoid space in Perfd and v : (Y*)* — Y is an isomorphism of
perfectoid spaces in characteristic p.

2. Given a pre-adic space X/Spa(Z,,Z,) we define the presheaf X on Perf as:

XOY) ={(v*1, )}/ =

Where Y¥ € Perfd, ¢ : (Yﬁ)b — Y is an isomorphism of perfectoid spaces in character-
istic p, and f : Y* — X is a morphism of pre-adic spaces.

Notice that there is a canonical morphism X¢ — Zg given by forgetting the last entry of
data.

Proposition 1.1.30. (See [55] 18.1.1) For any pre-adic space X (not necessarily analytic)
over Z,, the presheaf X° is a small v-sheaf.
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From now on, given a Huber pair (A, A*) we will denote the v-sheaf (Spa(A, AT)Y)¢
by Spd(A, A*) and we will also drop the decoration (-)¥ when referring to affinoid pre-adic
spaces. If R is a base ring whose underlying topology (and ring of integral elements) is
understood from the context we will abbreviate Spd(R, R*) by R®. For example, IFS, Zg,

@g, etc.

Proposition 1.1.31. Let us collect some facts about &, that are either in the literature or
are easy to prove:

1. For any perfectoid space X we have that X° = hy, as v-sheaves. (See [01] 15.2).

2. For any analytic pre-adic space X over Z,, the functor X° is a locally spatial diamond
and | X°) 2 |X|. (See [51] 15.6).

3. For any pre-adic space over Z, there is a surjective map of topological spaces | X0 —

| X| (See [55] 18.2.2).

4. If PreAdz, denotes the category of pre-adic spaces over Z, then ¢ : PreAdz, — Perf
commutes with limits and colimits. More precisely, if X; is a family of pre-adic spaces
indexed by a small category I and the functor hﬂz‘el X; (respectively @iel X;) is rep-
resented by a pre-adic space X then X¢ = ligig Xi<> (respectively X© = @iel XZO)
Indeed, both computations are done in the category of sheaves of a Grothendieck site.
The only difference in the computations is the topology that one has to use to sheafify.

But if a colimit is represented by a pre-adic space by proposition 1.1.30 it is already a
v-sheaf.

5. For any complete Huber pair (B, BY) over Z, the v-sheaf Spd(B, B") is separated
over Zg. Indeed, the basechange of the diagonal map Spd(B, B™) — Spd(B, BT) Xz
Spd(B, BY) by any map Spa(R, R") — Spd(B, B") xz0 Spd(B, BY) is given by the
Zariski closed immersion defined by the ideal R*-Ix with I the image of ker(B®z,B —
B) in R*.

6. For any pre-adic space X the map of v-sheaves (X™)° — X is a closed immersion
of v-sheaves and X\ (X"*)0 = (X, Indeed, this can be verified locally so we may
assume X = Spa(A, AT). If Y = Spa(R, R") is a strictly totally disconnected space
then' Y X yo (X" is a Zariski closed immersion defined by the image ideal of A* in
Rt

1.2 The olivine spectrum
As we will see below, given a pre-adic space X over Z, the map | X°| — | X| of remark 1.1.31
will usually not be injective when X has non-analytic points. Although the map is always

surjective, it might not be a quotient map in pathological cases. To develop our theory
of specialization map we need better understanding of the topological spaces of the form
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|Spd(A, A)| for I-adic rings A over Z,. To tackle this difficulty we introduce below what we
call the olivine spectrum of a Huber pair, which is a very small variation of Huber’s adic
spectrum. The interest in studying the olivine spectrum is that if (B, B') is a complete
Huber pair over Z, subject to some mild “finiteness” conditions then the topological space
|Spd(B, BT)| is homeomorphic to the olivine spectrum of (B, BY).

For the following fix (B, B*) a Huber pair (not necessarily over Z, and not necessarily
complete).

1.2.1 Review, terminology and conventions

We assume the reader to be familiar with the construction of Huber’s adic spectrum,
Spa(B, B*1), but we review some key aspects and definitions. We also fix some terminology.

1.

Given z € Spa(B, BT) we define the support supp(x) C B as the set of elements b € B
for which |b|,, = 0. This is a prime ideal of B.

. We say that a point x € Spa(B, BT) is non-analytic if supp(z) is an open ideal of B,

we say it is analytic otherwise.

Given an equivalence class of valuations on B, say represented by |- |, : B — ', U{0},
and a convex subgroup H C I',, we define a second equivalence class of valuations
represented by |- |, : B — (I'y/H) U {0} with |b|, = |b], + H € I',/H when |b|, # 0
and |b|, = 0 when |b|, = 0. Any equivalence class of valuations constructed in this way
is called a wertical generization of x.

. Given a complete Huber pair (B, B*) and a point = € Spa(B, B") there is a residue

field map of complete Huber pairs % : (B, BT) — (K., K,"). In this case K, is either
a discrete field or a complete non-Archimedean field. In both cases, K is an open and
bounded valuation subring of K,. The induced map ¢, : Spa(K,, K,") — Spa(B, BT)
is a homeomorphism onto the subspace of Spa(B, BT) consisting of continuous vertical
generizations of x. The map satisfies the following universal property: For any map of
complete Huber pairs f*: (B, B") — (A, A") such that f(Spa(A4, AT)) C Spa(B, B)
consists of vertical generizations of x, there is a unique factorization f* = g* o }.

. Vertical generizations and residue field maps have the following compatibility. Fix

x € Spa(B, B") with residue field (K,, K, "), and consider K¢ the subring of power-
bounded elements. Given y a continuous vertical generizations of x we can associate
a valuation subring K\ by letting K7 = {b € K, | |b|, < 1}. This association gives
a bijection between the set of continuous vertical generizations of x and valuation
subrings of K¢ containing K. Moreover, in this case the residue field at y is (K, K; ).

. We say that a valuation x is trivial if it is equivalent to some valuation for which

[, = {1}. The residue field of a trivial valuation is discrete.

. We say that a valuation is microbial if it has a non-trivial rank 1 vertical generization.
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8. For technical reasons that will become clear to the reader below, we take the convention
of considering trivial valuations as rank 1 valuations.

9. Given a valuation | - |, of B we define the characteristic subgroup of | - |, denoted by
cI';, as the smallest convex subgroup of I', containing all elements of the form v = [b|,
for b € B with 1 <.

10. Given an equivalence class of valuations |-|, and a convex subgroup H C I', containing
cI';, we define a second equivalence class of valuations |- |, with |- |, : B — H U {0}.
We let [b], = [b|, if |b], € H and we let |b], = 0 otherwise. Any equivalence class
of valuations constructed in this way is continuous if | - |, is continuous. Equivalence
classes of valuations constructed in this way are called horizontal specialization of x.

11. Horizontal specializations and residue field maps have the following compatibility. Fix
r € Spa(B, BT) with residue field (K,, K,"). We let Kp be the smallest valuation
subring of K, containing K and the image of B in K. We get a natural map of Huber
pairs (B, BT) — (Kp, K;), we consider the induced map f : Spec(Kp) — Spec(B).
Horizontal specializations of x are in bijection with prime ideals of B that are in the
image of f. Given a convex subgroup H containing cI', we can describe the prime
ideal p, associated to y as the set of elements of B with |b], < v for all v € H. We
will denote | - |, as | - |+/py-

12. Given a topological space T" we construct a partial order on elements of T by letting
t1 <ty whenever t; € {t2}. We call this partial order the generization pattern of T.

13. Vertical generizations and horizontal specializations completely describe the generiza-
tion pattern of Spa(B, B*). More precisely, if y is a vertical generization of x then
x € {y} and we let zRy. If z is a horizontal specialization of z then z € {z} and we let
zRz. The generization pattern of Spa(B, B") is the transitive closure of the relation
R.

1.2.2 Definitions and basic properties

Definition 1.2.1. 1. We let Spo(B, B"), denote the subset of Spa(B, BT) x Spa(B, B™)
consisting of pairs x = (|- |*,|-|%) such that |- | is a rank 1 valuation and a vertical
generization of | - |.

2. Given two elements by, by € B we let Uy, <p,20 be the set
{x € Spo(B, BT) | b1l < |bo|2 # 0},
we call such subsets classical localizations.

3. Given two elements by,by € B we let Ny, <<, to be the set

{z € Spo(B, B) | |bil < [baf # 0},
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we call such subsets analytic localizations.

4. We give Spo(B, BT) the topology generated by classical and analytic localizations, and
we call the resulting topological space the olivine spectrum of (B, BY).

We will denote by h : Spo(B, Bt) — Spa(B, B') the projection onto the first coordinate.
This map is continuous and both Spo(—, —") and h are functorial in the category of Huber
pairs.

Definition 1.2.2. Let x € Spo(B, BT).

1. We say that x is non-analytic if | - |% is trivial. We say that a non-analytic point is
microbial if h(x) is microbial. We say that a non-analytic point is algebraic if | - |* is
trivial.

2. We say that x is d-analytic if | - |% is non-trivial. Suppose that x is d-analytic, we say
that it is analytic if h(x) is analytic and we say it is meromorphic otherwise.

3. We say that x is bounded if |B|% < 1.
4. We say that x is formal if it is bounded and d-analytic.

Notice that for any point z € Spo(B, BT) the set h™!(h(z)) has at most one d-analytic
point and at most one non-analytic point. The cardinality of h=!(h(z)) is either one or two.
If z is d-analytic then h™'(h(x)) has cardinality one only when z is analytic. We warn the
reader that although the definitions are designed so that x € Spo(B, B*) is analytic if and
only if h(z) € Spa(B, BT) is analytic this is not the case for non-analytic points. Indeed, if
x is meromorphic it is d-analytic but h(z) is non-analytic. Meromorphic points behave as
analytic points but they are not fully detached from their algebraic nature.

Definition 1.2.3. We define the support ideal, supp(x) C B, as supp(h(x)). We define the
specialization ideal, sp(x) C BT as the set of elements of BT with |b|» < 1. Whenever x is

bounded we define the deformation ideal, denoted def(x), as the prime ideal of elements of
B for which |b|¢ < 1.

Notice that z is bounded if and only if ¢, = {1}. Moreover, this only happens if z is
either non-analytic or formal. When x is bounded it is non-analytic when supp(z) = def(x)
and formal otherwise. We can define the bounded locus, denoted Spo(B, B+)T, to be the
subset of points that are bounded. This is a closed subset since it is the complement of

Ube B N1<<b-
Definition 1.2.4. Let x and y be two points in Spo(B, BT).

1. We say that y is a vertical generization of x (z is a vertical specialization respectively)
if |19 =113 and | - | is a vertical generization of | - |% in Spa(B, BY).

2. We say that y is a meromorphic generization of x (meromorphic specialization respec-
tively) if y is meromorphic, x is non-analytic and h(z) = h(y).
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3. We say that y is a formal generization of x (formal specialization respectively) if y is
formal, x is non-analytic de f(y) = supp(x) and |- |} = |- |'/def(y).

Given z € Spo(B, B") let Z=(z) denote the set of generizations of z in Spo(B, BT)
and let Z= (z) denote the set of vertical generizations of z. If the context is clear, for a
point y € Spa(B, BT) we will also use Z=,(y) to denote the vertical generizations of y in
Spa(B, BT). Let us make some easy observations and set some convenient notation:

1. If z is non-analytic it has a meromorphic generization (necessarily unique) if and only
if x is a microbial. We denote this generization by z™".

2. If & is meromorphic it has a unique meromorphic specialization, we denote it by ;.

3. If  is formal it has a unique formal specialization, we denote it by zf,. If z is
non-analytic, we let 7" denote the set of formal generizations of x.

Example 1.2.5. If B = F,[[t]], the ring of formal power series over F, endowed with the
discrete topology, then Spa(B, B) consists of 3 points:

(=1l s =11t =11}

Here | - |, is the trivial valuation with residue field F, ((t)), | - |s is the trivial valuation
with residue field F, and | - | is the (t)-adic valuation on F,[[t]] with residue affinoid field
(F, ((t)),F,[[t]). All three valuations have rank 1. The only non-trivial vertical generization
in Spa(B, B) goes from |- |¢ to |- |,.

On the other hand Spo(B) has 4 points:

{77:<|‘|n7|‘|77)v5:(|"8>"|8)7ta:(|"t=|'|t)ath:("|t7"|n)}

One can verify directly from the definition that {n} = Ui<izo, {n,t", "} = Up<izo, {t*} =
Ny and {t%, s} = Nic1, and that these are the only proper open subsets.

In this exzample s, n and t" are non-analytic. Moreover, t" is microbial, and t* is both
a meromorphic and formal d-analytic point. The generization pattern is as follows: n is a
vertical generization of t", t" is the meromorphic specialization of t*, and s is the formal

specialization of t*. We have that Spo(FF,[[t]], Fp[[t]])T = Spo(F,[[t]], Fp[[t]])-

The following proposition shows that vertical generizations, formal specializations and
meromorphic specializations completely describe the generization pattern in Spo(B, BT).

Proposition 1.2.6. Let x € Spo(B, BY).

1. If x is d-analytic then IT=(z) = <, ().

ver

ver ver

2. If x is non-analytic then T=(z) = Iy, (z) ULy, (™) U (U, 1< (@) Zory.
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Proof. We start by proving the right to left inclusion. Let y € Z=5 (x) UZS, (2™") U
For)

if z is non-analytic and let y € Z= (x) otherwise. Since h is continuous

(UZGIvSeT(x) &
and h(y) is a generization of h(z) in Spa(B, B*) we have that y is contained in every clas-
sical localization containing x, so it is enough to check on analytic localizations. Suppose
that © € Ny, <<, if y is a vertical generization we have that | - [; = |- |{ so y € Ny, <,
If x is non-analytic then |b1|¢ = 0 and |by|¢ = 1, this implies that |by|¢me- = 0 and that
|bg|%er # 0, 50 2™ € Ny, - p, Whenever 2" exists. Moreover, for y € 27" we have that
def(y) = supp(x) which gives [by[¢ < 1, [bo]¢ = 1, and 27" € Ny, <y,

Now we prove the left to right inclusion, for this take y € Z=(z). Using classical lo-
calizations one can deduce that supp(y) C supp(z), and if x is d-analytic we claim that
supp(y) = supp(x). Indeed, let b € B such that [b|¢ ¢ {0,1}, and let by € supp(x). If
b]5 < 1 then [b[7 < 1, which implies that y is d-analytic. Additionally, the inequalities
|b1]¢ < [b"% must hold for all n since z € Ny, <<pn and y € Z=(z). In a similar way, if 1 < [b|}
then 1 < [b[; and we may look at the inequalities |b; - 0”5 < [b]§ instead. In both cases the
Archimedean property of rank 1 valuations imply that b; € supp(y). Since the only gener-
izations of h(z) in Spa(B, B") that have the same support as h(z) are vertical generizations
we must have h(y) € Z=, (h(z)). Consequently, y € ZS () holds in the d-analytic case.

Suppose now that x is non-analytic, if supp(z) = supp(y) then we can reason as above
to conclude y € Z= (z) UZS, (2™"). Let us assume there is b € supp(z) \ supp(y). Since
x € Ny<<q we have 0 < [b]§ < 1 and that y is d-analytic. By similar reasoning for all b, € B
we have |b- b7[; < 1 which implies that y is formal, we also have that supp(z) C def(y).
Moreover, for elements by ¢ supp(r) we have x € Up<ppo for all n, this implies that [bof; = 1
so def(y) = supp(x). If we let z = yy, then supp(z) = supp(z) and one can check from the
construction of horizontal specializations that z is also a generization of x. As above, we may
conclude that h(z) is a vertical generization of h(x), and since both z and = are non-analytic

then z is a vertical generization of z. In other words, z € ZS (z) and y € zF". ]

The olivine spectrum is compatible with completion and rational localization.

Proposition 1.2.7. Let (B, BY) denote the completion of (B, BY), the map Spo(B, Bt) —
Spo(B, B") is a homeomorphism.

Proof. The map Spo(B, B*) — Spo(B,B*) is a bijection of sets since Spa(B,Bt) —
Spa(B, Bt) is. Since Spa(B, B*) 2 Spa(B, B*) classical localizations of Spa(B, BT) are
open in Spa(B, BT). It is enough to prove that if f, g € B then N, 4<<f is open in Spo(B, BT).
Let € Ny<<; and let f, € B with |f,|" = |f|?. We have that

Up,<s20 NVUjp<p20 M Nyacy = U, <20 NV Ujp< 20 N Ny <y

so we can reduce to the case in which f € B. Take a ring of definition By C B and an ideal
of definition I C By with [i|% < |f|% for a finite set of generators i € I. Let g, € B such that
g— g. € I* - By. Then

((Uier0) N Nyo<cg = ([ Uiz p0) N Ny<<s
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which proves that the left hand side is also open in Spo(B, B"). Indeed, we have the

inequalities |g]5 < max(|gzl, 19 — 9212), 19215 < max(|gl3, |9 — g213) and |g — galg < [f]2 by
the construction of g,. O

Proposition 1.2.8. Let s,tq,...,t, € B such that the t; generate an open ideal in B and
consider the map of Huber pairs (B,BT) — (R, R") associated to the rational localization
U(B==tn) C Spa(B, BT). The induced map Spo(R, R™) — Spo(B, BT) is a homeomorphism
onto h_l(U(—tl"'S"t")).

Proof. The only thing to verify is that for every r1,ry € R the analytic localization N,, <., C
Spo(R, R") is also open in Spo(B, B"). By proposition 1.2.7 and the construction of R
as a rational localization we may assume that ri, 7y € B[%] C R since R is defined as

the completion of B[%] under certain linear topology. Let r; = stll and 7o = S% and
let m = ny —ng. Then N, cop, = Ny <cpysm N Spo(R, RT) when m is non-negative and
Ny<<ry = Npyy.smecp, NSpo(R, RT) otherwise. O

The following example generalizes example 1.2.5. We encourage the reader to understand
this example carefully before moving on. This will also be used in the proof of lemma 1.2.33
and theorem 4.

Example 1.2.9. Suppose that B and B™ are valuation rings with the same fraction field and
suppose that B has the discrete topology. To describe Spo(B, B1) it is enough to realize that
Spo(B, B™) C Spo(B*, BT) and that it acquires the subspace topology. Indeed, it corresponds
to the intersection of the classical localizations Myep\p+Uo<pzo € Spo(B, BY) (often times
only one of the terms in this intersection is needed). To simplify notation we only describe
explicitly Spo(B™T, BY), the advantage of this case is that all points are bounded and the
deformation ideal def makes sense.
Consider the map Spo(B*, BT) — Spec(B™)? given by

q = (supp(q),def(q), sp(q)).

The map is injective and the image consists of the set of triples (q1,q2,q3) such that ¢1 C
q2 € g3, and such that the closed interval [q1, qz| (in the sense of ordered sets) has cardinality
one or two. A triple ¢ = (q1,q2,q3) is d-analytic (necessarily meromorphic) if and only if
q1 # q2, 1n this case there exists an element b € BT with b € ¢\ q1. We have that ¢ € Z=,.(r)
ifqu =11, @q =19 and g3 C r3. Also, q =1"" ifry = q1 =12, o # 1 and r3 = q3. With this
setup formal generizations are unique and r is the formal specialization of q (i.e. r = o)
if 1 # G2, 11 = g2 =12 and 13 = g3.

To each element 0 # g € BT \ (B¥)* we can associate two ideals q and q; where q; is
the largest prime ideal not containing g and q, is the smallest prime ideal containing g. We

have that q; C g, and that the interval [q;, q, ] has cardinality two.

When g € BT then Us<gro = Uo<gzo and consists of triples (qi,q2,q3) with ¢ < g, . On
the other hand zf% € B we can let b = % then Us<gz0 = Ur<pzo and it consists of triples
with g3 < q, . Notice that the two families of open sets Ui<pzo and Up<gzo are nested (i.e.
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one of Ui<p,20 C Ur<py20 07 Ur<py 20 C Ur<p,20 holds). In particular, finite intersections of
classical localizations are all of the form Uj<pzo N Up<gzo for some b, g € BT.

When n = % € BY then Nyccy is empty and Nyccy = Up<gzo N Nypcc1. The set Nyccoq
consists of the triples ¢ = (q1,q2,q3) such that g < go. The family of sets N,-<1 is again
nested.

In summary, if v € U C Spo(B*, BT) for U an open subset there are elements g,b,n €
B with x € U0§g7g0 N U1§b¢0 N Nycc1 C U and elements of U()Sg7£0 N Ulgb;é() NNycc1 CU
correspond to triples (qi,qz, qs) satisfying: ¢, q1 € g2 C g3 C q, and ¢ C qy -

1.2.3 Olivine Huber pairs

For the rest of the section (B, B™) will denote a complete Huber pair over Z,.

Proposition 1.2.10. If R is a Tate Huber pair the projection map h : Spo(R,R") —
Spa(R, RT) is a homeomorphism.

Proof. Since (R, R*) is Tate there are no trivial continuous valuations in Spa(R, R*). In
particular every point in Spo(R, RT) is d-analytic and h is injective. If z% is the maxi-
mal generization of z in Spa(R, R") then h™!(z) = {(x,2%)}. It is enough to prove that
(N, <<r,) is open. If w € R is a topologically nilpotent unit, then

h(Ny,<ary) = | J{z € Spa(R, RY) | r]]. < |rhwl. # 0}

0<n

Indeed, a point z € Spa(R, R") is in h(N, <<p,) if |r1|ze < |r2]ge. By the Archimedean
|71]za
‘7'2‘3:"'
|to|za > 0. On the other hand, if ||, < |} - w|, we also have |[r}|e < |rh - @l < [} ]za

since w is topologically nilpotent. O

If m: (B,B") — (R, R") is a map of Huber pairs, we denote by Spo(m) : Spo(R, R*) —
Spo(B, B™) the corresponding map of olivine spectra. In case (R, R") is Tate we have a
continuous map Spo(m) o h™! : Spa(R, R") — Spo(B, BT). When the context is clear, we
also abbreviate Spo(m) o h™! by Spo(m).

property of rank 1 valuations there is n € N such that ( )" < ||z since w is a unit and

Remark 1.2.11. The topological considerations in what follows can be done purely in the
context of adic spaces without any reference to perfectoid spaces. To do this one substitutes
ISpd(B, BY)| by Spo(B, BT where this second space has Spo(B, B*) as underlying set but
has the strongest topology making Spo(m) continuous for maps m : (B,B") — (R,R")
ranging over all Tate Huber pairs. We do not pursue this.

We define a map = : [Spd(B, BT)| — Spo(B, BT) as follows. Let [z] € |Spd(B, B™)| be
represented by a geometric point x : Spa(C,, C,,") — Spd(B, BT), and let s € Spa(C,,C,™")
denote the unique closed point. Recall that the map is given by an untilt C% and a map
of Huber pairs f* : (B, Bt) — (C!,C!"). We define 7([z]) to be Spo(f,)(>~(s)) where
b : Spa(Ct, C’ff) — Spa(C,, C, ") is the tilting homeomorphism. This map doesn’t depend
of the representative picked.
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Proposition 1.2.12. The map 7 : |Spd(B, B")| — Spo(B, BT) defined above is continuous
and bijective.

Proof. To prove m is continuous one has to show that for any map f : Spa(R,R"T) —
Spd(B, Bt) with (R, RT) perfectoid, the composition

|Spa(R, R*)| — [Spd(B, B")| = Spo(B, B")

is continuous. But if f* : (B, BY) — (R, Rﬁ) is the map of Huber pairs associated to f
then 7 o |f| is given by Spo(f*) ob~!. Let us prove injectivity, take two geometric points
yi : Spa(C;, C;7) — Spd(B, BT) and suppose that m(y;) = 7(y2). We need to show that
[y1] = [y2]. Let z be the common image in Spo(B,B*) and let (K ): Kpy") be the
affinoid residue field of h(z) in Spa(B, B*). The map (B, B*) — (CF, C’f ) factor through
(B,BT) = (Kn), K@) "). We split our analysis in three cases.

Case 1: Suppose that x is analytic. In this case the closed point s; of Spa((]f ) C’f+) maps
to h(m(x)) which is in the analytic locus Spa(B, B*)*". This case follows from the bijectivity
of |X¢| — |X| for analytic pre-adic spaces (See remark 1.1.31).

Case 2: Suppose that x is meromorphic, we have that h(x) is non-analytic in Spa(B, BY).
Let Kp,y = {k € Ku | |k[; < 1} since |- [3 is non-trivial K}, is a proper valuation
subring of Kj(y). Choose b € B such that either 0 < [b|% < 1 or |b|¢ > 1, then the subspace

topology on (K} (x)) Cyr Oge coincides with the (b)-adic topology or, respeotlvely, the (1)—
adic topology. Taking the completion with respect to this topology we get a commutative
diagram:

Spa((]l, ClJr)

Spa(Cy, Co ") —2 Spd(Kn), K )

Lz
Y2

Spd(Knzy, Knz)™)

The maps pz, map the respective closed points to the same underlying topological point of
Spd(K;Z ) Since Spa(Kh (@) K+(1,)) is analytic we can conclude as in the first case.

Case 5’ Suppose that x is non-analytic, in this case h(x) is non-analytic in Spa(B, BY).
We have that (Kp(,), Kn) ") is given the discrete topology. Since |- |2 is trivial we have that

Yi(Kn)) C OﬂcX After choosing pseudo-uniformizers w; € O, we may extend the y; to
continuous adic maps of topological rings p;* : Kp(y)[[t]] = O ¢ where Ky [[t]] is given the
(t)-adic topology. These induce the following commutative diagram:
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Spa(Cy, Co ) —=— Spd(Kne) (1)), Kfi,) + 1 Ky [[t]])

\

Spd(Kh(x)7 Kh(a:)+)

Y2

The maps p; again send the closed point to the same point in Spd(Kp) ((1)) ,K;“(x) +t-
K [[t]]) and this space is again the diamond associated to an analytic space so we may con-
clude as above. This finishes the proof of injectivity. The argument given above also explains
how to construct a geometric point of p, : Spa(C,Ct) — Spa(B, B™) with Spo(p,)(s) = x.
Indeed, we can take a completed algebraic closure of Kj(y) (K h(z)s OF Kp(z) ((t)) respectively)
when z is analytic (meromorphic or non-analytic respectively). O]

Definition 1.2.13. Whenever x is d-analytic we let (K,, K, ") denote (Kp(), IA(;@)), and if
z is non-analytic we let (K., K, ") denote (Kpw ((1)), K,:r(x) +t- K@ [[t]]) as in the proof
of proposition 1.2.12. In both cases we call (K, K, %) the pseudo-residue field at x.

Remark 1.2.14. The pseudo-residue field map Spo(K,, K,") — Spo(B, BY) is a home-
omorphism onto its image. The functor Spd(K,, K,T) — Spd(B, BT) surjects onto the
subsheaf of Spd(B, BY) consisting of maps that factor through IS, (z), but when x is non-

analytic the map Spd(K,, K,©) — Spd(B, B*) is not injective. Actually, when x is non-
" is non-trivial the subsheaf of points that factor through I= () is not

analytic and | - =,

representable by an adic space.

Corollary 1.2.15. For any map of Huber pairs m* : (By, By") — (Bg, By") the map Spo(m)
is compatible with vertical generization. More precisely, if x € Spo(Ba, ByV), y = Spo(m)(z)
and y' is a vertical generization of y then there exist x', a vertical generization of x, with
Spo(m)(z') =y

Proof. Given x € Spo(Bsy, Bo") and y € Spo(By, Bi1) as in the statement we may, after
making some choices if necessary, construct the following commutative diagram of pseudo-
residue fields:

Spd(K,, K,") — Spd(K,, K,")

! !

Spd(32,32+) — Spd(Bl>Bl+)

Since the map Spd(K,, K,*) — Spd(K,, K,") is a map of locally spatial diamonds it is

<

generalizing and consequently surjective. But |Spd(K,, K,¥)| = Z<, (x) and analogously for

Y. [

Lemma 1.2.16. The topological spaces Spo(B, BY) and |Spd(B, BY)| have the same gener-
1zation pattern.
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Proof. Since the map |[Spd(B, BT)| — Spo(B, BT) is continuous the generization pattern of
|Spd(B, B*1)| is smaller than that of Spo(B, B™), it is enough by proposition 1.2.6 to prove
that formal, meromorphic and vertical specializations are specializations in [Spd(B, BY)].
For any x € Spo(B, B*) the pseudo-residue field map ¢, : Spd(K,, K,*) — Spd(B, B*) in
the proof of proposition 1.2.12 defines a bijection onto Z= () which proves that vertical
specializations are specializations in Spd(B, BT).

Let x € Spo(B, B1) be d-analytic and let b such that |b|% ¢ {0,1}. Let p : Spa(C,C*") —
Spa(B, BT) be a geometric point mapping to x and let w € C°° be either p*(b) or p*+17)'
To this choice we will associate two product of points as follows. Let RT = [[2, CT, let
wo = (@)%, and we = (@")°,. Let R (RY respectively) be R* endowed with the -
topology (ws-topology respectively), and let Ry = Rf [w%)] (R = R;[i] respectively).
We have diagonal maps of rings C* — RY and C' — R, but we warn the reader that this
maps are not continuous. On the other hand, the map C™ — R is continuous but =@ is not
invertible in Ry so the map does not extend to a map C' — Ry. Intuitively speaking, the
product of points Spa(Ru, Reo™) “converges outside” of the locus in which =@ is topologically
nilpotent and the product of points Spa(Ry, Ry*) “converges outside” of the locus in which
w is invertible.

Suppose that z is meromorphic, then the affinoid residue field (Kj (), Kn@)™) is given
the discrete topology. In particular, the diagonal map f : B — Kj(;) — R is continuous
and defines a map Spa(Ru, Re™) — Spa(B,BT). The space of connected components
7o(|Spa(Rue, Roo7)|) is the Stone-Cech compactification of N which has as underlying set the
set of ultrafilters of N. Principal ultrafilters {U,, },en define inclusions ¢, : Spa(C,C*) —
Spa(Re, Roo ™) that correspond to the nth-projection in the coordinate rings. In particular,
the closed point of a principal connected component maps to = under Spo(f). We claim
that the closed point of a non-principal connected component maps to ... It is enough to
construct a commutative diagram as below:

Spa(Cy, Cu™") —— Spa(Ka,,.,, Ka,e, ™)

| |

Spa(RomRoo+) - Spa(Kh(x)aKh(a:)+) - Sp&(B,B+)

We claim that the natural map K,y — Cy maps to Og,. Indeed, it is enough to prove
Weo * Knwy € Og, since then every element of Kj) would be power bounded. Clearly
K,;L(x) C O¢, and since Kj(y) = K,;L(x) b, %] it is enough to prove that =2 € O¢, for n € N.
Clearly £ € 112, +1 Oc and since our ultrafilter is non-principal complements of finite sets
are in U, which finishes the proof of the claim.

By letting ¢ map to w., we get a map Ky, ((t)) = Cy, the intersection of Kj () [[t]] with
CyinOg, is K ;f(x)+t-K n@) [t] = K which gives our factorization. Since the set of points
that are contained in a principal connected component and that are closed in |Spa(R, R1)|
is dense within the set of closed points of |Spa(R, R')|, meromorphic specializations in

Spo(B, BT) are specializations in [Spd(B, BT)|.
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Suppose now that z is formal, since |B|¢ < 1 the map (B,B") — (C,C") factors
through a map to (O¢, C™) and we have def(z) = BN C°°. This allows us to define a map
Spa(Ro, Ry™) — Spa(B, B*). As in the previous case the space of connected components
of Spa(Ry, Ro") is Stone-Cech compactification of N, principal connected components of
Spa(Ro, Ry") map to x in Spo(B, B*) and we will show that the non-principal ones map to
X for-

Let £ = O¢/C?° and kT = C*/C°°, it is enough to prove that the map (O¢,C") —
(Cy, Cy™) factors as:

(Oc,CT) = (k, k) = (k (1), kT +¢-k[[t]]) = (Cyu, Cy™)

Now =& € 12,1 Oc which implies that |w|y < |wf|y. Since wy is a pseudo-uniformizer
in Cy this implies |w|y = 0. Clearly £ C O¢,, and we may send ¢ to wy to construct our
factorization. We may conclude the proof that formal specializations are specializations in
|Spo(B, B™)| as in the previous case. O

We say that a Huber pair is formal if it is of the form (B, B) where B is an I-adic ring with
finitely generated ideal I. For the moment we restrict to studying the olivine spectrum of
formal Huber pairs. The main technical advantage of restricting to this case is that the open

unit ball over Spd(B, B) is easy to describe. Indeed, it is represented by Spd(B|[t]], B[t]])
when this ring is given the (7, t)-adic topology.

Proposition 1.2.17. Let (B,B) be a formal Huber pair then the map |Spd(B,B)| —
Spo(B, B) is a homeomorphism.

Proof. By proposition 1.2.12 we the map is a continuous bijection. Let
Y = Spa(BI[t]]. BI[#])""

and recall that |Y| = |Y 9] since this is an analytic pre-adic space. Let U be an open subset
of |Spd(B, B*)|, let z € U and let y € Y be a point mapping to x, such that |¢|, # 0. We
will construct a neighborhood of x contained in U that is open in Spo(B, B).

Given a classical localization Uy, <p, -0 or an analytic localization Ny, .p, containing x
we choose quasi-compact neighborhoods of y in Spa(B [[t]], B [[t]]), that we denote Uy, p,,
and Ny, p, 5, whose image in Spo(B, B) are contained in Uy, <p, 20 and Ny, <<p, respectively.
The construction is as follows, given the classical localization Uy, <4,20 We pick a finite set of
elements S C B and a positive integer n such that |s|, < |bs|, for s € S, that [t"], < |bal,,
and that the ideal generated by S is open in B. We let Uy, 4,, be the rational localization
U (S%bl) C Spa(B][t]], B[[t]]). Rational localizations of affinoid adic spaces are always quasi-
compact open subsets and clearly Spo(f)(h™ (U, by.y)) S Us,<by0-

Analogously, given N, -, we pick a set S and two positive integers, n; and no, such
that [b7"], < [b3" - t|,, that |s|, < |[b3" - t|, for s € S, that [t"2], < |t - by'|, and that

S,tn2 bl
b;”~1t1 )

S generates an open ideal in B. We let Ny, 4,, = U( Since t is topologically
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nilpotent in B[[t]], for any point z € Spa(B([t]], B[[t]]) we must have |¢|, < 1, which proves
SPO(f)(h™ (Noy bay)) S Noy<<n,- Notice that Ny, 4, C Spa(B([t]], B[[t]])***.

Let X denote the intersection of all neighborhoods of y of the form Ny, p,, and Uy, 4, .,
that were chosen in this way, then Spo(f)(X) is contained in Z<(z). By lemma 1.2.16
|Spd(B, BT)| and Spo(B, B) have the same generization pattern, so we also have that
Spo(f)(X) € U. We have that Spo(f) "(U) is open in Spa(BI[t], B[[t])'*® and that
the two families, Uy, p,, N No1, and Ny, p, 4, consist of quasi-compact open subsets of
Spa(B][t]], B[[t]))*”°. A compactness argument in the patch topology of Spa(B[[t]], B[[t]])
will prove that a finite intersection of these neighborhoods is contained in Spo(f)~"(U). We
prove below that the image under Spo(f) of such a finite intersection is open in Spo(B, B).

It is enough to show that if a set Z is a finite intersections of sets of the form

Viga, = {z € Spa(B[[t]], B[[t])""° | |t}]. < [bp]. # 0}

where b) € BU{t"},en and b, € BUt - B, then Spo(f)(Z) is open in Spo(B, B). Observe
that if b},0, € B then Vi 4 = Spo(f)fl(Ubflgb/ﬁO) and that for any Z as above we have
Spo(f)(Z N Vi w,) = Spo(f)(Z) N Uy, <p,+0- This allow us to reduce to the case in which Z
is an intersections of opens such that at least one of b} € {t"},en or b = by - t holds.

Let T be the subset of B for which either Vinj or Vint1 4.4 appear in the expression
of Z as an intersection, we let T;= be the set of pairs (by,bs) € B x B such that V,, ()
appears in the expression of Z as an intersection, and we let T, and T} denote the image
of T'5< under the projection onto the first and second factors respectively. We claim, and
prove below, that Spo(f)(Z) is the intersection of all the sets of the form Uyn<pp.p,20 Where
(b1,by) € T;< and by € Ty and all the sets of the form N, <<p,, with (b1,by) € T5<. This
proves Spo(f)(Z) is open.

Let z € Z with associated rank 1 point 2* € Z, let w = Spo(f)(z) and fix by, by and bs
as above. By raising to the nth-power we have that |b7|, < |b5], - [t"], and |t"], < |bs|, hold.
In particular,

071> = (07 [a < (05 - Bl = 1031 - [bs]:

holds as well and we can conclude that w € Upr<pn.py0. Similarly, since ¢ is topologically
nilpotent we have |t|,« < 1 which implies that |by|,« < |bs],« and consequently that |b]? <
|b2|¢. This says that w € Ny, <<p,.

To prove the converse containment given a point w in the intersection of those sets we
need to construct a lift landing in Z. Pick a geometric point ¢ : Spa(C,C") — Spa(B, B)
mapping to w in Spo(B, B), the choice of an element w € C°** defines a lift of ¢ to a map
Spa(C, C*) — Spa(B|[[t]], BI[t]])!”° simply by letting ¢t map to w. If w is non-analytic then
0112 = 0 for every by € T, and |by|% = |b3|% = 1 for every by € T and by € T3. In this
case, any choice of w defines a lift landing inside of Z.

If w is d-analytic w must be chosen more carefully. Since C' is algebraically closed we
may choose nth-roots of (bs) for all by € T7. For a lift of ¢ to land in Z, @ must satisfy

the following: |w|, < |(b3)%\q for all by € T and }EZ;;IZ < |w|, for all (by,by) € Ty=. We

1
let m be the smallest of the values in I'; of the form [b3 |, with b3 € T} and we let M be
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the largest of the values of the form |Z—;|q with (b1, by) € T;<. Since w € Upn<py.p,20 We have
M < m. Since w € Ny, <<p, for all pairs (by,be) € T5< we also have M < 1. Any w € C
with |w|, <1 and M < |w|, < m defines a lift of ¢ in Z. This finishes the proof of the first
claim.

]

Definition 1.2.18. Let (B, BT") be a complete Huber pair over Z,, we say that (B, BT) is
olivine if the map |Spd(B, BY)| — Spo(B, B*) is a homeomorphism.

Question 1.2.19. Is every complete Huber pair over Z, an olivine Huber pair?

We have some partial progress in answering this question. Although we do not know what
to expect in full generality, for all of the Huber pairs that we consider this is true. Let us
clarify. By remark 1.1.31 we know that Tate Huber pairs are olivine. By proposition 1.2.17
we know that formal Huber pairs are olivine. Proposition 1.2.8 allows us to conclude that if
(B,B*) — (R, R") induces an open immersion Spa(R, R") C Spa(B, B*) and Spa(B, B™)
is olivine then Spa(R,R™) is olivine. Moreover, we can conclude that being olivine is a
property that can be verified locally in the analytic topology of Spa(B, B*). The following
proposition is the most general criterion we could come up with.

Proposition 1.2.20. Suppose that (B, BT) is a complete Huber pair over Z, such that Bt
is a ring of definition with ideal of definition I and such that B is a finite type B -algebra.
Then (B, B*) is an olivine Huber pair.

Proof. Write B = B¥[by,...,b,| we prove that (B, B") is olivine by induction on the size
of n, the case n = 0 is the content of proposition 1.2.17. Let Spa(R, RT) be the rational
localization corresponding to {x € Spa(B, B") | |bi]. < |1]. # 0}, we claim that (R, R")
is olivine. By proposition 1.2.7 we may compute R without taking completions. Up to
completion R* is the integral closure of BT[b;] in B and the underlying rings of R and B
coincide (although they are not homeomorphic). Clearly R is generated over R™ by less
than n elements so by induction it is olivine. We let Spa(.S, S™) be the rational localization
corresponding to {x € Spa(B, BY) | |1], < |b1]. # 0}. Up to completion S = B[i] as rings
and S* is the integral closure of BT[] in B[;-]. The Huber pair (S*[by,...,b,], S*) is
olivine by induction. But Spa(S, S*) is the locus in Spa(S™[by,...,b,],ST) in which i #0,
so this one is also olivine. Since Spa(B, BT) = Spa(R, R") U Spa(S,S™) this finishes the
proof that (B, BT) is olivine. O

Remark 1.2.21. For an arbitrary Huber pair for which Bt serves as a ring of definition
we can consider the commutative diagram

’ Spd(B7B+) | N SpO(BaB+)

! l

Im_ | Spd(B;, BT) | —— lim_ Spo(B;)
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where B; ranges over all subrings of B that are of finite type. By proposition 1.2.20 the bot-
tom horizontal arrow is a homeomorphism and one can verify directly that the right vertical
arrow s also a homeomorphism. It is not clear to us if the left vertical arrow is a home-
omorphism or not since taking limits of v-sheaf does not necessarily commute with taking
underlying topological spaces. Adding to the complexity of the situation the transition maps
Spd(B;, B*) — Spd(B;, BT) might not be quasi-compact. Any counterezample to question
1.2.19 should come from this failure.

Question 1.2.22. Let B=TF,[11,...,T,,...]| be the free algebra in infinitely many variables
endowed with the discrete topology and let Bt =T,. Is (B, B*) olivine?

1.2.4 Some open and closed subsheaves of Spd(B, B*)

By [71] 12.9 open subsets of Spo(B, B*) define open subsheaves of Spd(B, Bt), and when
(B, B™) is olivine this association is bijective. Since the formation of Spd(B, B") commutes
with localization in Spa(B, B1), one can compute the open subsheaf corresponding to classi-
cal localizations. The following lemma describes, in some cases, the open subsheaf associated
to an analytic localizations .

Lemma 1.2.23. Let (B, B") be a complete Huber pair over Z, and suppose that B is adic
with ideal of definition I. Let b € B, let By, be the completion of B with respect to the (b, I)-
adic topology and let By be the integral closure of Bt + (By)°° in By. The open subsheaf
associated to the analytic localization Ny--y C |Spd(B, BT)| is represented by Spd(By, By™").

Proof. If a map f : Spa(R, R") — Spd(B, B*") factors through Spd(By, By*) then f*(b)
is topologically nilpotent in R*. This implies that Spo(f)(Spa(R, RT)) € Ny and since
this happens for every test space (R, R") € Perf, the map of v-sheaves Spd(By, By") —
Spd(B, BT) must factors through the subsheaf associated to Ny-~;. Moreover, since B C B,
is dense, the maps f* : B, — R* are determined by their restriction to B, this implies that
Spd(By, By") — Spd(B, B*) is an injective map.

We must prove that if f : Spa(R?, R”Jr) — Spa(B, BY) is such that

Spo(f)(Spa(R, R*")) C Ny,

then it factors through a (unique) map Spa(Rﬁ,RﬁJr) — Spa(By, Byt). Given a point = €
Spa(R*, Rﬁ+) and a pseudo-uniformizer w € R*" we let % denote the rank 1 generization of
x, we have that |f*0"|, < |w|, for some n since by hypothesis |f*b|,. < 1.

Let U = U(f%) C Spa(R*, R*™). If Ry = (R:+)[2] where we complete by the w-adic

topology, then R = H°(U,Ox) = Ri[Z] and R'* :wHO(U, O%) is the integral closure of
R¢* + R in R'. Since f*b" € R'° the map B — R’ is continuous when B is given the
(I,b)-adic topology. Moreover, since R is complete we get a map B, — R'°. This gives a
factorization Spa(R’, R'") — Spa(By, B,"), and a map Spa(R', R")” — Spd(By, B,*). We
have proved that locally f factors through Spd(By, By"), since Spd(By, By 1) is a v-sheaf and
the factorization is unique we may glue this to a map Spa(R, RT) — Spd(By, By™). ]
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In general the subsheaf Ny..; might not be of the form Spd(R, R™) for a Huber pair
(R, R™), but it can always be described as the locus in which b is topologically nilpotent.

Recall that we defined Spo(B, B*)Jr C Spo(B, B™) as the closed subset of bounded points.
The definition of boundedness implies that Spo(B, B+)T is stable under vertical generization
and by proposition 1.1.17 it defines a closed subsheaf of Spd(B, BT). Here is a different
description.

Proposition 1.2.24. Define Spd(B,BjL)T . Perf — Sets to parametrize triples (R*, ¢, f)
where (R*,1) is an untilt of R and f : Spa(R*°, R**) — Spa(B, B") is a morphism of
pre-adic spaces. We get the following Cartesian diagram

Spd(B, BY)" —— Spd(B, BY)

! |

Spo(B, BT)T —— Spo(B, BY)

Proof. We first prove that Spd(B,B*)T — Spd(B, B) is a closed immersion. Let Alzji'
denote the functor sending (R, R*) — (R, 1, x) where (R* () is an untilt and z is a tuple
with values in R* indexed by elements of B. The similarly defined space AlzB;l’T parametrizing

tuples in R*° sits inside Alzil, and we have a basechange identity Spd(B, BJF)T = AZ"T X 1B

Lp

Spd(B, B"). Since the limit of closed immersions is a closed immersion we can reduce to

prove that AZ — A%p is a closed immersion. Consider the basechange by maps with source

an affinoid perfectoid, f,. : Spa(R, RT) — Aj with 7 € Rf. Then AT x,1 Spa(R, RY) is
P

the complement in Spa(R*, R*") of

(e € Spa(R%, BE) | (1], < |r- wl. # 0}

w

where o ranges over elements of R*°°. This is a closed subset stable under vertical gener-
ization and defines a closed immersion into Spa(R, R") as we wanted to show.

Once we know Spd(B, BJF)Jr and Spd(B, BT) X spo(n,5+)Spo(B, BJ“)T are closed immersions
it suffices to verify on geometric points that they agree. Let ¢ : Spa(C,C*) — Spd(B, BT)
be a geometric point with rank 1 generization ¢*. That ¢ maps to a bounded point in
Spo(B, B™) means by definition that |B|, < 1, which is precisely the condition that the
map B — C* factors through O:. m

Remark 1.2.25. One should be careful with the notion of bounded points since this notion is
not compatible with localization (and it shouldn’t). If Spa(R, R™) C Spa(B, B™) is a rational
localization and © € Spo(R, RY) it might happen that x € Spo(B, B™)' N Spo(R, R*) but
z ¢ Spo(R, RM)'. For ezample, (Z3)T = Z3 but (QY)' = 0.
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Lemma 1.2.26. Suppose that (A, A*) and (B, B") are complete Huber pairs over Z, and
that we have an adic homomorphism (B, BT) — (A, A%). Then the induced map of v-sheaves
Spd(A, AJF)Jr — Spd(B, BJ“)T is representable in spatial diamonds and in particular qcgs.

Proof. Since the map (B, B") — (A, A") is adic we can write (A4, A") as a filtered col-
imit lim._ (A;, A;") where each (4;, 4;") is topologically of finite type over (B, BY), and
the transition maps realize A; — A; as a topological subrings for i < j. One can see di-
rectly that Spd(4, AT)" = lim, Spd(A;, A; D) and by [51] 12.17 it is enough to prove that
Spd(A4;, Aﬁ)Jr — Spd(B, B+)T is representable in spatial diamonds. By definition of being
topologically of finite type there is a family of sets M = {M;}"_, with B - M; an open ideal
and a strict surjection B(T1,...T,) ... .M, — Ai compatible with rings of integral elements.
One can verify directly that the induced map
Spd(A;, A;") — Spd(B(Th, ... T, ...
is a closed immersion and that Spd(A4;, Aﬁ)T is the basechange of the corresponding bounded
subsheaf. Since closed immersions are representable in spatial diamonds it is enough to verify
the case in which A; = B(T}),. There is an open immersion Spd(B(T11),, B<T1>M1+) —
AL and such that Spd(B(T1),, B(T ), 7) NAL = Spd(B<T1>M1,B(T1>M1+)T. To prove
ALt — Spd(B, BJF)T is representable in spatial diamonds it is enough to verify that basechanges
by affinoid perfectoid are spatial diamonds. The basechange of a map Spa(R,RT) —
Spd(B, B)' is representable by Spd(R¥(T), R') where R’ is the minimal ring of integral
elements containing R**. Since R*(T) is Tate this space is a spatial diamond. O

The following statement says that at least the bounded locus of a Huber pair is always
olivine.

Proposition 1.2.27. Suppose that (B, BY) is a complete Huber pair over Z,. The natural
map
Spd(B, BY)'| = Spo(B, B*)!

1s a homeomorphism.

Proof. Let By C B* be a ring of definition and express (B, BT) as a filtered colimit of Huber
pairs of the form hﬂz‘eJ(Bi’ B;") where both B; and B;" are of finite type over By. We have

that Spd(B, BT)' = lim Spd(B;, BZ-J“)T. By proposition 1.2.20 each (B;, B;") is olivine and by
lemma 1.2.26 the transition maps are representable in spatial diamonds. Let ]D;T denote the

K3

punctured open unit disc over Spd(B;, Bﬁ)T, and let m; be the projection map ; : ]D;T —

Spd(Bi,Bi+)T. Observe that m; is universally open since it is ¢-cohomologically smooth.
We have that D is a locally spatial diamond represented by (Spa(Bo|[t]], Bo[[t]])7°)°. In
particular, D;T is also a locally spatial diamond and since the transition maps ]D);T — D;T

J
are qcgs we see that by [51] 12.17 |Dy, | = Jim ID%]. It is enough to prove that m : [Dy,| —
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Spo(B, BN is a quotient map. Let S C Spo(B, BT)" with 77(5) open. For every point
y € 7 1(S) there is an index j, € J and an open subset of U, C ]D;T whose preimage in D7,

is contained in 7'(S) and contains y. Now, m;, (U,) is open in [Spd(B;, Bi+)T| and since
(B;, B;1) is olivine it is also open in Spo(B;, Bﬁ)T. The preimage of 7;,(U,) in Spo(B, Bt
contains 7(y), is open and it is contained in h~!(S) which finishes the proof that S is open
in Spo(B, BM)'. O

1.2.5 Discrete Huber pairs in characteristic p

In the following section, when we discuss the reduction functor, we will need to understand
the olivine spectrum of Huber pairs associated to perfect schemes. For this reason we discuss
this case in detail. For the rest of the subsection A denotes a discrete perfect ring in
characteristic p and AT C A is integrally closed.

Proposition 1.2.28. Let (A, A") be as above. The projection map
Spo(A, AJF)Jr — Spa(A, AT)

is surjective. Moreover, if & C Spa(A, AT) is stable under arbitrary generization and h™ (&)
is open in Spo(A, AJF)T then & is open in Spa(A, A™).

Proof. The complement of the bounded locus consists of d-analytic points. Since A has the
discrete topology every d-analytic point is meromorphic. If z € Spo(A, A1) is a meromorphic
point it has a meromorphic specialization y € Spo(A, A™) with h(z) = h(y), y is non-analytic
and in particular bounded. This gives h(Spo(A, AT)) = h(Spo(A, AT)") which is Spa(A, A™).

For the second claim observe that the map Spd(A((¢)), AT + ¢ - A[[t]]) — Spd(A4, A™)
surjects onto Spd(A, AJF)T and represents the punctured open unit ball over it. Let f denote
the map of adic spaces f : Spa(A((¢)), AT +t- A[[t]]) — Spa(4, AT), it is enough to prove
that if & is stable under generization and f~!(&) is open then & is open. The rest of the
argument is an easier version of the proof of proposition 1.2.17. In this case one exploits the
constructible topology of Spa(A((t)), AT 4+t - A[[t]]).

Let z € &, and let y € Spa(A((t)), AT +t - A[[t]]) a lift of z. For every open Uy, 4y 4y =
{x € Spa(A, A") | |a1]. < |agl, # 0} we choose n € N such that |t"|, < |as|, and define
Uy,al,az as

{z € Spa(A((t)), AT+t - A[[t]]) | laal:, [£"]- < las|. # 0}

Observe that y € Uy g, 4y, that it is quasi-compact and that f(Uya.a,) = Usayes- Notice
that since & is stable under generization in Spa(A, AT) the intersection of all U, 4, 4, that
contain z is contained in &. This implies that the intersection of the U, 4, 4, is contained in
f~Y&). Since f71(S) is open, by the usual compactness argument in the patch topology
there is a finite subset with (Uy.a,.4 € f'(&). We denote by Z this intersection and we
observe that f(Z) = (\Us.a,.a, Which is open in Spa(A, A*) and contains x. O
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Proposition 1.2.29. If A and A" are discrete perfect valuation rings with the same fraction
field then (A, AT) is olivine.

Proof. 1f Spo(A, AT)" = Spo(A, A*) then proposition 1.2.27 proves that (4, A™) is olivine.
Suppose = € Spo(A, AT) \ Spo(A, AN)', then z is meromorphic and there is a € A with
1 < |al%. We must have 1 € AT since AT is a valuation ring and a ¢ A*. Let b = £, we
claim that A = AT[{]. By the Archimedean property of | - |4 for every o’ € A there is a
big enough n € N with [0" - a/|%2 < 1. Since A% is a valuation ring either ' - b € A or
—= € AT, but the second case contradicts that | - |2 € Spa(A, A™).

By proposition 1.2.17 (AT, A™) is olivine and since Spo(A, AT) C Spo(A*, A1) is the
open locus in which b # 0 we conclude by proposition 1.2.8 that (A, A") is also olivine. [J

In what follows we prove some lemmas to prepare the proof of theorem 4. As we have
mentioned in the introduction the statements and techniques are derivative of Scholze and
Weinstein’s full faithfulness result [53] 18.3.1.

Lemma 1.2.30. Let (A, A") be a non-analytic perfect Huber pair in characteristic p. Then
there is a unique morphism of v-sheaves Spd(A, AT) — Zg. It is given by the composition
Spd(A4, AT) = FS — Z3.

Proof. Tt is enough to prove that for every geometric point Spa(C,Ct) — Spd(A, AT) the
composition to Zg factors through ]Fg. Consider the product of points Spa(Ru, Ret) —
Spd(A, A*) as in the proof of lemma 1.2.16, with R = [[22, C* and w., = (). The
composition Spa(Ras, Roo ™) — Spd(4, AT) — Zg defines an untilt of R, given by an element
E=p+ (woo)z%’“ -a with « € W(R™). For any 7 € N the projection map ¢; : R, — C' defines
an untilt of C' and since the composition (A4, A7) = (Ru, Roo™) == (C,C*) is independent
of the projection map chosen, all of these untilts agree. This says that the ideal I; generated

by ¢;(§) in W(C™) agree, we call this ideal I. Since ¢;(§) = p — w%’“u(a) the sequence ¢;(§)
converges to p in the (p, w)-adic topology. But the ideal associated to an untilt is closed, so
p € I and Spa(C,C*) — Zg factors through Fg. O

Lemma 1.2.31. Let (A, A") be as above and let (B, B") be a complete Huber pairs over
Zy,. Then every morphism of v-sheaves Spd(A, A*) — Spd(B, Bt) comes from a unique
morphism of Huber pairs (B, BT) — (A, AT).

Proof. Given a map Spd(A, AT) — Spd(B, BT) we associate to it a map of pre-adic spaces
Spa(A, A*) — Spa(B, BY). Let S = Spd(4, A*), R = A((t7=)), R* = A* + (t7) A[[t7=]],
X =Spa(R,R") and X' = X x5 X. Notice that X is an affinoid perfectoid space and X’ is
a perfectoid space (which is not affinoid). The natural map X — Spd(A, A1) surjects onto
Spd(A, AJF)Jr and we get an equalizer diagram:

0 — Hom(Spd(A, AN, Spd(B, B)) — Hom(X,Spd(B, BY)) = Hom(X’,Spd(B, B*)).
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Since X is affinoid perfectoid a homomorphism f : X — Spd(B, B*) is given by an untilt
R* and a continuous ring map f* : B — R such that f*(BT) C R**. By lemma 1.2.30 the
untilt must be R.

A necessary condition for such a morphism to glue, is that f*(B) must be invariant under
any automorphism of R over A. In particular, we may replace ¢ by any topological nilpotent
unit in R without changing the image of f*(B). Take an element b € B, we want to show
f*(b) € A. Observe that t*" - f*(b) is topologically nilpotent for big enough n. Replacing by
t -+ t7 we conclude that " f*(b) is topologically nilpotent for all n € Z. This proves f*(b)
is power-bounded which gives f*(b) € A[[tz%"’]] We can write f*(b) as ag —l—tﬁq with ag € A
and ¢ € A[[tz%’"]] Since the second term converges to 0 under the substitution ¢ — " we
see that f*(b) = ap. This defines a map of rings B — A. Since the subspace topology of
A in R is the discrete topology this ring morphism is continuous if and only if the original
one was. Finally, we see that BT maps to R™ N A which is easily seen to be A*. So far we
have constructed a map Spa(A, A™) — Spa(B, B") with the property that the induced map
Spd(A, AT) — Spd(B, B") agrees with our original map in the locus Spd(B, B*)T. We wish
to prove that the two maps agree.

Consider the map Spd(A, A™) — Spd(B, BT)xSpd(B, B*) we will show that Spd(A, AT)
factors through the diagonal embedding A : Spd(B, BT) — Spd(B, B*) x Spd(B, B"). This
can be verified on geometric points Spd(C, Ct) — Spd(A, A1), and since the maps already
agree on Spd(A,AJF)T it is enough to verify this on meromorphic points € Spo(A4, A™).
Pick a pseudo-uniformizer w € C and consider the product of points R., as in the proof
lemma 1.2.16 together with the map Spa(Ru, Reo™) — Spd(A, AT) given by the diagonal
morphism A — []C. Recall that for the product of points constructed in this way we have
that

C gA Roo g ﬁca
=1

and that although the diagonal embedding C' Cn R, is not continuous the composition
A — R, is continuous since A has the discrete topology.

The composition Spa(Re, Reo™) — Spd(A, AT) — Spd(B, BY) x Spd(B, BT) gives two
morphisms fi, fo : B — R4, and one verifies that at the level of rings they both have to
factor through the diagonal C' Ca R.. The connected components of Spa(Re, Re ') are
in bijection with ultrafilters of N. By the proof of lemma 1.2.16 the residue field at a non-
principal ultrafilter & maps to the meromorphic specialization ... Since Spa(Cy, Cyt) —
Spd(B, Bt) x Spd(B, BY) factors through Spd(A, A™)' (being non-analytic in Spo(A, AT)),
it also factors through the diagonal. These maps are given by the composition f; : B —
C — R, — Cy. We can conclude f; = f5 since the map C' — Cy, is injective. n

We are no ready to prove theorem 4, which is the global version of lemma 1.2.31. For
the convenience of the reader we state it again.

Theorem 1.2.32. Let Y be a perfect non-analytic adic space over F), and let X be a pre-adic
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space over Z,. The natural map

Hom,, , (Y,X)— Hom(Y" X?)

PreAd

is bijective. In particular, { is fully faithful when restricted to the category of perfect non-
analytic adic spaces over .

This theorem says, intuitively speaking, that (up to perfection) one does not get new
morphisms of v-sheaves when the source is a non-analytic adic space.

Proof. 1t is not hard to prove injectivity. For surjectivity, the hard part is to prove that
a morphism g : XY — Y? induces a unique map of topological spaces f : |X| — |Y| that
makes the following diagram commutative.

YO = | X9

| |

/
Y| ——[X]
Assume for the moment that this is the case. Let U = [[,; Spa(B;, B;") be an open cover
for X and let V = [[,; Spa(B, B;-J“) be an open cover of U x y U. Given a map Y — X?
we can pullback U and V' through f to obtain an open cover of adic spaces

Yy =Yy =Y

satisfying Y(? = Y9 xyo U® and Y‘? = Y9 xyo U°. It is enough to prove that Y(? — U°
and Y‘f — V© come from morphisms of pre-adic spaces. This follows from lemma 1.2.31 by
a standard glueing argument, since U and V are a disjoint union of affinoid pre-adic spaces.

Verifying that g : |[Y9| — | X?| descends to a continuous map f : [Y| = | X| can be done
locally on |Y|, we may assume Y = Spa(A, A"). For y € |Y| and z € Spo(A4, AT) with
h(z) =y, we define f(y) := h(g(z)). We must verify that this doesn’t depend of the choice
of z and that it is continuous. The map f is well defined if and only if h(g(2)) = h(9(zmer))
when z is meromorphic, and by proposition 1.2.28 to prove continuity it is enough to prove
that if & C |X| is open then f~'(&) is stable under arbitrary generization in Spa(A, AT).
Let w € Spa(A, A*) a horizontal generization of y. Let (k,, k,") and (k,, k") denote the
affinoid residue fields of w and y and let K, denote the smallest ring containing &k and A. It
is enough to prove that the induced maps [Spd(K.,, k)| — |X°| and [Spd(k,, k)| — [ X9
descend to continuous maps [Spa(Ky, k)| — | X| and |Spa(ky, k;F)| — | X]. In summary, we
have reduced the initial claim to the case in which Y = Spa(A4, A™) where AT C A and the
two rings are perfect non-analytic valuation rings that have the same fraction field.

Lemma 1.2.33. Let X be a pre-adic space over Z, as above and let Y = Spa(A, A1) where
At and A are perfect non-analytic valuation rings that have the same fraction field, and let
g : Spd(A, A*) — X be a map. Let h(c) € Spa(A, A*) denote the unique closed point and
let ¢ € Spo(A, AT) denote the unique non-analytic point mapping to h(c). If h(g(c)) € |X|
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lies in Spa(By, B1") C X then g factors through a map Spd(A, A*) — Spd(B;, B;") C X°.
In particular, g is coming from a map of pre-adic spaces Spa(A, AT) — Spa(B;, B;%) C X.

Proof. Suppose to get a contradiction that there is an “exotic” ¢ that does not satisfy
this property. By proposition 1.2.29 (A, AT) is olivine so we may treat |[Spd(A, AT)| and
Spo(A, AT) as the same object. Let U; C Spo(A, A™) be the open subset associated to the
pullback of Spd(By, B; "), this is by assumption a proper open subset. Let Z = Spo(A, AT)\
Uy, it is a quasi-compact topological space and we may use [53] 18.3.2 to find the largest prime
pm € Spec(A) that is the support of an element in Z. Replacing A and AT by A/p,, and
AT /p,, we may assume that all elements of z € Z satisfy supp(z) = 0, we let K = Frac(A).
In this case Z C Spo(K, A"). Since Z is a closed subset it contains the unique closed point ¢
of Spo(K, A1), this is the unique non-analytic point such that h(q) is closed in Spa(K, AT).
We claim that U; contains every analytic localization of the form N,..; with n # 0 and
n € supp(c). Indeed, if z € Z N N, then |n|® < 1 and either z or its formal specialization
would have non-trivial support contradicting the assumption that p,, was the largest.

The composition Spd(K, A*) — X must also factor through some other open affine sub-
sheaf Spd(By, Bo™), since it has a unique closed point. We let U, be the open in Spo(A, A™)
associated to the pullback of Spd(Bs, Bo"). By example 1.2.9 there is an open neighbor-
hood of ¢ of the form Up<pxo N Ui<pr20 N Nyp<<1 and contained in U,. Moreover, in example
1.2.9 ¢q corresponds to the triple of prime ideals (0,0, m) where m denotes the maximal
ideal of A*. With this description it is easy to see that U<y = Spo(A, AT) and that
Nu<<1 = Spo(A, A") since they contain ¢. In summary, there is a classical localization
Up<p+o containing ¢ and contained in Us.

We have found neighborhoods N1 € U; and Up<pzo C Uy with Nycog NUp<pzo € Ui N
Us, observe that Spo(A, AT) = Nyc1UU<pz0. Let Ay and A} denote the (b)-adic completion
of A and A" respectively. Lemma 1.2.23 shows that N,..; is represented by Spd(Ay, A,™).
We also have that Up<po is represented by Spd(A[3], AT) and that the intersection Ny<<1 N
Up<pzo 1s represented by Spa(Ab[%], A}), notice that this last one is a perfectoid field. We
let g, denote the closed point of Ny<q N Up<pzo which is meromorphic in Spo(A, A™).

Since these morphisms glue, there is an affinoid open subspace

Spa(Bs, Bs") C Spa(By, Bi") xx Spa(Ba, By™")
and a map Spa(A[3], A} ) = Spd(Bs, B;") making the following diagram commutative:

Spa(4s3], 47) » Spd(A[5], AY)

T |

Spd(Bg, Bg+) e Spd(Bg7 B2+>

l |

Spd(Ay, A7) — Spd(By, Byt) ———— X?©
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By lemma 1.2.31 the map Spd(A[3], AT) — Spd(Bs, Bo") is given by a map of Huber pairs
(Bs, Ba) — (A[3], AT). Since

SpO(Bg, Bg+) Q SpO(BQ, B2+)

is of the form h~!(Spa(Bs, Bs")) the pullback of Spo(Bs, Bs") to Spo(A[3], AT) has the form
h~(Us) for some Us C Spa(A[3], AT). Moreover, h(g) is the closed point of Spa(A[3], A™).
This proves that Spd(A[3], AT) factors through Spd(Bs, Bs™) and consequently through
Spd(By, B;") contradicting our initial assumption.

[

]

We now study perfect non-analytic Huber pairs of the form (A, A). These are the type
of Huber pairs that we will associate to perfect affine schemes to develop our theory of
specialization.

Proposition 1.2.34. Let A be a ring endowed with the discrete topology and f* : (B, BT) —
(A, A) a map of Huber pairs, then the following hold:

1. Spo(f) is saturated with respect to h, in other words
Spo(f)(Spo(A, A)) = h™'(f(Spa(4, A))).

2. f(Spa(A, A)) is stable under horizontal specializations in Spa(B, BT).
3. f(Spa(A, A)) is stable under vertical generization in Spa(B, B*).

Proof. To prove the first claim let y € Spo(A, A) and let = = Spo(f)(y). If x is d-analytic, y
must be meromorphic and ,,,c, maps to e, under Spo( f), that is h=*(h(x)) € Im(Spo(f)).

Suppose now that x is non-analytic and that ™" exists in Spo(B, B"). In this case,
Y™ might not exist if | - |Z is not microbial, and even when 3™ exists it may not be true
that y™" maps to ™" under Spo(f). Indeed, it may happen that y™*" maps to x instead.
For these reasons we use a different construction.

Consider h(y) € Spa(A, A) together with its residue field map vy, : Spa(Kpey), Kne) ™) —
Spa(A, A). Notice that ¢y, factors through a map g : Spa(K;(y),Kf{(y)) — Spa(A, A), so

r

mer

it is enough to prove that x™¢" is in the image of Spo(fog). Take an element b € B
with |b|%mer ¢ {0,1} and replace it by its inverse in Kj(,), whenever it is necessary, so that
b € K. Define K* as the (b)-adic completion of K, and let K = K*[;]. We get the
following commutative diagram,

Spa(K, KT) » Spo(K,} K )

\ (y)’ ~"h(y)

Spo(B, BY)
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and one can verify that the image of the closed point of Spa(K, K™) in Spo(B, BY) is a™¢"
This proves that A=t (h(z)) C Im(Spo(f)).

The proof of the second claim also follows from observing that the residue field map ¢y,
factors through g. Indeed, we get the following commutative diagram of adic spaces:

Spa(Kney), Knyt) —— Spa(K)f ), Kb ) —— Spa(A, A)

! ! o

Spa(Kn(a), Knw) ") — Spa(K}f,), K;f,)) —— Spa(B, BY)

h(z)’

Where we use that K ;(m) =K ;Lr(y) N Kj(y) to define ¢g’. Moreover, the vertical map on the
left is surjective since h(z) = f(h(y)) and one can deduce that the vertical map in the
middle column is also surjective because the map of valuation rings is local. A prime ideal
of JC K ;(I) determines a horizontal specializations of | - |5(y), namely | - [5z)/J, and every
horizontal specialization of h(x) can be constructed in this way. For J as above we let
K = h(x y/J and K = Frac(Kj 1), we get the following commutative diagram:

Spa(K;, K;") — Spa(K},K}) > Spa(I ), 1

y)’ h(y))
R
Spa(B, BT)

The closed point of Spa(K;, K;7) maps to the horizontal specialization of h(z) associated
to the ideal J.
The third claim follows from corollary 1.2.15 and from the first claim. [

Definition 1.2.35. We say that a subset of Spo(B,B™) is a schematic subset if it is a
union of sets of the form Spo(m)(Spo(A, A)) where (A, A) is given the discrete topology and
m*: (B,B") = (A, A) is a map of Huber pairs.

Proposition 1.2.36. Suppose that Z C Spo(B, B") is a schematic closed subset. Let o :
Spo(B, BT) — Spec(B) denote the map x — supp(x) attaching to every point of Spo(B, B™)
its support ideal. Notice that o = suppoh where supp : Spa(B, B™) — Spec(B) also attaches

the support ideal. Then Z = oY (V(I)) for some prime ideal I C B open for the topology in
B.

Proof. Any map m* : (B, B") — (A, A) with A a discrete ring must factor through
(B/BOO, B+/Boo),

by reducing to this case we may assume that B has the discrete topology. By proposition
1.2.34, Z = h™'(h(Z)) and by corollary 1.2.15, Z is closed under vertical generization.
Moreover, since Z is closed in Spo(B, B™) it is also stable under vertical specialization. This
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implies that Z = 07 (0(Z)). Indeed, any two points x,y € Spa(B, BT) with supp(z) =
supp(y) = p are vertical specializations of the trivial valuation on B with support p.

We only have left to prove that o(Z) is closed in the Zariski topology of Spec(B). Since
B has the discrete topology, the support map admits a continuous section triv : Spec(B) —
Spa(B, B*) that assigns to a prime ideal p C B the trivial valuation with support p. We
have o(Z) = triv=*(h(Z)) so we may prove h(Z) is closed instead. By proposition 1.2.34,
h(Z) is also closed under horizontal specialization, this gives that the complement of h(Z)
in Spa(B, BY) is stable under (arbitrary) generization. Spo(B, B™)\ Z = h™!(Spa(B, B) \
h(Z)) by proposition 1.2.28 the set Spa(B, BT) \ h(Z) is open as we needed to show. O

1.3 The reduction functor

1.3.1 The v-topology for perfect schemes

This is the only section in which we will be forced to be set-theoretically careful, we advise
the reader that does not wish the ignore the set-theoretic subtleties that arise in this section
to review the definition and basic properties of cut-off cardinals that are given in [51] §4.

We will denote by PCAIg%Z the category of perfect affine schemes over F,. If x is a
cut-off cardinal we denote by PCAIg%’; . the category of perfect affine schemes over F,, whose
underlying topological space and whose ring of global sections have cardinality bounded by
k. Given S = Spec(A) € PCAlg]?I; we associate to it a v-sheaf in Perf given by:

S°((R,R")) = {f : A— RT|f isa morphismof rings}

Remark 1.3.1. Notice that Spec(A)® = Spd(A, A) when A is given the discrete topology.
Later on, we will work with v-sheaves of the form Spd(A, A) where A can be given either the
discrete topology or a more interesting topology and we might consider both kind of sheaves
at the same time. To avoid having to specify the topology given to A every time, we will use
Spec(A)® whenever A is given the discrete topology and we will use Spd(A, A) when A is
given a more interesting topology.

Proposition 1.3.2. If r is a cut-off cardinal and S € PCAlgy’ = then SC is a Kk-small
v-sheaf.

Proof. Let S = Spec(A) then Spa(A((tz%"’)), A[[tz%“]]) is a k-small perfectoid space and the
map

Spa(A((t7)), A[[t7=]]) — §°
is surjective. O

Proposition 1.3.2 gives rise to functors ¢, : PCAlgg” = — Perf, that are compatible when
il

we vary k and give rise to a functor ¢ : PCAlgIOFi — Perf
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Proposition 1.3.3. The functors ¢ : PCAlgy’ — Perf and O, : PCAlgy’ . — Perf, are
fully-faithful and commute with finite limits.

Proof. This is a direct consequence of 1.2.32.
O

After embedding PCAlgg’ in Perf one can define a Grothendieck topology on PCAlgy
by considering a small family of maps of affine schemes, (S; — T);ecx, to be a cover if the
map [[,.» Si<> — T? is a surjective map of v-sheaves. However, there is an intrinsic way of
defining this topology which we now discuss.

Definition 1.3.4. (See [5] 2.1)

1. A morphisms of qecqs schemes S — T, is said to be universally subtrusive (or a v-cover)
if for any valuation ring V' and a map Spec(V') — T there is an extension of valuation
rings V- C W (see [50] 0ASG) and a map Spec(W) — S making the following diagram
commutative:

Spec(W) —— S
Spec(V) —— T
2. A small family of morphisms in PCAlg%Z, (S; = T)ier, is said to be universally

subtrusive (or a v-cover) if there is a finite subset 7' C F for which [[,.r S; — T is
universally subtrusive.

Lemma 1.3.5. (See [5] 2.2) A morphism f : Spec(B) — Spec(A) of affine schemes (not
necessarily over IF,) is universally subtrusive if and only if the map of topological spaces
|f29) : |Spa(B, B)| — |Spa(A4, A)| is surjective.

Proof. Let T = Spec(A), S = Spec(B), T% = Spa(A, A) and S = Spa(B, B). Assume
f to be universally subtrusive and take z € |T%?|. Taking a representative we can consider
x as a valuation | - |, : A — I';, which gives a valuation subring V' of Frac(A/supp(] - |.))
together with a map Spec(V) — Spec(A). Since f is universally subtrusive we can take an
extension of valuation rings W/V and a map Spec(W) — Spec(B) making diagram 1 above
commutative. The map B — W induces a valuation |- |, : B — I';, and consequently a point
y € S*. Moreover, the composition |- |, : A — B — I, is equivalent to | - |, which proves
that [Se?| — |79 is surjective. For the converse, given a map Spec(V') — T we may consider
the induced map Spa(K, V) — T% with K = Frac(V). The closed point of Spa(K, V) gives
a point x € T% and by surjectivity of f* we may pick a point y € Spa(B, B) lifting x.
Consider the affinoid residue fields (K, K,") and (K,, K,") at = and y respectively. We get
the following commutative diagram:

36



Spec(K,}) —

|

Spec(V) —— Spec(K}) ——

N+

Both K; and V' are valuation extensions of K, consequently there is a valuation ring W
extending both K and V' making the diagram commute (See [25] 1.1.14-f). This proves
that f is universally subtrusive. O]

Lemma 1.3.6. Let f: S — T be a morphism of perfect affine schemes over IF,. The map
O 8% = T is a quasi-compact map of v-sheaves.

Proof. By writing B = A[t;];c1/JA[ti]icr for some variables ¢; and an ideal J we can reduce
to the cases where either f is a closed embedding or f is the base change of the structure
map g : Spec(F,[ti]icr) — Spec(F,).

Let X = Spa(R, RT) € Perf it is enough to prove that X x50 S¢ is quasi-compact for any
map Spa(R, RT) — S9. For the later case, the basechange gives the sheaf X x Spec(F,[t;])°.
This functor is represented by

_1 _1
Spa(R<tip >i€I7R+<tip >i€1)7

which is affinoid perfectoid and consequently quasi-compact. For the former case let B =
A/J, and let Z = X xp0 S°. For a perfectoid Huber pair (L, L") we have:

Z(L,L*) = {r: (R,R*) — (L, L*) | r(R- J) = 0}

This is the definition of a Zariski closed subset of X and by ([50] Lemma I1.2.2) representable
by an affinoid perfectoid space. In particular, Z is a quasi-compact v-sheaf. n

Remark 1.3.7. One can prove lemma 1.5.6 by observing that for a perfect discrete ring A
we have the identity Spd(A, A)T = Spd(A4, A). Indeed, we can apply lemma 1.2.20.

Proposition 1.3.8. 1. Let f: S — T be a morphism of perfect affine schemes over F,.
The map f is universally subtrusive if and only if f© : S® — T is a surjective map of
v-sheaves.

2. A family of morphisms (S; — T)icr is universally subtrusive if and only if (11, Si) —
T is a surjective map of v-sheaves.

Proof. Let T = Spec(A) and S = Spec(B). Since the map of v-sheaves ¢ : S¢ — T is quasi-
compact, by ([71] 12.11) it is a surjective map of v-sheaves if and only if | f°] is a surjective
map of topological spaces. By proposition 1.2.12 and lemma 1.3.5, it suffices to prove that
the map Spo(B, B) — Spo(A, A) is surjective if and only if the map Spa(B, B) — Spa(A, A)
is. Functoriality and surjectivity of A proves one direction, and the converse direction is a
direct consequence of 1.2.34.
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For the second claim, it follows easily from above that a universally subtrusive family of
maps (S; — T);er induces a surjective map of v-sheaves (][,.»S;) — T', actually a finite
subfamily is already surjective. To prove the converse we have to take a family of maps
(Si — T)ier such that ([[,crSY) — T° is a surjective map of v-sheaves and prove there
is a finite subset ' C F for which [[,. SY — T9 is still surjective. Let S; = Spec(R;)
and T' = Spec(P) and consider affinoid perfectoid spaces Y = Spa(P((tr%“))), P[[tz%"’]]) and
X; = Spa(Ri((tz%”)), RZ[[tp%"’]]) The map ([[,.» X;) — Y is surjective and since Y is quasi-
compact there is a finite subset F/ C F such that (J[;,.» X;) — Y is still surjective. An
easy argument proves that for 7’ chosen in this way (][, - Si<> ) — T? is also surjective. [J

Remark 1.3.9. In this context, one can discuss the analogue of example 1.1./. Given an
index set I and {V;}icr a family of perfect valuation rings over F,, we construct the ring
R =[l,c; Vi- We call the affine schemes constructed in this way a scheme-theoretic product
of points. They form a basis for the v-topology on PCAlgI‘;’; (See [7] 6.2).

Given a cut-off cardinal x we let SchPerf,, be the topos associated to the site PCAIg%’; "
with the v-topology, and we will refer to an object in this topos as a k-small scheme-theoretic
v-sheaf. For any pair of cut-off cardinals k < A we have a continuous fully-faithful embedding

of sites ¢y , : PCAlgg” = — PCAlgg” ,, which induces a morphism of topoi ¢, : SchPerfy —

SchPerf,..

Proposition 1.3.10. The functor i}, : Sc/hl\?grf,{ — Sc/h%’afA is fully-faithful (See [51] 8.2).

Proof. Tt is enough to prove that the adjunction F — ¢, »«t; ,F is an isomorphism. Let
. op
g : PCAlg]FW\ — Sets

be the presheaf with S — G(S) constructed as follows. Let C§ denote the category of maps
of affine schemes S — T with T € PCAlgEf; - This category is cofiltered and there is a
A-small set of objects I§ C C§, that is cofinal in C&. We let G(S) = lim, . F(T), for any
choice of I§. Unraveling the definitions we see that ¢ \F is the sheafification of g.

We claim that G is already a sheaf. Indeed, since filtered colimits are exact it is enough
to prove that any v-cover S’ — S in PCAlg%;  can be expressed as a filtered colimit of
v-covers in PCAlgg’ . Let S = Spec(A) and let S" = Spec(B), write A = l;ugielg A; and

B = li_n%,e 1 B; with A; and B, k-small rings, we may assume that the transition maps are all
s/

injective. By lemma 1.3.11 below we may assume that all morphisms Spec(A) — Spec(4;)
are v-covers. Consequently, the composition 8" — S — Spec(4;) is also a v-cover and
whenever S” — Spec(4;) factors through a map Spec(B;) — Spec(4;) this later one is also a
v-cover. We can replace our index sets /g and /g by a common index set I and replace the
rings B; by the smallest subring of B containing B; and A; for some ¢ € I§ so that we get a
family indexed by I for which (Spec(B;) — Spec(A;));er is always defined and is a v-cover.
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We get our desired expression

("= 8)= @(SPGC(BD — Spec(A;) )ier-

el
Once we know ¢\ F = G, we compute v, 5 ..y , F (S) for S € PCAlgg? | to be hﬂmg F(T),

but since S is r-small the identity map is cofinal in C§ and ling , 7 (S) = F(5) as we needed
S
to show. O

Lemma 1.3.11. Let & be a cut-off cardinal, S € PCAlgy’ and T' € PCAlgy’ . Given a
morphism g : S — T, there is T' € PCAlgy’ _ together with morphisms f : S — T" and
h:T" — T such that f is a v-cover and g = ho f.

Proof. This lemma is purely of set-theoretic nature and contentless otherwise. Indeed, if S
was k-small we could simply choose 7" = S and f to be the identity. Lets treat the general
case, let S = Spec(B) and T' = Spec(A). By replacing A by its image in B we may assume
g* : A — B to be injective. We construct a countable sequence of subrings

with the property that each A; is k-small and that the image of the map Spa(B,B) —
Spa(A,, A,) coincides with the image of Spa(A,41, Ant1) — Spa(A,, A,). We do this in-
ductively as follows: Assume A, to be defined and let Z, C Spa(A,, 4,) be the image of
Spa(B, B) in Spa(A,,, A,,). If z is an element of Spa(A,,, A,)\ Z, the valuation ||, : A, — T,
can’t be extended to a valuation | -| : B — I'. A compactness argument proves there are
finitely many elements {ay,...a,,} such that | - |, does not extend to A,[ay,...,a,] C B.
Since Spa(A,, A,) \ Z, is k-small, there is A < k and a set {ai}ile,\ C B such that A,[a;];en

o0

does not extend any = € Spa(A,, A,) \ Z,. We let A, 1 = A,[af
the desired properties.

Let A = lim, o A;, we claim that the map Spec(B) — Spec(Ay) is a v-cover and that
Ay 18 k-small. Inéeed, since each A; is k-small and since the cofinality of x is larger than w
(See [1] 4.1) A is also k-small. To prove it is a v-cover, we can use lemma 1.3.5 to prove
instead that Spa(B, B) — Spa(Aw, Ax) is surjective. One verifies that Spa(As, As) =
@ieN Spa(A;, A;) as topological spaces. Given a compatible sequence x; € Spa(A;, A;) we
define M; to be the preimage of z; in Spa(B, B). This gives a sequence of sets

lien, clearly A, ,q satisfies

Since the maps Spa(B, B) — Spa(A;, A;) are spectral maps of spectral topological spaces,
each of the M; is closed and compact in the patch topology and their intersection is non-
empty. Any element in this intersection will map to the element =, € Spa(As, As) repre-
sented by the compatible sequence x;. O

We define Smf as the big colimit J,, S&F&fﬁ along all cut-off cardinals and the fully-
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faithful embeddings ¢y . Objects in SchPerf are called small scheme-theoretic v-sheaves.
The general formalism of topoi, specifically ([3] IV 4.9.4), allows us to promote O, :

PCAlgy . — Perf, to a morphism of topoi f, : Perf, — SchPerf, for which f:|pCA1g;z;K =
Q.. Indeed, proposition 1.3.3 shows that ¢, is left-exact and proposition 1.3.8 gives us

continuity of .

Proposition 1.3.12. 1. Given two cut-off cardinals k < X\ we have a commutative dia-
gram of morphism of topoi:

x =y

P/’E;fA —=— SchPerf

lbfc,)\ lL&/\

f ——

Perf . ——— SchPerf,,

2. We also have that the natural morphism i}, \ © fx« — fas 0t ) 1S an isomorphism.

Proof. The commutativity of morphism of topoi follows formally from the similar commu-
tativity of continuous functors:

—_—

PCAlg , — Perf,,

*
* L
lLK’)\ l KA

PCAlg® , —2 Perf,

For the second claim, given an element S € PCAlg]?; 2 we let Ig be an index set category as
in the proof of 1.3.10. If § = Spec(A) we let X = Spa(A((t7=)), A[[t7=]]) and ¥ = X x g0 X.
In a similar way, for 7' € I§ with T" = Spec(B) we let Xr = Spa(B((t¥*)), B[[t?7]]) and
Yr = X1 Xpo Xp. The family of perfectoid spaces (Xr)7¢ I ((Yr)7e Is respectively) is cofinal
in the category C% of maps X — X’ with X’ a s-small perfectoid space (C§ respectively).
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We get the following chain of isomorphisms:

eaSrsF () = lim Homggwo o (b, frsF) (1.1)

Tels

= lim Hompz; (frhp, F) (1.2)
Tels "

= lim Hompgy (T, F) (1.3)
Tels )

= lim Eqpg; (Hom(Xr, F) = Hom(Yr, F)) (1.4)
Tels )

= Eqp;, (lim Hom(Xp, F) = lim Hom(Yr, F)) (1.5)

Tels Tels

= qu;e;fA(Hom(Xs, L::’/\]:) = Hom(Yg, L;)\f))
= Homﬁg;f)\(sok,l/:)\.r)

= Homsgﬁgrfx(hg, FastinF)

= fA,*L:7/\F<S)

Recall that a morphism of topoi consists of a pair of adjoint functors (f*, f,) such that f*
commutes with finite limits. By proposition 1.3.12 above we can gather all of the morphisms

of topoi f,. : Perf, — SchPerf, into a pair of adjoint functors (f*, f.) : Perf — SchPerf
such that f* commutes with finite limits. This is not a morphism of topoi because Perf and

SchPerf are not topoi, but they behave as such.

Definition 1.3.13. Let (f*, f.) the pair of adjoint functors described above, given F €

—_——

SchPerf we will denote f*F by F° and given G € Perf we will denote 1.G by (G)red. We
refer to (=)™ as the reduction functor.

Remark 1.3.14. The functor (=)™ will be very important for our purposes. To make this
functor explicit take a small v-sheaf F € Pert and S € PCAlg;i. Adjunction tells us that

Fred(§) = Hom};;;f(SO,F). We could have defined the functor in this way without invoking
the formalism of topoi, but it will be useful to know that the “reduction” of small v-sheaf is
a small scheme-theoretic v-sheaf.

We can endow any small scheme-theoretic v-sheaf with a topological space in a similar

fashion to definition 1.1.11. Given & € SchPerf we let |G| denote the set of equivalence
classes of maps Spec(k) — &, where k is a perfect field over F,. Two maps p;, po are
equivalent if we can complete a commutative diagram as below:
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Spec(ky)

@ K
Spec(kzg)/ e » S
e 2T

Spec(kz)

Proposition 1.3.15. Let G € Sc/hf’grf the following hold:

1. There is a pair of cut-off cardinals k < X\ and a A-small family {S;}icr of objects in
PCAlgy’ . together with a surjective map X = ([[;c; i) — &.

2. The small scheme-theoretic v-sheaf R = X xe X has a similar cover Y = ([1;.,T;) —
R, there is a natural map |X| — |&| which induces a bijection |&| = |X|/|Y]. We
endow |&| with the quotient topology induced by this bijection.

3. The topology on |&| does not depend on the choices of X orY.

4. Any map of small v-sheaves &1 — Sy induces a continuous map of topological spaces
61] =[S,

Proof. By definition & € Sc/hf’grf,{ for some cut-off cardinal k, the category PCAlgI?; s a
small category. By cofinality of cut-off cardinals we may pick A larger than

sup  &(T).
TEPCAlgY

We let X = (HTGPCAlgﬁﬁ ere(T) T) with the evident projection map to &. We claim this

map is surjective. This map is defined in Sc/hF&f » and it is enough to prove surjectivity
there. Given 5 € PCAlgg, », we have 6(5) =lim, . &(T). Since this colimit is filtered, for
S

afixedmap g: S - & wecan find (f: S - T) € Ifand amap h: T — & with g =ho f.
In particular, g factors through a map to X since X contains a copy of 7" mapping to & via
h.

We move on to the second claim. Given z € |X| we take the residue field inclusion
tp : Spec(k,) — X. The composition Spec(k,) — X — & defines an element of |&].
Suppose now that x1,zy € | X|, we must show that (z1,z5) € | X| x |X]| is in the image of
Y| if and only if 27 and 25 define the same element in |&|. If the maps ¢,, and ¢,, are
equivalent we get a map t,, : Spec(ks) — X xg X. By replacing k3 by a larger field if
necessary, we may assume that ¢, lifts to Y and defines an element y € |Y|. We see that
y maps to (z1,x3) in |X| x |X]. On the other hand, if there is y € Y mapping to (x1,x2)
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and ¢, : Spec(k,) — Y is the residue field map, the compositions Spec(k,) — Y =% X factor
through ¢,, : Spec(k,,) — X. This proves that x; and x5 map to the same point |S|.

For the third claim suppose we are given two covers X; — & with i € {1,2}, we must
show that the two quotient topologies coming from the surjections |X;| — |&]| agree. The
small scheme theoretic v-sheaf R = X; xg X5 admits a v-cover X3 — R by the first claim.
By replacing X, by X3 we may assume that we have a commutative diagram of surjective

maps:

X

AN
e

Xy

S

Since Xy — X is a v-cover we get a quotient map of topological spaces | Xs| — | X;]. If we
give |G| the quotient topology coming from the surjection | X;| — |&| the composition map
| X5| — |&] is also a quotient map. This implies that the two topologies agree.

For the last claim, we may find covers &; and &5 by X; and X, respectively forming the
following commutative diagram:

| X | —— | &, |
| X1 | —— | & |

Both horizontal maps are quotient maps and the leftmost vertical map is continuous since it
is induced by a morphism of unions of affine schemes, this prove the required continuity. [J

1.3.2 Reduction functor and formal adicness

Definition 1.3.16. We say that a small scheme-theoretic v-sheaf F is reduced if the adjunc-

—_—

tion morphism F — (F°)4 is an isomorphism in SchPerf.
We have the following formal consequences of our definition.

Proposition 1.3.17. 1. If S is a perfect scheme in characteristic p then the Yoneda
functor hg is reduced. (See [55] 18.3.1)

2. The functor § : S&?Ef — Perf is fully-faithful when restricted to small reduced v-
sheaves.

Proof. The first claim follows from theorem 1.2.32. The second claim follows from adjunction.

—~—

Indeed, if F is reduced and G € SchPerf then:

Homp=(G, F°) = Homg=- (G, (FO)"™) = Hom (G, F)

SchPerf SchPerf
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Question 1.3.18. Are perfect algebraic spaces reduced? If this was the case much of the
formalism of specialization goes through in this generality.

Intuitively speaking, the reduction functor kills all topological nilpotents and removes
analytic points from our v-sheaf. Below, we try to justify why one can think of this reduction
functor as an analogue of taking the underlying reduced subscheme of a formal scheme.

Lemma 1.3.19. The scheme-theoretic v-sheaf (Z,°) is represented by F,.

Proof. This is a direct consequence of lemma 1.2.30.
O

For a Huber pair (A, AT) over Z,, we let A,.q denote the perfection of A/(A- A°°) where
A - A°° is the ideal generated by the set of topologically nilpotent elements. The following
statement generalizes lemma 1.3.19

Proposition 1.3.20. Let X be a pre-adic space over Z, and let X" be the reduced adic
space associated to the non-analytic locus of proposition 1.1.28. The following hold:

1. The map (X"0)ed — (XO)ed s an isomorphism.

2. If X = Spa(A, AY) for (A, A) a Huber pair over Z,, then Spd(A, AY)* " is represented
by Spec(Ared).

Proof. By theorem 1.2.32 if S = Spec(R) € PCAIg%Z then morphisms S¢ — X are given by
maps of pre-adic spaces f : Spa(R, R) — X, and they must factor through the non-analytic
locus which proves the first claim.
The non-analytic locus of Spa(A, A1) is represented by the Huber pair (A/A%°-A, A*®°-A™).
Since R is perfect the map f*: A/A- A°° — R factors uniquely through its perfection.
[

We now justify the intuition behind thinking of diamonds as purely analytic objects.

Proposition 1.3.21. For a quasi-separated diamond Y the associated reduced functor Y4
is the empty-sheaf.

Proof. We need to prove that for a perfect scheme S there are no morphisms S¢ — Y. It is
enough to prove this for S = Spec(k) the spectrum of an algebraically closed field. Suppose
there is such a map f : S — Y, and let y € |Y| be the unique point in the image of |f|.
We consider Y,, the sub-v-sheaf of points of Spa(R, R*) — Y for which [Spa(R, R")| — |Y|
factors through y. The map f factors through Y, and by ([51] 11.10) it is a quasi-separated
diamond with |Y},| consisting of one point. We can use ([51] 21.9) to write Y, = Spa(C, O¢)/G
with C' a non-Archimedean algebraically closed field in characteristic p and G a profinite
group acting continuously and faithfully on C.
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Consider the v-cover S’ = Spa(Ki,Ok,) — Spec(k)® where K; is an algebraic closure
of k((tz%”)) Similarly, let T = Spa(Ky, Okg,) where K, is an algebraically closed non-
Archimedean field containing k discretely and whose value group 'y, C R=Y has at least
two elements that are linearly independent when we treat I'g, \ {0} as vector space over Q.
By our hypothesis on K5, we can find two continuous embeddings ¢} : K; — K5 such that
|63 (K1) |k, N [e3(K1)Iry, = 1 and in particular, such that (K1) N e3(K1) = k.

The composition of f : S¢ — Y, with the natural projection Spa(Ki, K;") — SO gives
a map [g] : Spa(Ky, K1") — Y, such that [g] o ¢; = [g] o 2. Since both Spa(Kj, K1) and
Spa(Ky, Ko") are algebraically closed fields the sets of maps to Y, are given by G-orbits of
maps to Spa(C, O¢), that is Hom(Spa(K;, K;1),Y,) = Hom(Spa(K;, K;*), Spa(C, O¢))/G.
Let g* : (C,O¢) — (K1, Of,) represent [g] in Hom(Spa(K1, K;7),Y,), we get maps ¢} o g* :
(C,0¢) — (K3, Ok,) and since [g] o 11 = [g] o 11 we have 1} o g*(C) = 15 0 g*(C) C k. This
contradicts that k& has the discrete topology and that C' is a non-Archimedean field, the
contradiction shows that the map f : S® — Y, does not exist.

O

Recall that a morphism of adic spaces X — Y is said to be adic if the image of an
analytic point is again an analytic point. For v-sheaves we can define a related notion.

Definition 1.3.22. We say that a morphism of v-sheaves F — G s formally adic if the
commutative diagram that one obtains from adjunction:

(fred)() SN (gred)(}

| |

Feo g
is a Cartesian diagram.

We warn the reader that although the notion of a morphism of adic spaces to be adic is
related to the morphism of v-sheaves being formally adic neither of this notions implies the
other.

Example 1.3.23. Tuke a perfect field k in characteristic p together with a rank 1 valuation
subring Oy C k with the discrete topology. The morphism of adic spaces Spa(k,Oy) —
Spa(F,,F,) is adic. Nevertheless, the induced morphism Spd(k,Oy) — Spd(F,,F,) is not
formally adic since Spd(k, O)™d is represented by Spec(k). Observe that Spo(k,Oy) has a
meromorphic point that is not bounded.

Example 1.3.24. Take a non-Archimedean perfect field K in characteristic p and consider
the morphism id : Spa(Ky,Og,) — Spa(Ks, Ok,) where Ko = K given the discrete topology
and K1 = K given the topology induced by the norm. This morphism is not adic, nevertheless
the reduction diagram looks like this:
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) ————— Spec(K>)®

| |

Spd(Kl, OKl) —_— Spd(Kg,OKg)
Which is Cartesian.

Although the notion of formal adicness does not recover the notion of adicness in general,
it will in some important situations:

Proposition 1.3.25. Let (A, A) and (B, B) be formal Huber pairs over Z, with ideals of
definition I and I respectively. A morphism of adic spaces Spa(A, A) — Spa(B, B) is adic
if and only if the corresponding morphism of v-sheaves Spd(A, A) — Spd(B, B) is formally
adic.

Proof. The reduction diagram looks as follows:

Spec(Ared)<>

T,

(Spec(A/Ip)Perf)® —— Spec(Brea)?

| |

Spd(A, A) —— Spd(B, B)

Continuity of the morphism B — A ensures that I} C I, for some n. In this context,
the morphism is adic if and only if Ig - A is an ideal of definition of A which happens if
and only if I’ C A - Ig for some m. If the morphism is adic, then A/I4 and (A/A - Ip)
become isomorphic after taking perfection which gives formal adicness. Conversely, if the
morphism is formally adic, by hypothesis the rings (A/I)P*/, and A,.q are isomorphic with
the isomorphism being induced by the natural surjective ring map with source (A/p)P"7.
This implies that the ideals 4 and Ip define the same Zariski closed subset in Spec(A).
In particular, the elements of I, are nilpotent in A/Ip, and since I, is finitely generated
I't C I for some m. O]

Proposition 1.3.26. 1. If F = H and H — G are formally adic, the composition F —
G s formally adic.

2. If F — H is formally adic, the basechange G Xy F — G s formally adic.

Proof. The first claim is clear. For the second one we get a Cartesian diagram:

(gred)() X(’Hred)(} (}'red)o y (fred)() y .F

| [

(gred)(} (Hred)O 7_[

46



The functors (—)™¢ and (—)<> commute with finite limits. This gives (gred)o X (3red)o (_7:7"‘“1)<> —
((G x5 F)*4)°, and proves that

(G xu F))? ——= GxuF —— F

| |

(Gredy© xe » H

is also Cartesian. O

Definition 1.3.27. We say that a v-sheaf F over Zg s formally p-adic if the morphism
F — Zg 1s formally adic.

Over Z, the situation of example 1.3.24 does not happen.

Proposition 1.3.28. Suppose we have a Huber pair (A, A*) and a map f : Spa(A, AT) —
Spa(Zy, Zy), if O is formally adic then f is adic (as a morphism of adic spaces).

Proof. Let U C Spa(A, A™) the open subset of analytic points. It is easy to verify that
this open embedding is formally adic because Spec(Ayeq)? — Spd(A, AT) factors through
the complement of UY and because by proposition 1.3.21 (U)*d = () holds. Since formal
adicness is preserved by composition U¢ — Zg is formally adic. By formal adicness the map
U® — Zg must factor through @g . This proves f(U) C Spa(Q,,Z,) which proves that f is
adic. O]

Recall that a v-sheaves F is said to be separated if the diagonal F — F x F is a closed
immersion (See [51] 10.7). We need the following related notion:

Definition 1.3.29. 1. We say that a map of v-sheaves F — G is formally closed if it is
a formally adic closed immersion.

2. We say that a v-sheaf is formally separated if the diagonal map F — F X F is formally
closed.

Lemma 1.3.30. The v-sheaf Zg is formally separated.

Proof. We need to prove that the diagonal Zg — Zg X Zg is a closed immersion of per-
fectoid spaces after any basechange by maps Spa(R, Rt) — Zg X Zg, with Spa(R, R") €
Perf. This amounts to proving that the locus on which two untilts agree is closed inside
|Spa(R, RT)| and representable by a perfectoid space. Now, each untilt is individually cut
out of Spa(W(RT),W(R")) \ {V([w])} as a closed Cartier divisor (See [53] 11.3.1). We
can take the intersection which will define a Zariski closed subset in each of the untilts, but
Zariski closed subsets of a perfectoid space are representable by some other perfectoid space.
The tilt of such a closed immersion represents this basechange.

To prove the diagonal is formally adic we compute directly (Z;D> Xpo Zg)md = F, since
(=) commutes with limits. The basechange FY X795 78 Z$ agrees with FY. O
]FP
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Proposition 1.3.31. If a v-sheaf F is formally p-adic, then the diagonal F — F X F 1is
formally adic.

Proof. We have a formally adic map F — ZO, and since formal adicness is preserved by
basechange and composition we get a formally adic map F X79 F = Z<> By the two out
of three property of Cartesian diagrams, the diagonal map F N F X 79 ]: is also formally
adic. Now, F Xz9 F is the basechange of the diagonal map Z<> — Z<> X ZO by the projection
map F x F — ZO X ZO This gives us that F X 79 F = FxFis also formally adic. Since
formal adicness is preserved by composition, F — 'F x F is also formally adic as we needed
to show. O

Lemma 1.3.32. The diagonal F — F X F is formally adic if and only if the adjunction
morphism (F°O)¢ — F is injective. In this case, if (A, A%) is a perfectoid Huber pair,
and m € F(A, AT) then m € (F*)O(A, AY) if and only if Spa(A, A") admits a v-cover
Spa(R, R") — Spa(A, A*) and a morphism Spec(RT)° — F making the following diagram
commutative:

Spa(R, RT) — Spec(RT)?

l |

Spa(A,AT) —*—— F

Proof. In general, a map of sheaves G — F is injective if and only if (G X G) X zx7 F = G.
We can apply this reasoning to the map (F4)¢ — F.

For the second claim let Cy be the category of maps Spa(R, RT) — S¢ with S € PCAlg%;,
this category is cofiltered. Now, (F™4)? is the sheafification of the functor that assigns to
(R,R"):

lim Hom(S, F).
S0eCr
But the evident map Spa(R, R*) — Spec(R*)? is cofinal in Cx. That is, (F™4)? is the sheafi-
fication of the presheaf that assigns (R, R*) — Hom(Spec(R")?, F). The description given

in the statement above is what one gets from taking sheafification and assuming injectivity
of (Fed)0 — F. O

The following lemma will be key for our theory of specialization, it roughly says that
formally adic closed immersions behave as expected:

Lemma 1.3.33. Let (A, AT) be a perfectoid Huber pair and let F — Spd(A*™, AT) be for-
mally adic closed immersion. Then (F*4)¢ = Spec(A*/J)" for some open ideal J C A*.

Proof. Since F — Spd(A*, A1) is a closed immersion, |F| C Spo(A*t, AT) is a closed subset
and we have a Cartesian diagram,
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F — Spd(A*, A™)

L

| —— Spo(AT, AT)
By proposition 1.3.20, (Spd(A*, A*))0 = Spec(A;,)® which is also a closed subsheaf of
Spd(A*+, A*). By formal adicness (F™%)? is a closed subsheaf of Spd(A*, A*) given again by
the topological condition | F|N|Spec(A[,)|. By lemma 1.3.32 a map Spa(R, R) — F factors
through (F*4)¢ if after possibly replacing R by a v-cover it factors through Spec(R*)? —
F N Spec(Af ). This proves that |[(F™4)%] is a schematic closed subset of Spo(A*, AT) as
in definition 1.2.35. By proposition 1.2.36 it is a Zariski closed subset corresponding to an
open ideal J C AT, this proves the claim. O

Example 1.3.34. Let Z denote the complement Spd(FF,[t],F,[t]) \ Nicc1 of the analytic
localization Niyc<1. Then Z — Spd(F,[t],F,[t]) is a closed immersion that is not formally
closed. One may glue two copies of Spd(F,[t],F,[t]) along Z to get a v-sheaf Y that is
separated but not formally separated. Y™ is represented by the affine line with two origins
but the adjunction map (Y4 — Y is not injective.

We will often use implicitly the following easy result.

Lemma 1.3.35. Let F and G be two small v-sheaves, and f : F — G a map between them.
Suppose that F xg (G4 is representable by a reduced scheme-theoretic v-sheaf (definition
1.3.16) and that G is formally separated, then f is formally adic.

Proof. Let T be a reduced scheme-theoretic v-sheaf such that T¢ = F xg (G"*?)°. Since T is
reduced we have (T°)*d = T and consequently ((7¢)*4)¢ = T°. Recall that for any pair of
adjoint functors (L, R) the compositions R —+ RoLoR — Rand L — Lo Ro L — L are the
identity. Since G is formally separated the adjunction map (G*4)° — G is injective. Since
(—)rd is a right adjoint the map f : ((G*4)?)r*d — G4 is also injective. Now, the map f is
injective and the identity of G*? factors through it, this implies that f is an isomorphism.
We can compute:

(TO)red — (]_— Xg (gred)(})red (]:red)O — ((TO)red)O
— fred Xgred ((gred)@)red _ T(}
— fred Xgred gred
— Fred

1.4 Specialization

In this section we review the specialization map in the context of formal schemes and gener-
alize it to the context of v-sheaves. We identify a class of v-sheaves, that we call kimberlites,
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whose specialization maps behave like those of formal schemes. We prove some abstract
statement on the behavior of the specialization map in this context, which we will later use
when we discuss the examples of interest.

1.4.1 Specialization for Tate Huber pairs

Definition 1.4.1. Given a Tate Huber pair (A, A") over Z, and a pseudo-uniformizer w €
A, we define the specialization map sp 4 : |Spa(A, AT)| — |Spec(AL )| by sending a valuation
| - | € [Spa(A, AT)| to the ideal p C AT given by p = {a € AT | |a|], < 1}

These maps of sets are functorial in the category of Tate Huber pairs.

Proposition 1.4.2. (See [/] 8.1.2) The specialization map sp 4 : [Spa(A, AT)| — [Spec(At,)]
1 a continuous, surjective, spectral and closed map of spectral topological spaces.

Strictly totally disconnected spaces form a basis for the pro-étale topology on Perf. In
particular, any small v-sheaf admits a surjective map from a union of totally disconnected
spaces. Moreover, as the following proposition shows, the specialization map for these spaces
is usefully nice.

Proposition 1.4.3. For a strictly totally disconnected space Spa(R, RY), the specialization
map spg 1S a homeomorphism.

Proof. By proposition 1.4.2 the map is surjective and a quotient map so it is enough to prove
injectivity. Suppose z,y € [Spa(R, RT)| map to the same point in [Spec(R},)|. We claim
that = and y are in the same connected component of |Spa(R, R")|. Indeed, let 7, and 7, be
the connected components of 2 and y respectively. The closed-open subsets U C Spa(R, R™)
are Zariski closed subsets defined by an idempotent 1;; € RT. The ones containing x are
precisely those for which [1y|, = 1 or equivalently for which 1y ¢ spp(z) € R". By
assumption spp(x) = spg(y) so x and y are contained in the same closed-opens, this gives
Ty = Ty

By proposition 1.1.8, 7, is representable by Spa(C,C™") for some perfectoid field C' and
open valuation subring C. By functoriality of the specialization map it is enough to prove
that the maps sp. and |Spec(C"/w)| — |Spec(R" /w)| are injective. The former is injective
by lemma 1.4.4 below. To prove injectivity of the later map we argue as follows: 7w, = U
where U ranges over the closed-open subsets of |[Spa(R, R")| containing z. Each closed-open
U C Spa(R, RT) is of the form U = Spa(Ry, Ry™") and if U¢ denotes the complement of U
then RT = R, x R as topological rings. In particular, the map Rt — Ry is surjective.
We have that C'* is the w-adic completion of hﬂer R, which implies that the image of
Rt — C7 is dense. Consequently, Spec(C"/w) — Spec(R'/w) is a closed immersion and
injective. O

Lemma 1.4.4. 1. Given a non-Archimedean field K there is an order preserving bijection
between open and bounded valuation subrings K of K, and valuation subrings of
Ok /K°°, given by K+ +— K+ /K
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2. Given K as above and an open and bounded valuation subring K+ the specialization
map spg s a homeomorphism.

Proof. This is well known and the proof is left to the reader.
O

Remark 1.4.5. Although the construction of V' in the proof above does not depend of the
choice of w = (w;)ier, the Ting V' very much depends of this choice. This is in agreement
with remark 1.1.6.

1.4.2 Specializing v-sheaves

We now discuss the specialization map for v-sheaves. The idea is to descend the specialization
map from the case of formal Huber pairs.

Definition 1.4.6. We say that a small v-sheaf F is v-locally formal if there is a set I, a
family (B;, B;)ier of formal Huber pairs over Z, and a surjective map of v-sheaves

el

Definition 1.4.7. Let F be a small v-sheaf, Spa(A, AT) an affinoid perfectoid space in
characteristic p and f : Spa(A, AT) — F a map of v-sheaves.

1. We say that F formalizes f (or that f is formalizable) if there exists a commutative
diagram as follows:

Spa(A,AT) —— F

Spd(At, AT)
2. We say that F v-formalizes f if there is a v-cover g : Spa(B, B™) — Spa(A, AT) of
affinoid perfectoid spaces for which F formalizes f o g.
3. We say that F is formalizing if it formalizes any f as above.
4. We say that F is v-formalizing if it v-formalizes any f as above.

The previous technical definition will be used extensively, because it gives an abstract
criterion to verify that a v-sheaf is v-locally formal.

Lemma 1.4.8. The following statements hold:
1. The v-sheaf Zg 1s formalizing.

2. Spd(B, B) is formalizing for any formal Huber pair over Z,.
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3. A small v-sheaf F is v-formalizing if and only if it is v-locally formal.

Proof. Given an affinoid perfectoid Spa(R, R*) in characteristic p and an untilt ¢+ : (Rf)” — R
we need to produce a natural transformation Spd(R*, RT) — Zg for which the composition
with the canonical map Spa(R, R*) — Spd(R*, R*) gets mapped to R*. Let £ = p+[w]a be
a generator of the kernel of W (R") — (RF)T, where @ € RT denotes a pseudo-uniformizer
and o € W(R"). Let Spa(A, A™) be some other affinoid perfectoid space in characteristic p.
Recall that, since R™ is in characteristic p

Spd(R*T,RT)(A, A") = {f : Spa(A4, A") — Spa(R*,RT)}

Consider the following construction, take the map of topological rings f* : R* — A"
defined by f, apply the Witt vector functor to f* to get W(f*) : W(R'T) — W(A™") and
consider the element W (f*)(¢) € W(A*'). We claim that W(f*)(&) is primitive of degree 1
(See [53] 6.2.8) and defines an untilt of Spa(A, A™) over Spa(R*", Rt"). Indeed W (f*)(£) =
p+[f*(@)]f*(«) and it is enough to prove that there is a pseudo-uniformizer w4 that divides
f*(w). This follows from the fact that f*(w) is topologically nilpotent.

For the second claim, if we fix an untilt and a morphism Spa(R!, R*") — Spa(B, B) we
can promote this to a morphism Spa(R**, R%T) — Spa(B, B) and induce a formalization
Spd(R**, R**) — Spd(B, B).

For the third claim, assume that F is v-formalizing. Since it is small there is a set [
and a surjective map by a union of affinoid perfectoid spaces [[,.; Spa(R;, R;*) — F. After
refining this cover we may assume that each of the maps Spa(R;, R;") — F formalizes to a
map Spd(R;", R) — F, then [[,.; Spd(RS, R}) — F is also surjective proving that F is
v-locally formal. If F is v-locally formal a map Spa(R, RT) — F will v-locally factor through
a map Spa(R, Rt) — Spd(B;, B;). By the second claim this map formalizes Spd(R*, R*) —
Spd(B;, B;) and the composition to F is a formalization of the original map.

]

Since the notions of being v-locally formal and being v-formalizing are equivalent we will
use them interchangeably, without mentioning it.

Proposition 1.4.9. The following properties are easy to verify.

1. If f: F — G is a surjective map of small v-sheaves and F is v-formalizing then G is
v-formalizing.

2. If Spec(R) € PCAlgy” then Spec(R)® is formalizing.

3. If X e Sc/h\Pgrf then X© is v-formalizing by lemma 1.5.52.

4. Non-empty v-formalizing v-sheaves have non-empty reduction. Consequently, diamonds
are not v-formalizing.

5. If F formalizes f : Spa(A,AT) — F then F formalizes f o g for any map g :
Spa(B, BT) — Spa(A, AT)
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Proposition 1.4.10. Let F be a small v-sheaf, and f : Spa(R,R"Y) — F a map with
Spa(R, R") affinoid perfectoid in characteristic p. If F is formally separated then f admits
at most one formalization.

Proof. Suppose we are given two formalizations ¢g; : Spd(R*, RT™) — F that agree on
Spa(R, RT). We get a map (g1,92) : Spd(RT, R") — F x F, and we can pullback along
the diagonal Az : F — F x F to get G C Spd(R*, R") a formally closed subsheaf. We
want to prove that G = Spd(R*, R"), and to do so it is enough to prove the equality at
the level of topological spaces, |G| = Spo(R", R™). Moreover, since |Spa(R, R")| C |G| and
Spo(R*, R*) = Spa(R, R") U |Spec(R,)?| it is enough to prove |(G*4)°| = |Spec(R7,)°|.
We warn the reader that we can’t use a direct density argument because although Spa(R, R™)
is dense in Spa(R™, RT), it is no longer dense in Spo(R*, RT).

We first deal with the case in which C'is a non-Archimedean field and C* C C'is an open
and bounded valuation subring. Let k™ = Ct, and k = Frac(k™), we have that Spec(k*) =
Spd(C*, )™ and by lemma 1.3.33 (G*4)¢ = Spec(k*/I)® for some ideal I. On the
other hand, since Spa(C,C*) C G and |G| is closed in Spo(C*,C"), |G| contains the formal
specialization of Spa(C, O¢) in Spo(C*, C*), this corresponds to the image of Spec(k)®. By
formal adicness [(G™4)°| = |G| N |Spec(kT)°| and we can conclude that Spec(k)® C (G¥4)°.
This proves that I = {0} and that (G™4) = Spec(k™)? as we needed to show.

For the general case, we get that for every map Spa(C,C™) — Spa(R, R') the canonical
formalization Spd(C*,C") — Spd(R*, RT) factors through G. In particular, after taking
reduction, the map Spec(k*) — Spec(R/,) factors through G™I. This says that |G|
contains every point of [Spec(R7 ;)| in the image of the specialization map. By lemma 1.3.33
grd — Spec(R},) is a closed immersion and by proposition 1.4.2 the specialization map
is surjective, these two imply that G*¢ = Spec(R[,). This also shows that |[(G"4)¢| =
|Spec(R;",)¢| and concludes the proof.

0

Proposition 1.4.11. The following statements hold:

1. Given two maps of v-sheaves F — H, G — H if F and G are v-formalizing and H is
formally separated then F x4 G is v-formalizing.

2. The subcategory of v-sheaves that are v-formalizing and formally separated is stable
under fiber product and contains Zg.

Proof. Given a map Spa(A, AT) — F x4 G we can find a cover Spa(B, BT) — Spa(A, A™)
for which the compositions with the projections to F and G are both formalizable. By formal
separatedness any pair of choices of formalizations Spd(B*, B*) — G and to Spd(B™*, Bt) —
F define the same formalization to ‘H and a map to F x4 G. The second claim follows from
the stability of separatedness by basechange and composition, from lemma 1.3.30 and from
lemma 1.3.32. Indeed, we need to prove that (F*1)% x 3reajo (G*)? is a subsheaf of F x4 G,
but this follows from knowing that F**¢ (respectively H, G) is a subsheaf of F (respectively
H, G). O
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Definition 1.4.12. Let F be a small v-sheaf, we say that it is specializing if it is formally
separated and v-locally formal.

Definition 1.4.13. Let F be a specializing v-sheaf and let f : [[,., Spd(B;, B;) — F be a
surjective map. The specialization map for F, denoted spx, is the unique map spr : |F| —
| Fred| making the following diagram commutative:

f
Hie[ | Spd(By, B;) | ——— | F |

lSPBi
|fred|

Hie[ | Spec((Bi)red) | — | Fred |

Remark 1.4.14. We use proposition 1.4.10 to prove that this map of sets is well defined
and does nmot depend on the choices taken. Indeed, given a point [x] € |F| we may take
a formalizable representative x : Spa(K,, K,7) — F. We take its unique formalization
Spd(K}, K) — F and we apply the reduction functor to this map. We obtain a map
Spec((K;} )rea) — Fe, and the mazimal ideal of (K} )wea maps to a point in | F*°4|, sp([x])
is this point. Suppose y : Spa(K,, K,") — F is another formalizable map with [z] =
ly] after replacing y by a cover we may assume that the map factors as Spa(K,, K,*) —
Spa(K,, K,7) — F. Since formalizations are unique we get a map

Spd(K;, K;) — Spd(K,K}) — F
and the mazimal ideal of (K[ )rea maps to the maximal ideal of (K )rea

Proposition 1.4.15. For any specializing v-sheaf F the specialization map spr : |F| —
| Fred| is continuous. Moreover, this construction is functorial in the category of specializing
v-sheaves.

Proof. We prove functoriality first, take a map of v-sheaves as above g : 7 — G. Given a
point x : Spa(K, KT) — F the image in |G| is given by composition. A formalization for
r gives a formalization for g(z) and we get maps Spec(K[ ;) — F™4 — G we get that
g"*4(spx(x)) = spg(g(x))-

Let us prove continuity, take a cover f : [[,., Spd(B;, B;) — F with each (B;, B;) a
formal Huber pair. By definition we get the following commutative diagram:

f
| Iic, Spd(Bs, Bi) | —— | F|

lsp B; lSPJ:

red
| Spec((Bi)rea) | ——s | Fred |

The map f™¢ is continuous by proposition 1.3.15, the map f is continuous and a quotient
map, and the maps spp. are continuous by proposition 1.4.2. Since the diagram is commu-
tative, the map spr is also continuous. O
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1.4.3 Kimberlites, formal schemes and tubular neighborhoods

To prove pleasant properties of the specialization map we need to restrict our discussion to
certain types of specializing v-sheaves.

Definition 1.4.16. 1. A pre-kimberlite is a small v-sheaf F such that:

a) F is specializing.
b) Fred is represented by a scheme.

¢) The map (F**) — F coming from adjunction is a closed immersion.

2. For a pre-kimberlite F, we define the analytic locus F" as the open subsheaf F \ Fd.
If F s a locally spatial diamond we say that F is a kimberlite.

There are situations in which we will be interested in studying the specialization map
when restricted to a proper subset of the analytic locus, for this reason we consider the
following slightly more general concept.

Definition 1.4.17. A smelted kimberlite is a pair (F, ) where F is a pre-kimberlite and
2 C F is an open subsheaf such that 2 is a locally spatial diamond. A morphism of
smelted kimberlites f : (F1, 21) — (Fa, Do) is a morphism of v-sheaves f : Fi — Fy such
that f(2) C Ds.

If we are given a kimberlite F over Zg there are two different smelted kimberlites that
one can naturally associate to F. That is, (F, F*") and (F, F X0 QY). These two will only

coincide if F — Zg is formally adic. We will use the following definition to abbreviate some
sentences.

Definition 1.4.18. A kimberlite (respectively prekimberlite) F together with a formally adic
map F — Zg is said to be a p-adic kimberlite (respectively p-adic prekimberlite). Given a
map of sheaves F — Zg we denote by F;, the basechange F X79 Qg. A p-smelted kimberlite

s a prekimberlite F over Zg for which (F,F,) is a smelted kimberlite.

Definition 1.4.19. Given a smelted kimberlite IC = (F, Z) we define the map of topological
spaces spx : | 2| — |F| as the composition of | 2| — |F| =L |F*|. For a kimberlite F
we abbreviate Sp(r Fany bY SPan.

Proposition 1.4.20. Let K = (F, 2) be a smelted kimberlite, then spy is a spectral map
of locally spectral spaces. The construction of spi s functorial in the category of smelted
kimberlites.

Proof. Continuity and functoriality follows directly from proposition 1.4.15. We need to
prove that this map is also continuous for the constructible topology. Since it is enough to
prove continuity on an open cover of |Z|, we may assume that & is a spatial diamond. We
cover 9 by an affinoid perfectoid space X = Spa(A, A"). Consider the diagram,
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| Spa(A7A+> |cons 9 \ | 9 |cons

lspx lSP}C

red
’ SpeC(A;&-ed)red ’cons 9 5 ’ f’red ‘cons

where the spaces are given the constructible topology. Since F**? is represented by a scheme
proposition 1.3.17 implies that ¢**¢ is continuous for the constructible topology. Indeed,
morphisms of schemes induce spectral maps. Similarly, the map spy is continuous and since
X is a spatial diamond proposition 1.1.26 shows that the map g is also continuous. Moreover,
g gives a surjective map of compact spaces and is consequently a quotient map. Since the
diagram commutes, spy is continuous for the patch topology. O

The author thinks of kimberlites as a natural category in which one can consider “integral
models” for diamonds. In what follows we will prove that v-sheaf associated to a separated
formal scheme is a kimberlite.

For this one has to choose conventions carefully of what it means to be a “formal scheme”.
We take the convention given [52] section 2.2.

Convention 1. Denote by Nilpy = the category of algebras in which p is nilpotent, and endow
Nilp%’; with the structure of a site by giving it the Zariski topology. By a formal scheme X
over Z, we mean a Zariski sheaf on Nilp%z which is Zariski locally of the form Spf(A). Here
A 1is a topological ring given the I-adic topology for a finitely generated ideal of A containing
p, and Spf(A) denotes the functor Spec(B) — lim Hom(A/I™, B).

For a formal scheme X over Z, we let X,eq denote its reduction in the sense of formal
schemes (See [50] Tag OAIN). Recall that this is a sheaf in Nilp;' which is representable
by a scheme. Moreover, the map X..q — X is relatively representable in schemes, it is a
closed immersion and for any open Spf(A) C X the pullback to X,eq is given by the reduced
subscheme of Spec(A/I) (for an ideal of definition I C A).

We say that X is separated if X.eq is a separated scheme (See [50] Tag 0AJ7).

Recall the following result of Scholze and Weinstein

Proposition 1.4.21. (See [52] 2.2.1) The functor Spf(A) — Spa(A, A) extends to a fully
faithful functor X — X% from formal schemes over Z, as in convention 1 to the category of
pre-adic spaces.

Remark 1.4.22. We warn that what is called adic spaces in [52] is what we call pre-adic
spaces here and in [57].

Proposition 1.4.23. If X is a separated formal scheme over Z, as in convention 1 then
(X9 is a kimberlite.

Proof. Let X = X% and let W = X" we have that W = (X,q)*. Clearly X© is v-
locally formal since it is open locally of the form Spd(B, B). By proposition 1.3.20 we have
(WOyred = (X O)red which is the perfection of X,.q. The adjunction morphism agrees with
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the map W9 — X which by proposition 1.1.31 is a closed immersion. Moreover, this says
X0\ ((X9)red)0 = (X)0 g0 by proposition 1.1.31 this is a locally spatial diamond.

The only thing left to prove is that X¢ — Zg is separated, we fist prove that X© is
quasi-separated. Let Z = Spa(R, RT) be a strictly totally disconnected space and take a
map f: 7 — X© Xz9 X9, Since Z splits any open cover we may assume that f factors
through an open neighborhood of the form Spd(By, By) Xz9 Spd(Bz, By) for an open subset
Spf(B1) Xspt(z,) SPE(B2) € X Xgpe(z,) X. Consider the following basechange diagrams, where
Y = %ad

@ E— Spf(Bl) XSpf(Zp) Spf(Bz) }\[ E— Spa(Bl, Bl) XZP Spa(Bg, Bg)
X — X X Spf(Zy) X X s X Xz, X

Since X is separated ¥) is quasi-compact. This implies that Y admits a finite open cover of
the form [}, Spa(A;, 4;) = Y. Moreover, the diagonal map X — X xz, X is adic (sends
analytic points to analytic points). Indeed, composing the diagonal map with one of the
projections gives the identity. Since open immersions preserve adicness the maps of pre-adic
spaces Spa(A;, A;) — Spa(Bi, By) xz, Spa(Bs, By) are adic. By lemma 1.2.26 the maps
Spd(A;, A;) — Spd(By, B1) xz, Spd(B;, By) are quasi-compact, which proves that Yo —
Spd(By, By) xz, Spd(Bz, By) and any basechange of it is also quasi-compact. After proving
that the map X° — Zg is quasi-separated we may use the valuative criterion of separatedness
(See [71] 10.9). We must prove that for a perfectoid field and a map Spa(K, Ok) — X there
is at most one extension to Spa(K, KT) — X9 where K+ C Oy is an open and bounded
valuation subring. Maps Spa(K, K*+) — X© are in bijection with maps Spf(K*) — X.
On the other hand, maps g : Spf(K™) — X are in bijection with pairs (g,, gs) where g, :
Spf(Ok) — X, g5 : Spec(K1/K°°) — X,.q and such that g, = g, when we restrict the maps
to to Spec(Og/K°°). At this point we may use the valuative criterion of separatedness of
xred'

L]

The following concept is central to our purposes.

Definition 1.4.24. Let F be a prekimberlite and let S C F*4 be a locally closed immersion
of schemes.

1. We define the tubular neighborhood of S on F, denoted ]-A"/S, as the sub-v-sheaf of F
defined by the following Cartesian diagram:
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w—w

/S
J Pr

[ —

2. If K= (F,2) is a smelted kimberlite we let .@/S be ﬁ/s NP and we refer to this sheaf

as the smelted tubular neighborhood.

3. If F comes equipped with a map to Zg (not necessarily formally adic) we define the
p-adic tubular neighborhood of F, denoted (ﬁ/s)n; as the basechange .7/-:/5 X79 Qg.

Intuitively speaking, ]-/:/S is the subsheaf of points whose specialization map factors
through S. This notion generalizes completions along a closed subscheme in formal ge-
ometry:

Proposition 1.4.25. Suppose (A, A) is a formal Huber pair over Z, with ideal of definition
I. Let J C A be a finitely generated ideal containing I and B the completion of A with
respect to J. The closed immersion of schemes S = Spec(Brea) — Spec(Ared), induces an

identification Spd/(ZA)/S = Spd(B, B).

Proof. Let S = Spec(Byeq) and T = Spec(Ayeq). The reduction of the map Spd(B, B) —
Spd(A, A) induces the map S — T. Since specialization is functorial any point coming
from Spd(B, B) has to specialize to S. Consequently the map factors as Spd(B, B) —
Spd/(ZA)/S — Spd(A, A). Since A is dense in B, it is easy to see that this map is an

injection. To prove surjectivity onto Spd/(EA) s+ Suppose we have a map f: A — R* for
which the induced map f : Spec(RY,;) — Spec(A,e) factors through |S|. Then for every
a € J the element f(a) is nilpotent in Spec(R*/w™). Since J is finitely generated there is an
m for which J™ C (@w™) in R*. This proves that the map f: A — R" is continuous for the
J-adic topology on A. Since R" is Comglet\e the map f: A — R™ factors through B, which

proves that any map Spa(R, R") — Spd(A, A)/S factors through a map to Spd(B, B). [

Proposition 1.4.26. Let f : G — F be a morphism prek:zmberlztes and let S C |F*| a
locally closed subscheme. If we define T =S X Fred G4, then ,7:/5 XrG = Q/T In particular,

a map of prekimberlites G — F factors through .7:/5 if and only if G4 — Frd factors through
S.

Proof. Since S is a locally closed immersion we have |T| = |S] X|zwea) [G™¢|. We can look at
the following commutative diagram:
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T

|Gred|_>|

ed|

The first claim follows by basechanging this diagram by the map [S| — | Fred|. For the second

claim, observe that the map G — F factoring through F /s 1s equivalent to G X z F s =G.

By the first claim this is equivalent to G /7 = G, which happens if and only if T" = Gd and
gred — Fred factors through S. ]

Remark 1.4.27. Let F be a prekimberlite and S C Fred locally closed subset. One can prove
that the v-sheaf F/s is a small v-sheaf but this is not automatic. The problem is that the

v-sheaf T is not small whenever the topological space T does not satisfy the separation axiom
T1.

Proposﬂslon 1.4.28. Let F be a prekimberlite and let S C |F™| a locally closed subset,
then .7-"/5 15 a prekimberlite and (F/S)red S.

Proof. The formula (F, /s)red = S follows easily from observing that by proposition 1.4.26
a map Spec(A4)® — F factors through F /s if and only if the map obtained by adjunction

Spec(A) — Frd factors through S. Indeed, S and ]?;‘gd represent the same functor in this
case. R
For the first claim, since F/g is a subsheaf of a formally separated v-sheaf it is formally

separated as well. To prove it is v-formalizing take a map Spa(R, RT) — ]-/:/g C F. After
replacing Spa(R, R™) by a v-cover if necessary we get a formalization Spd(R™, R™) — F. By
proposition 1.4.26 this formalization factors through F /s if and only if Spec(R[,) — Frd
factors through S. But this later condition holds since Spa(R, R™) — F factors through
F /5. To finish the proof we need to show that SO 5 F /s is a closed immersion. Consider
the base change F /S XF (F red)Q. On one hand the projection to F /s 1s a closed immersion,
and on the other hand by proposition 1.4.26 this identifies with ((ﬁo) )5 In case S'is a
closed subscheme of F™4 we have that the map of v-sheaves S — (F*4)? is proper so that
SO — ((@0) /s is also a closed immersion. In case S is an open subscheme of Fred | we

can verify ((ﬁd\)o) 5 =95 9. The general case follows from these two cases.

[
Whenever S is a constructible subset we can say more:

Proposition 1.4.29. Let F be a prekimberlite, S C |F™4| a locally closed constructible
subset then:

1. The map .7?/5 — F 1S an open immersion.

2. If K= (F, D) is a smelted kimberlite, then ﬁ/s N Y is the open subsheaf corresponding
to the interior of sp—(S) in |2].
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Proof. For the first claim we begin by observing that the question is Zariski local in F red,
Indeed, an open cover [[,.; U; — F*¢ induces an open cover [[,.; F/uy, — F. After local-
izing, we may assume that F* = Spec(A4) and that S is closed subset of Spec(4) that is
open for the constructible topology. Write S = Spec(A/I) for I C A an ideal, since we are
only interested in S as a topological space, a compactness argument allows us to assume
that I is finitely generated. Let (i1,...,7,) be a list of generators for I, let (R, R") be
a perfectoid Huber pair and Spd(R*, RT) — F a map. We can describe the basechange
X :=Spd(R",R") x£ ﬁ/s as follows. Let w € R be a pseudo-uniformizer and (ji, ..., jn)
a list of lifts of (i1,...4,) in RE;. We claim X is the open subsheaf of Spd(R", R") de-

fined by (,_; Nj,<<1. Indeed, by proposition 1.4.26 X is given by Spd(R*, R+)/v(1) and by
proposition 1.4.25 if we let BT be the completion of R™ by the (I, w)-adic topology then
X = Spd(B*,BT). That Spd(B*,B") = (;_; Nj.<<1 is a direct consequence of lemma
1.2.23. Since F is v-formalizing every map Spa(R, R™) — F factors through Spd(R™, RT)
after replacing Spa(R, R™) by a v-cover. In particular, the basechanges Spa(R, R") x f/g
are open after taking a v-cover. By [51] 10.11 ﬁ/s — F is open.

For the second claim let T C sp,~1(S) be the largest subset stable under generization.
We prove that T' C F /s N 2 since we already have a chain of inclusions:

FisN 2 C (spe (S)™ CT.

Take # € T and a formalizable geometric point ¢, : Spa(C,, C,") — F over z. Since every
generization of z is in spx~1(9) the map Spec((C)rea) — F*4 factors through S so that
the composition |Spa(C,, C,t)| — |2| — |F 4| factors through |S|, giving that ¢, factors
through F /S

O]

Proposition 1.4.30. Let f : G — F be a formally closed immersion of small v-sheaves.
The following hold:

1. If F is a specializing v-sheaf, then G is a specializing v-sheaf.

2. If F is a prekimberlite, then G is a prekimberlite.

3. If F is a kimberlite, then G is a kimberlite.

4. If (F, ) forms a smelted kimberlite then (G,G N D) forms a smelted kimberlite.

Proof. Suppose F is specializing, since G is a subsheaf of F it is formally separated. Observe
that for a perfectoid Huber pair (R, RT) and a map Spd(R", RT) — F the basechange
X =G xzSpd(R",R") is a formally closed subsheaf of Spd(R*, RT). We may reason as
in the proof of proposition 1.4.10 to conclude X = Spd(R*, R™) whenever Spa(R, RT) — F
factors through G. This proves that G is also v-formalizing and a specializing sheaf. Suppose
F is a prekimberlite, we have a commutative diagram:
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(@) —— (P

| |

G —— F

By formal adicness this diagram is Cartesian which gives that (G*4)® — G is a closed immer-
sion. Since the map (G*4)¢ — (F™4)? is also a formally closed immersion by lemma 1.3.33
G 4 is represented by a closed subscheme of F, finishing the proof that G is a prekimberlite.
Suppose now that F is a kimberlite, then G*" = F* x x G and by ([01] 11.20) it is a locally
spatial diamond, so G is a kimberlite. The same applies for G X  Z in the smelted kimberlite
case. O

1.4.4 cJ-diamonds and rich kimberlites

Suppose we have a formal scheme X topologically of finite type over Z,, suppose we let
X, denote the generic fiber of X considered as an adic space over QQ, and suppose we let
Xred denote the reduced special fiber of X' considered as a scheme over F,. In this classical
situation we have a specialization map spy, : | X,,| = |X™4], and for a fixed closed point

r € |X™4| we have the following chain of inclusions \(/\Af/m)n\ C spy, '(z) € |X,|. These
inclusions satisfy that:

L. spy, ~'(v) is a closed subset.
2. ](é?/x)n] is the interior of spy, ~'(z) in |X,].

3. |(X)a)y| is dense in spy, (%)

The first two conditions generalize, by proposition 1.4.29, to the case of kimberlites for
which closed points are constructible. In this section we give sufficient conditions that make
a kimberlite have the third property as well. Before discussing these condition we give an
example showing that some sort of finiteness hypothesis need to be imposed for the third
property to hold.

Example 1.4.31. Let C be a p-adic non-Archimedean field and C* an open and bounded
valuation subring whose rank is strictly larger than 1. We have that sps is a homeomor-
phism between Spa(C,C™) and Spec(CT/C). In particular, if x denotes the closed point
of Spec(CT/C°°) then sps~1(x) is the closed point of y € Spa(C,CT). The interior of {y}
is empty, therefore it is not a dense subset of {y}.

Definition 1.4.32. We say that a locally spatial diamond X s constructibly Jacobson if
the subset of rank 1 points are dense for the constructible topology of |X|. Locally spatial
diamonds with this property will be called cJ-diamonds.

Proposition 1.4.33. Suppose that KK = (F, 2) is a smelted kimberlite with 9 a cJ-diamond,
let S C |F| a constructible subset. Then |2 N Fg| is dense in spe'(S).

61



Proof. By the proof of proposition 1.4.29, we know that |2 N .7/-:/S| is the largest subset of
spx 1(S) stable under generization. Since S is constructible and spy is a spectral map, the
set spx~!(S) is open in the constructible topology of |Z| and rank 1 points contained in
this set are dense in it. Since rank 1 points are stable under generization, they belong to
|2 N Fs|. This proves that |2 N F/g| is dense in sp—*(S) for the constructible topology,
but the usual topology is coarser so it is dense for the usual topology as well. O]

We discuss some properties of this concept.

Proposition 1.4.34. Let f : X — Y be a morphism of locally spatial diamonds the following
hold:

1. Suppose that | f| is a surjective map of topological spaces and that X is a cJ-diamond,
then Y is a cJ-diamond.

2. Suppose that f is an open immersion and that Y s a cJ-diamond, then X is a cJ-
diamond.

3. Suppose that f realizes X as a quasi-pro-étale J-torsor over'Y for some profinite group
J and that X 1s a cJ-diamond, then Y 1is a cJ-diamond.

4. Suppose that f is étale and that'Y is a cJ-diamond, then X is a cJ-diamond.

Proof. Maps of locally spatial diamonds induce continuous spectral maps of locally spectral
spaces. Surjective maps send dense subsets to dense subsets. Moreover, maps of locally
spatial diamonds are generalizing which implies that rank 1 points can only map to rank 1
points. This proves the first claim.

Suppose now that Y is a cJ-diamond. If f is an open immersion, any open in the patch
topology of X is also open in the patch topology of Y and contains a rank 1 point, this
proves the second claim. Moreover this allow us to localize in the analytic topology, so we
can assume for the rest of the argument X and Y are spatial.

If f is étale, by ([51] 11.31) locally for the analytic topology we can write f as the
composition of an open immersion and a finite étale map. The category of finite étale
morphisms over a fixed spatial diamond is a Galois category and using the first claim we
may reduce to the case in which f is Galois with finite Galois group G. In this way, the
fourth claim follows from the third.

In the setup of the third claim, we claim (and prove below) that f is an open mapping
for the patch topology, this would finish the proof. Indeed, if a point y maps to x under a
quasi-pro-étale map and x is rank 1 then y is also rank 1.

Let J = l&nl J; with J; a cofiltered family of finite groups and denote by f; : X; — Y the
induced J;-torsors. We get action maps J; x | X;| — | X;| that are continuous for the discrete
topology on J; and the constructible topology on | X;|. Moreover, for any set S C |X;| we
have that f;'(fi(S)) = J; - S. Now, the formation of the patch topology on a spectral space
commutes with limits along spectral maps. This gives an action map J x | X| — | X]| that is
continuous when |X| is given the patch topology and J is given its profinite topology. Let
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U C X be open in the constructible topology, then f~!(f(U)) = J - U which is also open.
The map |f]°" : | X|™ — |Y|°" is a surjective continuous map of compact spaces, so it
is a quotient map. Since J - U is open and saturated f(J-U) = f(U) is open as we wanted
to show. O

Let’s recall the following theorem of Huber:

Theorem 1.4.35. (See [259] Theorem 4.1) Let k be a complete field with respect to a rank
1 wvaluation, and let A be a k-algebra of topologically finite type over k. Then the subset
Mazx(A) C Spa(A, A°) is dense for the constructible topology.

Huber’s statement says something a bit stronger, but this weaker form of the statement
is easier to state and the one we will use in applications.

Corollary 1.4.36. If X is an adic space topologically of finite type over Spa(k,k®), where
Spa(k, k°) is a non-Archimedean field over Z,. Then X° is a cJ-diamond.

Proof. The claim is local on X so we can assume X = Spa(A, A°) for a Tate algebra, A/k.
In this case every point Max(A), when considered as a valuation, is a rank 1 valuation. [

1 1 1 1
Example 1.4.37. The perfectoid unit ball B,, = Spa(C(Ty" ... T2 ), 0c(T¢™ ... T™))
over a perfectoid field C' of characteristic p, is a cJ-diamond. Indeed, we have the equality
of diamonds

Spa(C(Ty---T,)), Oc(Ty - - - T,)))° = B,,,

and we may conclude by theorem 1.4.55.

Definition 1.4.38. Let C be a perfectoid field in characteristic p and X a locally spatial
diamond over Spa(C,O¢). We say that X has “enough facets” over C' if it admits a v-cover
of the form [],.,Spd(A;, A7) — X where each A; is an algebra topologically of finite type
over C.

Proposition 1.4.39. Let X and Y be two locally spatial diamonds with enough facets over
C, and let C* denote an untilt of C. The following hold:

1. For any morphism of perfectoid fields Spa(C’,O¢) — Spa(C,O¢) the base change
X Xgpa(c,00) Spa(C’, Ocr) has enough facets over C'.

2. The fiber product X Xspac,00) Y has enough facets over C.
3. X is a ¢J-diamond.

4. If X = Spd(A, A°) for a smooth and topologically of finite type C*-algebra A, then X
has enough facets.

63



Proof. Since the property of being topologically of finite type is stable under products and
change of the base ground field one can prove easily the first two claims. The third claim
follows from corollary 1.4.36 and proposition 1.4.34. _
For the last claim, let T%, denote Spa(CH(Ty,...TE), Oc:(T7, ... TF)), and let Ty, =
l'&nTﬁTip T%,, analogously for T¢ and T¢. For any point = € Spa(A, A°) we may find an open
neighborhood U of = together with an étale map n : U — Tg,. Let U denote the pullback of
n along T¢, — T7,, we get an étale map U > — T%. By the invariance of the étale site under

perfection (see [71] lemma 15.6) U” = U’ for an adic space U’ that is étale over T?%. Now,
U’ admits an open cover of the form [T, , Spa(A;, A7) — U’ with each A; topologically of
finite type over C'. This gives a cover,

[Ispd(A;, 45) — U° — U°.
el
0

We now define rich kimberlites, which are some of the kimberlites that will satisfy the
third condition we discussed above.

Definition 1.4.40. Let F be a prekimberlite and K = (F,Z) a smelted kimberlite.
1. We say that K is rich if the following conditions hold:

e 7 is a cJ-diamond.
o |F4| is a locally Noetherian topological space.
e The specialization map spy : |2| — |F 4| is specializing and a quotient map.

2. If F is a kimberlite we say it is rich if (F,F*) is rich. If F is a p-smelted kimberlite
we say it is rich if (F,F,) is rich.

Remark 1.4.41. To the author’s knowledge, the theory of diamonds and v-sheaves doesn’t
have a good notion of what it means to be of “finite type”. Being rich, is an ad hoc condition
that is good enough for the applications that we have in mind.

The following fact about rich smelted kimberlites is a crucial property that we use later
on in our applications.

Proposition 1.4.42. Let K = (F, 2) be a rich smelted kimberlite and suppose that for any

closed point x € |F 4| the smelted tubular neighborhood .@/m is connected, then my(spy) :
70(|2|) — 7o (| F™Y|) is a bijection between sets of connected components.

Proof. Let U,V C |2]| be two non-empty closed-open subsets with VU U = |Z]|. Since sp,,
is a quotient map the map of connected components is surjective. Suppose now that () #
sp(U)Nspx(V) we want to show that U NV # 0 which implies that |2| and | F*| have the
same families of closed-open subsets. Since sp,, is specializing we can assume there is a closed
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point x € sp,(U) Nspy, (V). Since |F4| is locally Noetherian the closed points are open
in the constructible topology. By proposition 1.4.33, @/x is dense in sp,,~!(z), this implies
that sp, () is connected. Connectedness gives that (sp, ! (z) NU) N (spy, H(z)NV) #£ 0
and in particular U NV # () which is what we wanted to show. O]

The following three technical lemmas will be used later on to prove that certain kimber-
lites are rich kimberlites.

Lemma 1.4.43. Suppose F is a p-smelted kimberlite and that F, is partially proper over
Qg , then:

1. spg, o |Fy| — | Fred| is specializing.

2. If spg, is surjective and | Frd| is a locally Noetherian topological space then it is also
a quotient map.

Proof. Take a point 7 € |F,| mapping to z € |F™4| and take y € |F™!| specializing from .
We need to find ¢ specializing from r that maps to y. Suppose r is represented by a map f, :
Spa(C,C*) — F and suppose that F formalizes f,.. Let K = O¢/C® and Kt = C*/C*°,
then z is the image of the maximal ideal of K under the map f, : Spec(K™) — Fred,
Consider the local ring R, constructed from F™¢ by taking the reduced subscheme whose
underlying topological spaces is the intersection of the closure of x and the localization at
y. We let k = KT /mg+, and so we have R C k. By ([50] Tag 00IA), we have a valuation
subring R C V C k such that Frac(V) = k and V' dominates R. This induces a valuation
subring K'* C K and a map f, : Spec(K'") — F™4 whose closed point maps to y. In turn,
this induces a valuation subring C'* C C'* with C"*/C*° = K'* by lemma 1.4.4. Since F,
is partially proper, we get a map f, : Spa(C,C'") — F, extending f,. Separatedness of F™¢
can be used to prove that the point ¢ = [f,] € |F,| maps to y.

For the second claim, we first prove the case in which |F™4| is irreducible. Let g be
the generic point of |F™|, and take a rank 1 point in 7 € |F,| mapping to g. Take a
map f, : Spa(C,O¢) — F, representing r, and let C™" be the minimal integrally closed
subring of C' containing Z, and C°°, this is the minimal ring of integral elements for C'
By partial properness we get a map Spa(C, C™") — F, whose image consists of the set of
specializations of z in |F,|. The composition of the map f™" : |Spa(C,C™")| — |F™d| is
specializing, surjective and a spectral map of spectral spaces (surjectivity of this map proves
that |Fd| is also spectral instead of just locally spectral). By corollary 1.1.23 f™" is a
closed map and consequenlty a quotient map of topological spaces.

The case in which |F™4| has a finite number of irreducible components is analogous. For
the general case, it is enough to prove locally on |F 4| (for the Zariski topology) that sp 7, 18
a quotient map. By assumption around each point x € |F 4| there is an open neighborhood
U, C |F™d| for which |U,| is a Noetherian topological space. In particular, U, has a finite
number of irreducible components and the closure U, C |.Fred] also has a finite number of
irreducible components. Let T = spfn_l(Ur), this set is closed and consequently stable

under specialization. If we lift the generic points of U, to T we can argue as above to prove
that the map spr, 1T — U, is a quotient map. This finishes the proof. O
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Lemma 1.4.44. Let C' be a characteristic zero non-Archimedean algebraically closed field,
and let k = O¢/me. Let F be a p-smelted kimberlite over Spd(O¢,O¢). Suppose that
for every algebraically closed non-Archimedean field extension C'/C' the basechange Fo,, =
F X$pd(0¢,00) Spd(Ocr, Ocr) satisfies that for closed point x € ].7-"56;| the p-adic tubular

netghborhood (fo;/x)n is non-empty. Then spg, is a surjection.

Proof. Given a point in x € |F™| we can find a field extension of perfect fields K/k for
which F™4 x; Spec(K) has a section y : Spec(K) — F*4 x; Spec(K) mapping to x under
Fred . Spec(K) — Fred. Since F is formally separated, ™4 x,, Spec(K) is also separated
and sections to the structure map define closed points. We can construct a non-Archimedean
field C" with C' C C” and W(k:)[%] C W(K)[%] C C'. We get a map of p-smelted kimberlites
Foo — F, and in |f56g,| there is a closed point y mapping to z. Any point r € |Fer| with
S (r) = y maps to a point whose image under the specialization map is x. This proves
surjectivity. L]

Lemma 1.4.45. Let f : F — G be a map of p-adic kimberlites over Zg. Suppose that f is
surjective, that F is a rich kimberlite, that |G| is locally Noetherian and that |f™] is a
specializing map of topological spaces. Then the following hold:

1. G is rich.

2. If F has connected p-adic tubular neighborhoods and 4 has connected geometric fibers
then G has connected p-adic tubular neighborhoods.

Proof. Since the map F, — G, is surjective we have that, by proposition 1.4.34, G, is
a cJ-diamond. Since we assumed the kimberlites to be p-adic the map F™¢ — G4 is
surjective, |F™d| — |G 4| is a quotient map by proposition 1.3.15 and a specializing map
by hypothesis. Since we assumed that |G™d| is locally Noetherian we only need to prove
that spg is specializing and a quotient map. Observe that the composition | frdlospr is
specializing and quotient map, from which we can conclude.

For the claim on p-adic tubular neighborhoods pick a closed point z € |G™4|, by propo-
sition 1.4.26 (QA/I)77 xg F = (-7?/5)77 with S = |f™4]71(x). One can easily deduce from the
hypothesis on geometric fibers that S is connected which implies by propositions 1.4.42 and
1.4.29 that (F,s), is also connected. Since f is surjective (G, ), is also connected. O]
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Chapter 2

Specialization maps for some moduli
problems

2.1 (G-torsors, lattices and shtukas

In this section we recall the theory of vector bundles over the Fargues-Fontaine curve, and
point to the technical statements that allow us to discuss the specialization map for the
p-adic Beilinson-Drinfeld Grassmanians and moduli spaces of mixed-characteristic shtukas.
Nothing in this section is essentially new and it is all written in some form in ([53], [30],
[15], [1]). Nevertheless, we need specific formulations for some of these results that are not
explicit in the literature. For the convenience of the reader, we justify how our formulations
follow from other (harder) statements that can be explicitly found in the literature.

For the rest of this Chapter we let k be an auxiliary perfect field in characteristic p
and we let ¢ be a parahoric group scheme over Spec(W (k)) with reductive generic fiber G.
Depending on the context, we will introduce more notation and add restrictive hypothesis
on what ¢ and k are allowed to be. We will often times abbreviate Spd(W (k), W (k)) by
W (k)°, and Spec(k)® by k°.

2.1.1 Vector bundles, torsors and meromorphicity

We give a quick review of the theory of vector bundles for adic and perfectoid spaces. Given
an analytic Huber pair (A, A"), and an A module M we can define M as a presheaf on
the open sets of Spa(A, A1) defined as M(U) = l.&nspa(B,BﬂgU M ® 4 B running over all the
rational subsets Spa(B, BT) C Spa(A, A"), and where M ®4 B refers to the usual tensor
product of A-modules ignoring the topology (See [28] 1.3.2). Kedlaya and Liu prove that
whenever (A, AT) is sheafy and M is a finite projective A-module M is an acyclic sheaf.

Definition 2.1.1. Given an adic space X, a vector bundle of rank n over X is a sheaf of Ox-
modules which is locally isomorphic to M (U;) for some affinoid open cover U; = Spa(A4;, A;")
and rank n projective modules M (U;) over A;.
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In what follows we will need to work with categories of vector bundles over adic spaces
and over schemes at the same time. The following important result of Kedlaya and Liu
makes the bridge between these categories:

Theorem 2.1.2. (See [28] 1.4.2) Let X = Spa(A, AT) be an analytic affinoid adic space,
suppose that A is sheafy. The functor

H°(Spa(A, AT), =) : Vecspa(a,a+) — Velspec(a)

from the category of vector bundles over Spa(A, AT) to the category of finite projective A-
modules is an exact equivalence of exact categories.

Remark 2.1.3. The acyclicity of M proves that H°(Spa(A, A*), =) is exact. The quasi-
inverse (—) is also exact since Tor;(M, B) =0 for M finite projective A-module and i > 0.

As in the theory of analytic functions on a complex variable one can introduce the notion
of poles and meromorphic functions between vector bundles. We discuss how to do this:

Definition 2.1.4. (See [55] 5.3.1, 5.3.2, 5.3.7) Given a uniform analytic adic space X, and
an ideal sheaf T C Ox, we say that T defines a Cartier divisor if T is a line bundle over X.
Let Z C X denote the support of Ox /L. We say that T is a closed Cartier divisor if the
topologically ringed topological space equipped with valuations (Z,Ox /L, | - |zez) is an adic
space.

The data of a Cartier divisor allows us to define the notion of meromorphicity.

Proposition 2.1.5. (See [03] 5.8.4) Let X be a uniform analytic adic space and T C Ox
a Cartier divisor. Let U = X \ V(Z) be the complement of the Cartier divisor and denote
J U C X the natural inclusion, we then have inclusions of Ox-modules:

Ox ClimZ°C" C j.(Op)

Definition 2.1.6. Let X be a uniform analytic adic space, let Vi and Vo be two wvector
bundles over X and let T C Ox be a Cartier divisor. Let us denote by U the complement of
the support of T. We say that a map in Homy(Vy, Va) is meromorphic along T if it is in

H°(X, Hom(Vy,V») ® (liy Z°C™))
where Hom(Vy,Vs) denotes the internal Hom vector bundle.

Definition 2.1.7. Let X be a uniform analytic adic space over Spa(W (k), W (k)). We define
a 9 -torsor over X to be a ®-exact functor from the category of algebraic representations over
finite free W (k)-modules, Rep(¥), to the category of vector bundles over X, Vecx.

We can then generalize the notion of meromorphicity to that of ¢-torsors.
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Definition 2.1.8. With X as in definition 2.1.6 and definition 2.1.7, we will say that a
morphism, f : A, — Sy, of -torsors over X, is meromorphic along I if for all rep-
resentation ™ € Rep(¥) the corresponding map f(mw) : FA(m), — Z(n), is meromorphic
along T.

lu lv

We will often use the following fact.

Theorem 2.1.9. (See [03] 17.1.8) The category of vector bundles fibered over Perfd forms
a stack for the v-topology.

2.1.2 Vector bundles on Y

We defined Z<> as the v-sheaf parametrizing untilts. Although ZO is not itself represented
by an analytlc adic space, the product ZO x S for any S € Perf can be represented by an
analytic adic space. Let us recall this constructlon

Definition 2.1.10. Given a perfectoid Huber pair (R, R™) and a pseudo-uniformizer w €
R, we define y[ﬁ;) as Spa(W(RT),W(R™)) \ V([w]). Where [w] denotes a Teichmiiller
lift of w, and where W(R") is given the (p,[w])-adic topology. We also define Yp+ as
Spa(W(R™), W(R™))\ V(p, [=]).

Proposition 2.1.11. (See [20] 3.6, [55] 11.2.1]) For any perfectoid Huber pair (R, RT) the
space Ygr+ has a cover by sheafy Huber pairs. Consequently, Yr+ and yﬁ;) are adic spaces.

Moreover, (J/[’gj;o))o = Z3 x Spa(R, R").

Let us review the geometry of Y+, for this fix a pseudo-uniformizer @ € R*. One defines
a continuous map kg : |Vg+| — [0, 00] characterized by the property that x(y) = r if and
only if for any positive rational number 7 < “* the inequality [p[;® < |[=][; holds and for any
positive rational number 7 < r the inequality |[z][; < [p[}" holds.

Given an interval I C [0, 00] we denote by Y the open subset corresponding to the

interior of x_'(I). For example, y(lgt)o] corresponds to the locus in Y+ where |p| # 0 and
y[fg;) corresponds to the locus where |[@]| # 0. For intervals of the form [0, 2] where / and

d are integers the space Y&, is represented by Spa(R', R'"") corresponding to the rational

[0,5]
localization,
{z € Spa(W(R™),W(R")) | p"] < [[=]"]« # 0}
In this case, we can compute Rt explicitly as the [w]-adic completion of W(R*)[%] and

R’ as R’*[ ! } A direct computation shows that R’ does not depend of R*. In particular,

the exact category of vector bundles over :)70700 does not depend of the choice of R either.

We will also need to work with an algebraic version of Yg+, which we will denote Yp+.
This is defined as the scheme Spec(W (R")) \ V(p, []). Since W(R*) C Oy_, and since p,
(], do not vanish simultaneously on Vp+ we get a map of locally ringed spaces f : Yp+ —
Yr+ C Spec(W(R™).
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Recall that given an untilt R* of R there is a canonical surjection W (R™) — R whose
kernel is generated by an element £ € W(R™) primitive of degree 1 (See [53] 6.2.8). The
element ¢ defines a closed Cartier divisor over Yg+ and also defines a Cartier divisor on the
scheme Yx+. In what follows, we compare the categories of vector bundles over Spec(W (R™)),
Yr+ and Yp+ with morphisms being functions that are meromorphic along the ideal (&).

Recall GAGA-type theorem of Kedlaya and Liu:

Theorem 2.1.12. (See [20] 3.8) Suppose (R, RT) is a perfectoid Huber pair in characteristic
p. The natural morphisms of locally ringed spaces f : Yr+ — Yr+ gives, via the pullback
Junctor f*:Vecy, , — Vecy ., an exact equivalence of exact categories.

Remark 2.1.13. Although the reference does mot explicitly claim that this equivalence is
exact, one can simply follow the proof loc. cit. exchanging the word “equivalence” by “exact
equivalence” since every arrow involved in the proof is an exact functor.

Corollary 2.1.14. With the notation as above, the pullback f* induces an equivalence
fr (Vecyéfo)m” — (Vecy;io)m”

between the category whose objects are vector bundles over Yp+ (respectively vector bun-
dles over Yr+) and morphisms are functions meromorphic along the ideal (§) (respectively
functions over Y+ \ V(€)).

Proof. By theorem 2.1.12 it is enough to prove that f* is fully-faithful. Using internal
Hom we can reduce to proving H°(Vg+, V)i =H O(Yéfo, V). For quasi-compact, quasi-
separated schemes the global sections of a quasi-coherent sheaf after localizing by a global
section of the structure sheaf is given simply by localization. That is H O(Yéfo,V) =
H°(Yg+, V)[%] On the other hand, by definition

H'(Vre, [V = H Ve, [1V © lim(€)7).

Now the ideal sheaf (§) is isomorphic to Oy, since it is a principal Cartier divisor so we

can view f*V ® h_ng(f) as:

Yy

And since HY commutes with filtered colimits we get precisely H°(Vg+, f*V)[%] O

Since we defined ¢-torsors Tannakianly these statements immediately generalize to those
for ¢¥-torsors. Kedlaya proves another important statement.

Theorem 2.1.15. (See [20] 2.8, 2.7, 3.11) With notation as above, and letting j be the
open embedding, j : Yr+ — Spec(W(R™)) the following statements hold:

1. The pullback functor j* : Vecspecqw(r+)) — Vecy,, is fully-faithful.
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2. If R is a valuation ring then j* is an equivalence.

3. Taking categories of quasi-coherent sheaves the adjunction morphism 7%5,V — V is an
1somorphism.

Remark 2.1.16. One may think that the third statement together with the first statement of
theorem 2.1.15 above would give an equivalence of categories of vector bundles for any ring
R*. This is not the case because even if V is a vector bundle, j.V might not be a vector

bundle over Spec(W (R*)).

We will need a small modification of theorem 2.1.15.

For this we recall a few facts about topological modules on a Tate ring, this material is
taken from ([53] 14.2.3). Let A be a complete Tate ring, f a topological nilpotent unit, Ay a
ring of definition, and N a projective module over A. One can endow N with its canonical
topology (See [28] 1.1.11).

1. An Ag-submodule M C N is open if and only if M[%] =N.

2. An Ag-submodule M C N is bounded if and only if M is contained in a finitely
generated Agp-submodule.

3. If A C B with the subspace topology, B is Tate and complete for its topology, and
S C N ®y4 B is bounded, then SN N C N is also bounded.

The following statement is implicitly used and proved in ([53] 25.1.2).

Proposition 2.1.17. Let Spa(R, R") be the product of points constructed from the family
{(Ci, C), @i bier as in definition 1.1.5. The pullback functor j* : Vecspeew(rt)) — Yr+
gives an equivalence of categories of vector bundles with fixed rank.

Proof. We already have a fully-faithful embedding by theorem 2.1.15, so it is enough to prove
it is essentially surjective. Let V be a vector bundle over Yr+ of constant rank n, we let M’ =
H°(Yg+,V) which is a W(R")-module whose pullback to Yz+ identifies with V by theorem

2.1.15, we want to prove that M’ is a projective module. Let N = M’ @y (r+) W(RJF)[Z—l)],
this module is projective since N is the pullback of V to Spec(W(R*)[%]).

Define M; as HY(Yy+, V) where ¢; : Yo+ — Yg+ is the closed embedding produced by
the idempotent 1; € WZ(RJF) = [Lics W(C’;“) For each i, this is a free W(C;")-module by
theorem 2.1.15 and because W (C;") is a local ring. We define M = [],_; M; which is a free
W (R*T)-module of constant rank n. Since we have maps of W(R™) modules

M' = H(Yg+,V) = H' (Ypu,05V) = M;

We get a map M’ — M. This map is injective since the family Y+ is dense in the Zariski
topology of Yz+. We want to prove that this map is an isomorphisfn.

As a first step we prove that the map induces an isomorphism M’ [%] - M [%] For this
we will consider W(R*)[%] as a Tate ring with its p-adic topology, and W (R™) as a ring of
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definition. In this context M’ C N is an open subset when N is given its canonical topol-
ogy. This follows from property 1, since by construction N = M’ [%] The map of schemes
Spec(W(R)) — Spec(W(R™")) factors through Yz+. This implies that M’ @y (g+) W(R) is
a finite projective module over W(R). The usual map realizes W(RJF)[Z—l)] as a topological

subring of W(R)[%] Moreover, M' @y g+)W (R) is a bounded subset of N®W(R+)[%1 W(R)[%]
by property 2. On the other hand, property 3 readily implies M’ is a bounded subset of N.

We construct an injection M C N as W(R")-modules. Consider N; = 1;N as a
W(C’;r)[%]—module but also as a subset of N. We have an injection N C [[,.; NV; and
an element (n;);c; is in the image of N if and only if the set S = {n;};c; C N is bounded in
N. There is a clear injection M = [],., M; = [[,c; N; and we claim that it factors through
N. To prove the claim observe that if 1¢ denotes the complementary idempotent of 1; then

;- M =M [H Since taking global sections commutes with localization on qcqs schemes,

we have that M; = 1; - M’. Then the image of any element m € M in Hiel N; has the form
(m;)ier with m; € 1;- M'. Since M’ is bounded in N, the set [],., M; is bounded and the
map M — [[;c; Vi defines and embedding into N. We have M’ C M C N and in particular
M'[Z] = M[}], which finishes the first step.

We define V, to be j*M, which is a vector bundle over Yz+. The situation is as follows,
we have a morphism of vector bundles V; — V5 over Yz+ with Vs, a trivial vector bundle,

that becomes an isomorphism over Y+ for every ¢ € I and also becomes an isomorphism
7

over Spec(W(R*)[%]) C Yg+. We prove that it is already an isomorphism over Ygz+. After
taking determinant bundles and fixing a trivialization we get a map AV} — Oy, and it is
enough to prove this one is an isomorphism.

Upon applying Beauville-Laszlo lemma (See [53] 5.2.9) to p € W(R*)[ﬁ] the morphism

AV; — Ox produces for us a family of lattices over W(R) = (W(Pﬁ)[ﬁ])p parametrized by
Spec(R). This is the same as a morphism of schemes Spec(R) — Gryy* to the 1-dimensional
Witt-vector Grassmanian (See [5] 8.1). Pullback of the map V; — Ox to W(C;) gives a
lattice corresponding to the composition Spec(C;) — Spec(R) — Grg’vm, but for each i € I
the restriction of the morphism V; — Ox to W((;) is an isomorphism. In particular, we get

the following commutative diagram,

]_[ZEI Spec(C;) —— Spec(R)

! |

Spec(F,) —— Grir

where the map e : Spec(F,) — Grsvm is the one associated to the identity of Ox. The image

of | [1;c; Spec(C;)| in |Spec(R)| is dense since the map of rings R — [],; C; is injective. But
Grlr;(}"vm is representable by a discrete disjoint union of points of the form Spec(F,). So the
map Spec(R) — Grg’vm factors through the identity section which finishes the proof.

[

Given £ € W(R™") primitive of degree 1 as before, observe that since both Spec(WW(R™))
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and Ygr+ are qcgs schemes the equivalence of vector bundles of proposition 2.1.17 generalizes
to the categories where the objects are the same, but morphism are allowed to have poles
along & on both categories.

Interestingly, extending ¢-torsors from Yx+ to Spec(W(R™)) adds yet another layer of
complexity. Indeed, the equivalences of theorem 2.1.15 and proposition 2.1.17 are not exact
equivalences, so Tannakian formalism can’t be used directly. As a matter of fact, only the
pullback functor 5* is exact. J. Anschiitz gives a detailed study of the problem of extending
¢-torsors along j in [1]. We emphasize that, as we discussed in the introduction, the methods
of [1] allow Anschiitz to construct a point-wise specialization map for the p-adic Beilinson-
Drinfeld Grassmanians attached to any group ¢ with parahoric reduction. Proposition 2.1.19
below, which is nothing but a small improvement to theorem 2.1.18 of Anschiitz, is the main
technical input that we will need to upgrade Anschiitz map to a map of topological spaces.
In the case that ¢ is reductive we will be able to say more about the specialization map.

Theorem 2.1.18. (See [1] 7.2, 7.3, 7.9, 6.5, 7.6 and [’] 11.6) Let C be an algebraically
closed non-Archimedean field over k, let Ot C C an open and bounded valuation subring
with k € CT, and let 4 be a parahoric group scheme over W (k). Then every 4-torsor T
over Yo+ extends to Spec(W (CT)).

We now state an analogue of proposition 2.1.17 for ¢4-torsors.

Proposition 2.1.19. Keep the notation as in theorem 2.1.18, and let Spa(R, RT) be a
product of points over k. Every 4 -torsor & over Yp+ extends along j : Yp+ — Spec(W(R™))
to a torsor & torsor over Spec(W(R™T)).

Proof. We need to prove that the functor j,.7 : Rep(9) — Vecspec(w(r+)) is exact, and since
the functor j, is always left-exact we only have to prove right-exactness of j,.7. Suppose
we have a morphism of free modules f : V; — Vs, over Spec(W(R™)) and we have that
the basechange to Spec(W (C;")) is surjective for every i € I, we need to prove that the
morphism is surjective. Taking determinant bundles we can reduce to the case that V; is
free of rank 1. After taking trivializations we have n sections fi,---, f, € W(R') and we
need to prove that they generate the unit ideal. Consider the family of subsets {1, }1<m<n
defined by
Ip={i€l| fneW(C)}

By construction 17, is in the ideal generated by the f;. Since each W(C;") is a local
ring and the { f,, }1<m<n generate the unit ideal in W (C;") the union | I,,, has to be I. This
finishes the proof. 0

We need the following descent result which is similar to theorem 2.1.9.

Proposition 2.1.20. (See [57] 19.5.3) Let S be a perfectoid space over k and let U C y[‘g 00)
be an open subset. For map of perfectoid spaces f : S" — S, let Cs: denote the category of
& -torsors over J/[gioo) S U. Then the assignment S" — Cs/, as a fibered category over

Perfy, is a v-stack.
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2.1.3 Lattices and shtukas

For this section fix Spa(R, R*) an affinoid perfectoid space over k, w € R™ a choice of pseudo-
uniformizer, R* an untilt of R and £z a generator for the kernel of the map W (R") — R,

Definition 2.1.21. We define the category of Bis(R*)-lattices with 4 -structure to have as
objects pairs (T ,1) where T is a G -torsor over yR* and p : T — 4 is an isomorphism

over yOOO \ V(&re) that is meromorphic along (fRu) Morphisms are the evident isomor-
phzsms of DPaAITS.

Given data (.7, ) as above we can choose a big enough number r,, € R for which ))[If;oo)
is disjoint from V' (€z:). Over this locus we can glue along ¢ to extend .7 canonically to a ¢-
torsor over Vg+. Using Corollary 2.1.14 and Beauville-Laszlo on the scheme Spec(W5 )[ﬁ]
we get an equivalence of categories with the category of pairs (Z,1) where = is ¥-torsor
over Spec(Bl,(R¥)) and ¢ : £ — ¥ is a trivialization over Spec(Bar(R*)), where Bj,(RF)
denotes the completion of W(R*)[ﬁ] along g, and Bygr(RF) = BjR(Rﬁ)[ﬁ].

Recall that for an algebraically closed non-Archimedean field C' the ring Bgr(C*) is a
complete discrete valuation field so that the set of isomorphism classes of ¥-torsors over
Spec(Bjz(C")) is in canonical bijection with ¥ (B4r(C*))/9(Bix(C*)). In case € CF we
also have that l € Bj,(C*%), and we will find that gB+ oy =G Bi.(C%) is split reductive.
After fixing aux1hary groups T'C B C G B (ct) & maximal torus and a Borel respectively,
the Cartan decomposition gives an 1dent1ﬁcat10n

G (Bip(CONG (Bar(C)) /9 (BIR(CF)) = G(Bip(CH)\G(Bar(C?)) /G(Bix(C?)) = ng)l)
Suppose that B and T are fixed and understood from the context, and let u € X1 (7). We
say that a BJ,(C%)-lattice (Z,1) is of type p if the isomorphism class of (Z,v) maps to p
under the identification above.

We now consider mixed-characteristic shtukas. Recall that the spaces Spec(W(R™)),
y[OOO Yr+ and Yp+ come equipped with a Frobenious action. All of these actions are
coming from the usual Frobenious action on W (R™) given by:

o (Zmpi) =3 [y

1=0 i=0

A computation shows that qb(y[ab) = yéj;pm which proves that all of the loci considered
above are preserved by Frobenious.

Definition 2.1.22. We define the category of shtukas with one paw over Spa(R?, RﬁJr) and
G -structure. For this we require that k = F, and that ¢ is defined over Z,. This category
has as objects pairs (T, P) where T is a G-torsor over y[ﬁ;) and ® : ¢*T — T s

an isomorphism over y[ﬁ;) \ V(&ge) meromorphic along (Ep:). Morphisms are the evident
isomorphisms of pairs.

74



Definition 2.1.23. Given a ¢-module with ¢ -structure (€, ®g) over y(RO?;O) and a shtuka
(7,05) we say that (T ,Pz) is isogenous to (€, Pg) if there is a number r € R (that
depends of the choice of w) and a ¢-equivariant isomorphism f : (T, ®5) — (€, Pg) defined
over yR* ) We call such a pair (r, f) an isogeny. Two isogenies (ry1, f1) and (rq, f2) are
equwalent if there is a third isogeny (rs, f3) with rg > ri, 9 and fi = f3 = fo when restricted

to y’jjoo) We also refer by isogenies to the elements of the set of equivalence classes of pairs

(r, f)-

After the work of Scholze and Weinstein one may think of mixed-characteristic shtukas
as a generalization of p-divisible groups (See [53] 14.11,[52] Theorem B). We do not make
this precise, but isogenies as defined above are closely related with isogenies of p-divisible
groups. In what follows, we prove three technical lemmas that intuitively speaking allow us
to “deform” lattices and shtukas with ¢-structure. Later on it will become clear why we
think of these lemmas as “deformation” statements.

For any r € [0,00) let BRJr o] = = HO(YE! Oyffto])’ and consider R, = (R /w)P/. We

observe that the universal property of y[r ~) @ a rational subset of Spa(W(R"), W(R"))

induces compatible maps of rings B[R |~ W(Rred)[ | for varying r. We denote this family

of reduction maps by (—req)-

el

Lemma 2.1.24. Let s € B[r o] and suppose that the reduction S..q, originally defined over
W(Rjed)[ |, lies in W(R/,), then there are: a number r' with r <1', elements a € W(R™),

be B and a pseudo-uniformizer ws € RT such that s =a+b and b € [w;] - B[}E,Too}.

roo}

Proof. By enlarging r if necessary we can assume )/[f;] is of the form:

{z € Spa(W(RT), W(R")) | |[@]l. < [p"]. # 0}

for some m, we compute B[R explicitly. If S * denotes the p-adic completlon of W(R*)[[w]]

then BR+] = S+[ . Any element s € Bf | is of the form s = pn - 220 [a;]a™@pt where

[r,00 ['roo
a; € RT, x = [—m nd m(i) denotes a non-negative integer. We can decompose p™ - s as
x - Z [a;]z™ D 1pt | + Z [a]p".
1=0,m(z)>0 i=0,m(i)=0

Since x = %], we have that [o] divides in B[]z;] the first term of this decomposition. As long

as we pick a @, that divides @, we may and do reduce to the case s = ¥2°,[a;]p"™". In this
case, Sred = 2520[(ai),0qJp" " and by hypothesis we have that for i < n (a;),.4 = 0 in R},.
We can choose a pseudo-uniformizer w; for which all of a;, for i < n, are zero in R* /w,. We
can take a = 37 [a,Jp"" and b = 37" 'a;Jp" ™. These clearly satisfy the properties.  [J
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Lemma 2.1.25. Suppose that F and 5 are trivial 4 -torsor over Spec(W (R*)) and that
A A — Ty is an isomorphism defined over y[ﬁ;} which upon reduction to Spec(W(R;gd)[]%])
extends to an isomorphism over Spec(W (R,)). Then, there is an isomorphism N T — D
defined over Spec(W (R™)), a pseudo-uniformizer wy € R™ and a number ' € R with r < 1’
such that A = X in:

Hom

sif_ =) (F1 72)

Spec( oo

Proof. Fix for the rest of the proof tr1v1ahzat10ns i+ J; — 9, and consider 150 Ao " as
an element g € H O(y[r wpY) S H O(y[r o GLy) for some n and some embedding ¢ — GLy,
defined over W (k). By lemma 2.1.24 we can find w, such that one can write g as M;+[w,]| M,
where M; € GL,(W(RY)) and My € M,,,(BE'_,). With this setup the reduction of M,

[r,00]
to GL, (B[Ifoo]/[w,\}) lies in 9(W(R")/[w,]). Moreover, since ¢ is a smooth group and
W(RY) is [w,]-complete, we can lift this to an element ¢’ € 4(W(R")) with ¢ = M; in
GL,(W(R")/[w]). Consequently ¢’ = g in 4 (B} OO]/[w)\]), and by letting A = ;' 0 ¢’ 0 1y
we get the desired isomorphism. ]

Remark 2.1.26. In lemmas 2.1.25 and 2.1.2J above one can take r = r’ but that would
extend the arguments and we will not need this.

The proof of the following lemma is inspired by the computations that appear in [20]
Theorem 5.6, and it is a key input in the proof of theorem 2.3.14.

Lemma 2.1.27 (Unique liftability of isogenies). Let J be a trivial 4-torsor defined over
Spec(W(RY)) and let &, denote the trivial 4 -torsor endowed with the ¢-module structure
over y Bt o] JVEN by an element b € 54(:)7 o OO]) Let @ : ¢*7 — 7 be an isomorphism defined
over Spec(W(R*)[ ) and X\ : T — 9, a ¢p-equivariant isomorphism defined over B[If;o]/[w]
Jor some r big enough so that &py becomes a unit. Then, there zs a unique ¢-equivariant
isomorphism X : J — %4, defined over y[T o] Such that X=X\ in B }/[w].

Proof. After fixing a trivialization ¢ : 7 — ¢ we may assume, by transport of structure,
that 4 = .7, that ® is given by an element ¢ (W(R*)[%]), and that A is given by an element

(B[}f;] /[@]). We need to find an element Ney (B[}f’;}) reducing to A and satisfying & =

obO(b*( ). Choose an arbitrary lift Ay € %(B[If;]) of A, and let 1y = Ao~ tobop*(Ng)od L.
We construct a pair of sequences of maps, \; : ¢ — %, and n; : ¢ — ¥4 defined recursively
as follows:

Ant1 = An 01y
N =\, 0obo¢*(\,) 0o @'
We make the observation that 17y = Id in ¥4 (BR;] /[w]) and we prove inductively that
N, = Id in %(Bﬁ;]/[wpn]). If g € %(B[fim}) is such that g = Id in %(B[}f’;]/[wp"]), then
¢*(g) = Id in
9 (B [Too]/[ ")) CY(BE L/ [
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The induction then follows from the computation:

a1 = Ap1 000 " (Ap) 0 @71 (2:2)
oA 0b0 6" ) 0 & 23
— D od (M) ob oA oA 0bod (M) o d ! (2.4)
— B0 (M) 0 ¢ () 0B 2.5)
=®o¢*(n,)od ! (2.6)

Since ¢*(n,) = Id in 9(BE’_ /[w”""']) we also have that 1, = Id in %(Bﬁ;]/[wpnﬂ]).

[r,o0]

This let us conclude that 7; converges to Id in ¢ (B[If;o}). We define A € ¢ (B[ﬁ;]) as the

limit of the A;. Taking limits we deduce the identities Id = 1. = Xobod*(\) o @ ! and
A=) =A\in %(Bﬁ;]/[w]) as we needed to show.

Suppose that there are two lifts Xl of A with the required properties. We get a ¢-

equivariant automorphism A OXQ’ ! of 4, which we may think of as an element of g € ¢ (B[ﬁ;])

that reduces to the identity in BF__ /[w]. Now, ¢-equivariance gives b = g~ obo ¢*(g), and

[r,00]
since ¢ = Id in %(Bﬁ;}/[w]) then ¢*(g) = Id in g(B[]Z;]/[wpD and we get the identity
b=globoldin 4(BE_ /[w’]). We may proceed inductively to prove that g = Id in

[r,o0]

[r,o0]

we conclude that g = Id in %(Bﬁ;]). O

¢ (BE' . /[w?"]) for every n. Since B[}f’;} is complete and separated for the [w]-adic topology

2.2 The specialization map for p-adic Beilinson-Drinfeld
Grassmanians

2.2.1 Grassmanians as kimberlites

In the Berkeley notes, Scholze and Weinstein define a p-adic analogue of the Beilinson-
Drinfeld Grassmanian where the parameter “curve” is given by Zg, or in our case W (k)9 =
Spec(k)® x Z$. We will adopt the definition that is the most convenient for studying the
specialization map for this object.

Definition 2.2.1. (See [55] 20.5.1) We let Grfv(k)o denote the presheaf that assigns to an
affinoid perfectoid pair (R, R) the set:

Griyo (R, RY) = {(RF, 0, f, T,0)} =

Where (R, 1, f) is an untilt over W (k) and (7 ,%) is a lattice with G -structure as in defini-
tion 2.1.21.

Whenever ¢ is reductive over W (k) with quasi-split fibers we fix T C B C ¥, integrally
defined maximal torus and Borel subgroups respectively.
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Definition 2.2.2. Suppose that ¢4 is reductive and p € X (%) is a dominant cocharacter
with reflex field E. We define Ger“ as the subsheaf of Gr%E = Grfv(k)o X (k)0 O% that
on geometric points evaluates to 4 -lattices (Z,1)) whose type is bounded by u in the Bruhat
order. We use equation 2.1 to compare u= with .

Recall the following theorem of the Berkeley notes.

Theorem 2.2.3. (See [03] 20.3.2, 21.2.1) For any parahoric group scheme 4 over W (k), the
presheaf Gl"fv(k)o is a small v-sheaf and ind-proper over W (k)°. Moreover, if 4 is reductive
and p € X.(T) the functor Grzf“ 1s proper and representable in spatial diamonds over O%.

. . < ¢ . .
The inclusion of sheaves Grz’—“ — Grdy_is a closed embedding.
E E

Proposition 2.2.4. The v-sheaf Grffv(k)o formalizes products of points. In particular, it is
v-formalizing.

Proof. Let Spa(R, R*) be a product of points and f : Spa(R, Rt) — Griﬁ,(k)o a map. By
definition, associated to this map we have an untilt (R* ¢, m) over W (k) and a ¥-torsor
T over y[ﬁ;) together with a trivialization ¢ : .7 — 4 over yﬁ;) \ V(&rt) meromorphic
along &p:. We can use ¥ to glue .7 and ¢ along y[ﬁ;) (for big enough r) and get a ¥-
torsor defined over Yg+, together with a meromorphic isomorphism over Yg+ \ V (€g:) which
restricts to the original data. Using corollary 2.1.14, proposition 2.1.19 and the fact that by
construction 7 is trivial on Yx+ \ V(§) we can extend 7 to a ¥-torsor over Spec(W (R™))
together with a trivialization over Spec(W(R*)[ﬁ]). We claim that this is enough to define
a map Spd(R*,R*) — Gr%(k)o. Indeed, take a second affinoid perfectoid Spa(S, S*) and
a map ¢ : Spa(S,ST) — Spd(R", R"), we want to produce a map Spa(S,S™) — Grfv(k)o
in a functorial way. We may construct an untilt (S% ¢,m) as in lemma 1.4.8. The map g
gives a map ¢ : W(R") — W(ST) with ¢'( zt) = £s:. Basechange along ¢’ gives a ¢-torsor
over Spec(W(S™)) together with a trivialization over Spec(W(S*)[ng)]). This restricts to
a ¢-torsor over y[%;o) and a trivialization over y[gfoo) \ V(¢'(€)) that is meromorphic along
g'(§). This gives our desired natural transformation Spd(R*, R*) — Grfv(k)o. Clearly
the composition Spa(R, RT) — Spd(R™,R") — Grfv(k)o agrees with f, so this map is a
formalization. O

Proposition 2.2.5. (See [53] Section 20.3) The v-sheaf Gr{é,(k)o is specializing and formally

ed

p-adic, and (Grfv(k)o)r is represented by the Witt-vector Grassmanian, Grg{f\,’k. Moreover,

if 9 is reductive and kg denotes the residue field of O, then Grﬁf“ s also formally p-adic
E

@< 9.<
and (Gr_ ")t = Gry3h .
E

Proof. That Gr’(é,(k)o is specializing would follow from proposition 2.2.4, theorem 2.2.3 and
proposition 1.3.31 once we establish that it is formally p-adic. We begin by constructing
a map Grfwk — (Grfv(k)o)red. Given a map Spec(R) — Gr%i,’k we need to produce a map
Spec(R)? — Grgfv(k)o in a functorial way. The map to Grrgf\,’ﬁC is given by a ¥-torsor .7

78



over Spec(W(R)) together with a trivialization ¢ : . — ¢ over SpeC(W(R)[%]). Given an
affinoid perfectoid Spa(S, S*) and a map f : Spa(S, ST) — Spec(R)? we need to produce a
map Spa(S,ST) — Grﬁ/(k)o. The morphism f induces the ring map f' : W(R) — W(S™).
We can assign to f the characteristic p untilt and assign the ¢-bundle f*.7 over y[*g;)
with trivialization f*, using corollary 2.1.14 we see that it is meromorphic along p. This
construction is clearly functorial and gives the desired map.

Now, by Beauville-Laszlo theorem, we may also think of (f*.7, f*1) as a pair (Zg, 1g)
with Eg a ¥-torsor over Spec(B,(S)) and ¢g : Eg — ¢ a trivialization over Spec(Byr(S)).
Since S is the characteristic p untilt, we have Bj,(S) = W (S) and Byg(S) = W(S)[%} In
this case, (Zg,1g) is simply the pullback of (7, ) along W(R) — W(S). In particular, if
¢ is reductive and the type of (7, ) is pointwise bounded by p € X (%), then the type
of (Eg,1s) is also pointwise bounded by p. This last observation gives us a commutative
diagram which we will use later in the proof:

4,< ¢
(GrW,kl;)O — (Grfv,kE)O

l l (2.7)

< e
GI‘J ~H _— Grf)o
E

For the moment, let us move on and prove explicitly that for any (R, RT) we have bijection
of sets:
%
(er,k)o(Ra R+) — Gr%{/(k)o Xw(k)o SPGC(/{)O(R, R+).

By lemma 1.3.35, this would give that Gr{fv(k)o — W (k)? is formally adic and would prove
(Grﬁ,(k)o)red = Grgf\,’k. To prove injectivity, suppose we are given two maps g; : Spa(R, R*) —
((?rr;"f\}7,€)<> in characteristic p whose composition agree. It is enough to prove that g, = ¢»
after taking a v-cover of Spa(R, R"). Locally for the v-topology we can assume that both
maps factor through morphisms g} : Spec(R") — Grrgfch given by pairs (.7, ;). Since the
compositions agree, these pairs become isomorphic over y[gf;o). Since both .7 are defined
over Spec(W(R™)) and the pullback functor j* : Vecgpecw (r+)) — Veey,, of theorem 2.1.15
is fully faithful (even when it is not an equivalence), we can conclude that ¢; = g5.

To prove surjectivity take a map f : Spa(R,RT) — Grﬁ/(k)o X W (k) Spec(k)°. Since
surjectivity can be checked v-locally we can assume that Spa(R, R") is a product of points.
By the proof of proposition 2.2.4 we get a ¥-torsor 7 over Spec(W (R")) and a trivialization
over Spec(W(R*)[%}) which gives a map Spec(R*) — Grf),, and consequently the required
lift to our original map Spa(R, R*) — (Gt ,)°.

The second claim will follow from proving that the commutative diagram 2.7 is Cartesian.

Indeed, that would prove that the closed immersion Gr 00 SHo_ Gr is formally adic, and
E

that (Grg SHyred — Grsf\fk“ All of the morphisms in diagram 2.7 are closed immersions, so

it is enough to check that the diagram is Cartesian on (C, O¢)-points. Suppose we have a
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map m : Spa(C, O¢) — Grg 4N (Gr’fwkE)o, this factors through a map m’ : Spec(O¢)?

(erkE)O' The map is glven by a lattice (Jo.,v0.) over W(O¢) whose basechange to
W(C) is bounded by p. Indeed, using the Beauville-Laszlo theorem, this is the translation
of what it means for the composition Spa(C,Oc¢) C Spec®(Oc) — (Grjy,, )¢ to factor

through Gr “. By proposition 1.3.17 m’ is coming from a map Spec(O¢) — Ger for

which the comp081t10n Spec(C) — GrW r, factors through GrW i+ Since Spec(C) is Zariski
dense in Spec(O¢), m’ factors through Grg’—“ and m factors through (Grffk‘; )0, O

Remark 2.2.6. We want to remark that although the v-sheaf Grﬁf” is formally p-adic,
E
the similarly defined moduli Gr 0f Biip-lattices of type exactly p is not formally p-adic

if 1 is not minuscule. Indeed, in that case there are points p : Spa(C,O¢) — (Gr(fv,k:E)o
. . . e (f
with formalization m : Spd(O¢, Og) — (Gr, xp)¢ such that p factors through Gro’fg but

m doesn’t. This implies that Gr N (Ger )¢ is not v-formalizing and consequently not

represented by a scheme- theoretzc v-sheaf. Similarly, this proves that if p is not minuscule
Grzé‘ N (Gr{f\,’]ﬂg)<> properly contains (Grf\}f‘kE)o as open subsheaves of (Grff\}i‘;)o.

Corollary 2.2.7. If 9 is reductive over W (k) and p € X} (T), then the v-sheaf Grzfu is a
p-adic kimberlite.

Proof. We know Gr = is separated by theorem 2.2.3. Since Grg SH is formally p-adic,
by proposition 1.3. 31 it is also formally separated. The map Grg < — Grzo is a for-
E
mally closed immersion and Groo is specializing so by proposition 1.4.30 Grg SH
E

specializing. The morphism Gr% S O<> is formally adic which implies that the ad-

is also

junction morphism ((Grq Shyred)o —) Gr = is a closed embedding. By proposition 2.2.5
(Grz’f” yred = Grf\; s Wthh is represented by a scheme (See [5] Theorem 8.3). We also
E )

have (Gr’Z’f“ ) = Grz};“ X9 E°, which is represented by a spatial diamond by theorem
E E
2.2.3. O]

The purpose of the rest of this section is to upgrade corollary 2.2.7 and prove that Grg SH

is a rich p-adic kimberlite and that its p-adic tubular neighborhoods are connected.

Remark 2.2.8. One could try to generalize corollary 2.2.7 to the parahoric case. This is
more subtle to deal with because it is not possible to define boundedness conditions through
a cocharacter. What one can do is to define the boundedness condition on the generic fiber
and take the closure in the sense of v-sheaves to obtain a closed subsheaf. To prove that
this closed subsheaf is a kimberlite the only real difficulty one can run into is that it is not a
priori clear whether the special fiber of this subsheaf is represented by a scheme or not. It is
the author’s understanding that these subtleties will be tackled in [20], and that their methods
can prove that the special fiber will be represented by the “expected” perfect scheme. With this
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result at hand one can prove that the bounded parahoric Beilinson-Drinfeld Grassmanians
are also rich p-adic kimberlites.

2.2.2 Twisted loop sheaves

We begin by discussing two constructions that are related to twisted loop sheaves and that
we will use below. Given an affine scheme X = Spec(A) of finite type over W (k) with
structure morphism 7 : X — Spec(W (k)), we can associate to it two v-sheaves over W (k)?
which we will denote by X (O%) and X (O**). Here X(O%) : Perf, — Sets is defined to be
the presheaf that assigns to Spa(R, R") the set of triples (R*, ¢, f) where (R*, () is an untilt
and f € Homw(A, R*) is a W(k)-algebra homomorphism. On the other hand, X (O*)
assigns triples (R¥, ¢, f) with f € Homy (A, R*T). Notice that we have an open inclusion
of v-sheaves X (O**) C X(O%). Both of these functors glue to give a construction that is
now defined for every scheme X locally of finite type over Spec(WW (k)). Visibly, these two

constructions are very related to the functor ¢ : PreAdy ;) — Perf, we make this explicit
below.

We still assume X = Spec(A), and we let X, denote the p-adic completion of X. Now,
X, is a p-adic Noetherian formal scheme that we may regard as an affinoid adic space
Spa(A,, A,). Since for any untilt of R the ring R** is p-adically complete, we have an iden-
tification X = X(O"F). Also, if Y’ — X is an open cover of the form Y =[], Spec(A[])
with f; € A, then Y, — X, is also an open cover of adic spaces. Indeed, Spec(A[%])p
corresponds to the open subset of X, where 1 < |f;|.

The construction of X (OF) is a little more elaborate. Given an adic space S (thought
of as a triple (|S],Og, {vs : s € |S|}) in Huber’s category ¥ see [24]), we let S¥ denote the
topologically ringed space (|S|, Og) that is obtained from S by forgetting the last entry of
data. Suppose we are given a morphism of schemes f : X — Y that is locally of finite type
and a morphism g : S¥ — Y of locally ringed spaces where S is an adic space for which
every point s € S has an affinoid open neighborhood with Noetherian ring of definition. In
[24] (proposition 3.8) Huber constructs an adic space ”S xy X” together with a map of adic
spaces p; : 7S Xy X7 — S and a map of locally ringed spaces py : (S xy X”)# — X with
the following universal property. If T is an adic space, m; : T'— S is a map of adic spaces
and 7 : TH — X is a map of locally ringed spaces such that f o = gonf then there is
a unique map 7 : T — 7S xy X” such that p; om = 7 and py o 7/ = 9.

With this adic space at hand we can let Y = Spec(W (k)), S = Spa(W (k), W(k)) and X
the finite type scheme over Y that we started with and define X as (”S xy X”). With
this definition we have X (O%) = (X)%. Moreover, if X = Spec(A) and X; = Spec(A[%])
for f € A we can see from the universal property that X}‘d is the open locus of X where

f#0.

The advantage of these two-step constructions is that it makes it clear, by proposition
1.1.30, that X (0O%) and X (O**) are small v-sheaves and it also clarifies the glueing process
for X (0% and X (O"") when X is an arbitrary finite type scheme. These two constructions
already appear in [51] §27.
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We will later on use the following facts about these constructions:

Proposition 2.2.9. If X — Spec(W (k)) is a proper map of schemes, then the natural map
X (O8F) — X (OF) is an isomorphism.

Proof. By [24] remark 4.6.(iv).d we have an isomorphism of adic spaces X,, — X where X,
and X are as above. Since X(0%) = (X*¥)% and X (O**) = X7 the conclusion holds. [

Proposition 2.2.10. Suppose that X and Y are qcqs finite type schemes over Spec(W (k))
and that X — Y is universally subtrusive as in definition 1.5.4, then X (O%) — Y (O*) and
X (O¥) — Y(O*) are surjective maps of v-sheaves.

Proof. Replacing Y by an open cover we may assume that Y = Spec(A) for a ring A of finite
type over W (k). By [17] theorem 3.12 we may assume that X — Y factorsas X - Y’ =Y
with Y’ — Y proper and surjective and X — Y’ a quasi-compact open covering. Since
open covers of adic spaces induce surjective maps of v-sheaves we only need to deal with
the proper case. Moreover, by Chow’s lemma ([56] Tag 0200) we may assume Y’ — Y is
projective. We claim that both maps of v-sheaves Y'(O%) — Y (O%) and Y'(O*t) — Y(O1)
are quasi-compact. Indeed, they are both the composition of a closed immersion and the
first projection map of (HDTVZV(k:))O X wo Y (OF) and (]P”I}V(k,))<> X wo Y (O*T) respectively. By
([51] 12.11) we may check surjectivity at a topological level. Take an algebraically closed
non-Archimedean field C' with open and bounded valuation subring C* C C, and consider
ring maps r* : A — C and s* : A — O representing (C, C*)-valued points in r € Y (O%)
and s € Y (O"*) respectively. Since Y’ — Y is proper and surjective the map of schemes
Spec(C) xy Y’ — Spec(C) admits a section which induces a lift of r to Y’(OF). Analogously,
the map of schemes Spec(C") xy Y’ — Spec(C") admits a section (by the valuative criterion
of properness). This defines an element of Y’'(O"*) lifting s.

O

Perhaps unsurprisingly, for a scheme X over Spec(W (k)) the reduction functor applied
to X (OF) and X (O"T) give the same scheme-theoretic v-sheaf.

Proposition 2.2.11. Given X a scheme locally of finite type over Spec(W(k)) we have

identifications in Sal\Pgrf :
X (O 2 X Xy Spec(k) = X (OFF)rd

Proof. Both identifications follow from proposition 1.3.20. By the construction of X, as
a p-adic completion in the case of X (O%*), and by the universal property of X in the
category of adic spaces in the case of X (O%).

0

We move on to discuss twisted loop sheaves. For the rest of this section we let C' be an
algebraically closed non-Archimedean field over k with ring of integers O¢ and residue field
kc. We fix a characteristic 0 untilt C* and we pick & € W(O¢) a generator for the kernel
of W(O¢) — O¢s. The choice of untilt determines a unique map Of — Z{ that we also fix
throughout this section.
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Definition 2.2.12. 1. We let W (O) : Perfog — Sets denote the presheaf that assigns
to Spa(R, R*) — O the ring W (R").

2. We let Bj,(0OF) : Perf o — Sets denote the presheaf that assigns to Spa(R, R*) — 0%
the ring B (R*) where R is the untilt associated with our fized choice of & € W(Oc).

3. We let W(O) : Perfoo — Sets denote the presheaf that assigns to Spa(R, RT) — 0%
the ring W(R*)[%]

4. We let Byr(O%) : Perfog — Sets denote the presheaf that assigns to Spa(R, R*) — O,
the ring Bar(RF) := Bp(R¥)[g].

Proposition 2.2.13. The presheaves W (0O), Bin(O%), W(O), and Bar(O*) are small v-
sheaves.

Proof. Tgnoring the ring structure, we see that the Teichmiiller expansion of W(R™) gives a
bijection to (RT)N which is a small v-sheaf. We can prove inductively that Bj,(OF)/¢" is a
small v-sheaf. Indeed, it sits in the exact sequence of presheaves:

0 — Bi(OF)/e" & B (0% /¢" — OF = 0

By induction the leftmost term is a small v-sheaf and we already know that the rightmost
term is a small v-sheaf. A diagram chase gives that the middle one is also a small v-sheaf.
Since Bj,(0%) = lim B, (0%)/€" this other one is also a small v-sheaf.

Now W(0) = lig(W+(0) 5 WH(0) 5 ..) and Bup(OF) = lim(BJ(0F) 5 Bl(OF) 5
...). Since these are filtered colimit of sheaves they define small v-sheaves as well. ]

Notice that W*(O) and Bj,(O?) come equipped with reduction maps
red : WH(0) = WHO) /€ = OFF

and
red : Bj,(O%) — Bj,(0%) /¢ = OF.

Definition 2.2.14. Let H be a finite type affine scheme over Spec(W (k)[t,t™1]), and let
(H,p) be a finite type affine scheme over Spec(W (k)[t]) together with an isomorphism p :
H Xy G, — H. To this setup we associate the following presheaves over Og:

1. WHH assigns to Spa(R, R*) — Of the set of sections Spec(W(R*)) — H XAl
Spec(W(RT)).

2. WH assigns to Spa(R, RT) — O the set of sections Spec(W(R*)[%]) — H Xg
Spec(W (R*)[¢]).

m,W (k)
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3. L*H assigns to Spa(R, RY) — O% the set of sections Spec(Bj,(R')) — H X iy
Spec(Bp(F)).

4. LH assigns to Spa(R, R*t) — O the set of sections Spec(Bar(R*)) — H xg
Spec(Bar(R*)).

m,W (k)

where the base change in all cases is given by the usual map on W (k) deduced from the
composition k — Oc — RT and given by t — &.

Proposition 2.2.15. With the notation as above WYH, WH, L™H and LH are small
v-sheaves.

Proof. Let R € {WH(0),W(0), B,(0O*), Bir(O*)} denote one of the sheaves of rings of
definition 2.2.12. Suppose that H = Spec(W (k)[t|[z1, ... xn]/(f1(t,T), ..., fm(t,T)). Notice

there is a map of v-sheaves Og %R corresponding to the constant 0 section. Consider the
following basechange diagram:

X —— O¢
|, L
R —L R™

Where F(T) = (fi(&,7), ..., fm(&,7)). Whenever R is WT(O), W(0O), Bi(O), or Byr(O*)
then X is isomorphic as presheaves to WtH, WH, LTH, or LH respectively. From this
diagram, it is clear that X is a small v-sheaf. O]

In our setup, p will induce maps of v-sheaves L*H £ LH and WH £ WH. We get

the following diagrams of inclusions:
H
wH+ Bar(O%) WHH LH

B, (0% L*H

Moreover, if we let H denote the basechange H x Al Spec(W (k)) at t = 0 we get reduction
morphisms WTH — ﬂ(@ﬁ*)og and LTH — ﬂ((’)ﬁ)og

Proposition 2.2.16. If H is smooth over Spec(W (k)[t]) then the reduction maps W*H —
”H((’)ﬁ*)og and L*H — ’H((’)ﬁ)og are surjective maps of v-sheaves.
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Proof. We claim that the map is surjective even at the level of presheaves. The (R,R")-
valued points of H(O%) and H(O%T) can be seen as maps

Spec(Rﬁ) — Hp,n(rt)

and
Spec(R*") — Hy(r+)

whose composition with the projections to Spec(Bgr(R*)) and Spec(W (R*)) are the usual
closed embeddings. By smoothness of H, for any n € N the maps can be lifted to maps
Spec(Bar(R*)/E™) = Hp,pre) and Spec(W (RY) /&™) — My (r+) respectively. Since H is an
affine scheme and since both Byr(RF) and W (R*) are (£)-adically complete we may pass to
the inverse limit by choosing compatible lifts. O]
Definition 2.2.17. 1. With the setup as above, consider the ring ko with the discrete

—~——

topology, we let Wt H € SchPerfy. be the scheme-theoretic v-sheaf that assigns to
Spec(R) € PCAlgy? sections

Spec(W () = H x4, Spec(W ()

where the basechange is given by t — p.

2. We let Wi,(0) : PCAlg? — Sets denote sheaf that sends Spec(R) to W (R). This
sheaf can also be expressed as W;gdA;,(k)[t].

Remark 2.2.18. The scheme-theoretic v-sheaves W H of definition 2.2.17 are the v-
sheaves that Zhu calls p-adic jet spaces in [59] 1.1.1. These sheaves are represented by
perfect affine schemes.

Proposition 2.2.19. With the notation as above the v-sheaf WH is a p-adic kimberlite
and (WHH)™ = (W H).

Proof. Observe that W (0O) is represented by Spd(Oc(T})nen, Oc{Ty)nen), by proposition
1.4.23 and proposition 1.3.25 W*(Q) is a p-adic kimberlite. Moreover, by proposition 1.3.20
W*(O)™d is represented by Spec(kc|Ty]nen) which is Wi (O). Lets move on to the general
case, recall from the proof of proposition 2.2.15 that if H = Spec(A) is presented as A =
W (k)[t)[z]/I with I = (f1(t,@),..., fm(t,Z)). Then WTH fits in the commutative diagram
with Cartesian square:

WHH —— 0,
l lo X
WOy - wHo)y" —— 0Y

We claim that all of these maps are formally adic, and in particular W*H is formally
p-adic. This follows from the fact that formal adicness is stable under basechange, that it has
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the 2-out-of-3 property and that, as we proved above, W*(O) — Og is formally adic. Since

W+(0) is separated over O the section OZ 2 W+ (O)™ is a formally adic closed immersion.
We can conclude that W*H is a p-adic kimberlite by using lemma 1.4.30. Finally, since we
can basechange by Spec(kc)? — Spd(O¢, O¢) to compute reductions we get the following
Cartesian diagram:

WHH™d ——— Spec(kc)
| |
Wi (O —= Wi, (o)m
which gives the isomorphism WTH™d = W H.
2.2.3 Demazure kimberlites

In this subsection we use twisted loop sheaves to construct a family of kimberlites that
will allow us to understand how the specialization map for the p-adic Beilinson-Drinfeld
Grassmanians behave. We change the setup a little bit and fix some notation first:

1. Let H be a split reductive group over W (k), let T'C B C H a choice of maximal split
torus and a Borel respectively.

2. Let (X*,®, X,,®Y) be the root datum associated to (H,T).

We let (-,-) : X* x X, — Z denote perfect pairing between roots and coroots.
Let ®T be the set of positive roots associated to B.

Let N be the normalizer of T in H.

Let W = N/T be the Weyl group of H.

We let A = A(H,T) denote X.(T') ®zR.

o N s W

Welet U = {a+n|a€ P n e Z} denote the set of affine functionals on A coming
from the natural perfect pairing (-,-) : X*(T") x X,.(T") — Z. We call them affine roots.

9. Given a point ¢ € A we let &, = {o € @ | a(q) € Z} this is clearly a closed sub-root
system. We let M, be the generalized Levi subgroup of H containing 7" with root
datum given by (X*, &4, X,, ®)).

10. ¥ defines a hyperplane structure on A, and for any point ¢ € A we can associate a
polysimplicial closed region of A that we will denote by F,. In case H is semisimple
this region is bounded and forms a polytope. We let o denote the vertex associated
to the origin in A and C the unique alcove containing o and contained in the Bruhat
chamber associated to B.
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11. We denote by S the set of reflections along the walls of C, we let W// the affine Weyl
group generated by S. Given any facet F C C we let Sz be the subset of elements of
S fixing F and we let Wx be the subgroup of W%// generated by Sx.

12. We let W denote the Iwahori-Weyl group of H. Recall that Weff C W and that if we
let Qy = 7 (H%*") we have a decomposition W = W/ x Q.

Fix a point ¢ € A. In ([12] §3) Pappas and Zhu use Bruhat-Tits theory and dilatation
techniques to construct smooth affine algebraic groups H, over Spec(W (k)[t]) together with
an isomorphism p from Hy Xy k) Spec(W (k)[¢, t71]) to H Xy ) Spec(W (k)[t, t~1]) with the
following list of properties:

a) For any discrete valuation ring V' and a map W(k)[t] — V given by t — 7 with

m € V a uniformizer, the basechange H, x PE Spec(V) is the parahoric group
scheme associated to ¢ € A(H, V[%]) by Bruhat-Tits theory under the identification
A(H,V[L]) = X*(Typy) @ R=X*(T) ® R,

1
T

b) For any root o € ® there are smooth connected closed subgroups U C H,, (respectively
T C H,) extending the usual root subgroup U, C H (respectively extending the torus
T C H). Over W(k)[t], the groups UJ are isomorphic to G, and 7 is isomorphic to
G?. for some n.

c) There is an open cell decomposition:
Vo= JJuixTx I] ul—H,
aced— acdt

This map forms an open embedding onto a fiberwise Zariski-dense neighborhood of the
identity section.

d) The group multiplication map V, x V, & H, is smooth and surjective.

e) The basechange H, := H, Xy Spec(W (k)) along t = 0 supports a split reductive

quotient ﬁfed over W (k) with root datum canonically identified with (X*, ®,, X,, ®).

In particular we can identify M, with qued.

f) If o € ®, the composition U;, — ﬁfed at t = 0 defines an isomorphism onto the
root group of ﬂfed corresponding to a. On the other hand, if @ € ®\ @, then the

composition U‘; — ﬂfed factors through the identity section.

g) We have a commutative diagram of open cell decompostion:
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[Locora, Us — [loco- Ua X T % []pcpr Ua —— [Loco; U x T X [Locos Ua

! | I

Ker(m) > H, > H

where 7 is the projection map and the left vertical arrow is an isomorphism.

If we are given two points ¢;, g2 € A such that F,, C F,, we also get a map of algebraic
groups f : Hy — Hy . This map has the following properties:

a) p1o f = pyover W(k)[t,t71].

b) The composition ﬁ@ — ﬁ:;ed surjects onto the parabolic subgroup of ﬁfled associ-
ated to the closed sub-root system given by ®qi.¢q2 := {a € &, | |a(q2)] = a(q1)}-
Moreover, the kernel of this map is fiberwise a vector group.

We are now prepared to define “parahoric” versions of the positive loop groups which we
will use to define Demazure kimberlites.

Definition 2.2.20. 1. We define the loop group LH to be as in definition 2.2.1/ when
we consider H as a scheme over W (k)[t,t™1] by taking the appropriate basechange.

2. Given a point g € A define the parahoric loop group to be L™ H, as in definition 2.2.1.
3. Associated to the same point we also define the formal parahoric loop group to be
W*H,.
P
Notice that we have injective maps of v-sheaves WH, C LT™H, C LH.

Proposition 2.2.21. With the notation as above, for any point ¢ € A we have surjective
morphisms of v-sheaves in groups:

LY, — H, " (0%) = M,(O%)

——Red

WHH, — H, " (OF) = M,(0%)

Proof. This is a direct consequence of proposition 2.2.16 and proposition 2.2.10 since the

map H — H™ is smooth surjective and consequently universally subtrusive.
]

We let L¥H, and W*H, denote respectively the kernels of the morphisms of proposition
2.2.21 above.
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Proposition 2.2.22. If ¢;,q, € A are such that F,, C F,

5, then we get inclusions of v-
sheaves in groups:

L'"H, CL"H, C LT H,, CLT™H, C LH
W'ty CWYH,, CWTH, CWTH, CWH

Moreover, the map from L*Hg, to My, (O%) surjects onto Py, , (OF) C My, (O%). Analo-
gously, W H,, surjects onto Pg, , (O%F) C My, (O*Y).

Proof. We will deal only with the case of parahoric loop groups since the other case is
completely analogous. Recall that we have a morphism of algebraic groups over W (k)[t],
[ Hg — My, such that pyo f = ps. Functoriality of L, gives us maps LYH,, — LTH, —
LH, since LYH,, — LH is an injection, then L*H,, — LT H,, is also injective.

Now, since the map of affine schemes ﬂqz — Py, ,, is faithfully flat of finite presentation
it is universally subtrusive. This implies, by proposition 2.2.16 and proposition 2.2.10, that
the composition of Lt Hg, — Hg,(OF) with H, (OF) — Py, (OF) is surjective.

Finally, we claim that any map g : Spec(Bj(R%)) — Hg, Bt (rr) Whose reduction
Spec(R*) — M, factors through the identity section lifts to a map Spec(Bj,(R*)) —
H,, Bl (%) Indeed, observe that Spec(R*) — H,, factors through the open cell V,,, which
implies that g is of the form

g=(]] ua(9) - t@-CJ] ual9)

a€dy, acdy

with ¢(g) and {ua(g)}aco\s,, reducing to the identity.

We can verify directly from the construction of the map H,, — H,, that each of this
elements lifts uniquely to an element in V,,. Indeed, on the torus 7 and on U, with o ¢ @,
f induces an isomorphism because Fy, C F,,. For a € &, \ ®,, 4, we may, after making some
choices, write UJ' as Spec(W (k)[t,u]) and U2 as Spec(W (k)[t, ¥]). In this case f restricted to
U® is given by the natural inclusion of rings. The map of rings u,(g)* : W (k)[t, u] — Bjn(R)
with ¢ — £ extends to a map W (k)[t, %] — Bj,(R*) whenever ¢ divides the image of u, but
this happens whenever u,(g) reduces to identity. O

Proposition 2.2.23. Let ¢1,q2 € A such that F,, C F,,, then we have isomorphisms of
quotient v-sheaves LYHy, /L Hy = W Hy /W H,,. Moreover, we can identify both of
these quotients with (Fly, 4, 0.)°, where Fly, 4, denotes the flag variety Mg, /Ps, . when
thought of as a p-adic formal scheme.

Proof. We have sequence of equalities:

L+HP1/L+HF2 = (L+HP1/LuHP1)/(L+Hp2/Lqu1)
= Mpl (Oﬁ)/P‘I’m,pz (Oﬂ)
= Fly, o (0F)
= FI°

p1,p2
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The last equality follows from proposition 2.2.9.
Analogously:

W+HP1/W+HP2 = (W+Hp1/Wqu1)/(W+Hp2/WWHM)
= Mpl (Oﬂ7+)/P¢pl,p2 (Oﬁ,+>
= FI}

P1,p2

]

Lemma 2.2.24. 1. Let F be a locally spatial diamond with a map F — Og and fix two
points q1,q2 € A with F,, C F,,. The natural map L™H,, X8, F — Flf;lm X9, F
admits pro-étale locally a section.

2. If Spa(R, R*Y) is affinoid perfectoid and we are given a map Spa(R, R*) — FI9 _ then

q1,92

the pullback LTH,, X P10, Spa(R, RT) — Spa(R, R") admits a section locally on the
analytic topology of Spa(R, RT)

Proof. We may reduce the first claim to the second one by [51] 11.24. Indeed, by proposition
2.2.23 the map in question forms a L*H,,-torsor so it is enough to prove it is pro-étale locally
the trivial torsor. Since the map F lr<1>17q2, — Og is representable in spatial diamonds we can

find a pro-étale cover Spa(R, RT) — FI9 X0Q F with Spa(R, R") affinoid perfectoid.

q1,92
Let us prove the second claim. The obstruction to the triviality of the L*H,,-torsor over

Spa(R, R™) is an element obs in H,(Spa(R, R"), L*H,,). We prove that this obstruction
vanishes after a localization in the analytic topology, recall the following two sequences of
maps:

(LYHy) = My, (0%) = FI

91,92

e— L"Hy — L H, — Py, .. (O&) —e

The map M, (O%) — F 10, isa Po, (O%)-torsor with obstruction to triviality lying
in

Hi(Flgl,qw Pq’tn,qz (ng))
Since the map of schemes M, — Fl,, 4, admits Zariski locally a section we may replace
Spa(R, RT) by an analytic cover for which obs in H!(Spa(R, R*),Pq)ql@(Og()) is trivial.
Observe that 0bs comes from an element of H}(Spa(R, R"), L“H,,), we prove that in this
case it is already trivial. Consider the exact sequence

—Red

e — Ker (L+Hq1 — ﬁql((’)ﬁ)) — LM, — Ker (ﬁql((’)ﬁ) —H, ((’)ﬁ)> — e,

we prove that after applying H'(Spa(R, RT), —) to the two groups in the extremes we obtain
the trivial pointed set.
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For the first group we construct a family {L“"}> ; of groups filtering
L*" = Ker (L™ Hg, — Hy, (O9)).
We define them as:

L"™(R,R") := Ker (HqLBjR(Rﬁ)(Bc_l‘_R(Rﬁ)) - qu,BjR(Ru)(B;R(Rﬁ)/an

Successive quotients L“"/L“" ! get identified with the sheaves assigning to Spa(R, RT) the
groups:

Ker <,H¢I1:B(1+R(Rﬁ)(B;R(Rﬁ)/fn—i_l) = HqLBJR(Rﬁ)(B;R(Rﬁ)/gn))

Since Spec(Bj,(R*)/¢™) — Spec(Bis(R*)/€"1) is a first order nilpotent thickening, defor-
mation theory gives:

L/ L = Hom(e* Ry, @wn Bia(B), (€" - Bip(B)/€"Y) = Hom(e'QY, ® R, RY)

Since H,, has an open cell decomposition we can see explicitly that e*Q}qu W) is a finite

1]
free module over W (k)[t] (a priori it is only projective), and after fixing a basis we get an iden-
tification L*" /L% = (O%)". By ([51] 8.8) the cohomology group H}(Spa(R, R*), O%) = 0.
Let I'™ be the image of H}(Spa(R, R"), L*“") in H! (Spa(R, R"), L*!). The argument above
shows that obs € (1, /*". On the other hand,

Lu,l — 1&1 Lu,l/Lu,n

with transition maps that are surjective at the level of presheaves. One can use Cech coho-
mology to prove that (1, .y I*" = {e}. So far we have proved H} (Spa(R, R"), L*") = {e},
but
= ——Red
H} (Spa(R, R"), Ker(H,, (0F) — H,, " (09))

is also trivial since Ker(H,, — ﬁied) is a vector group over W (k) and we may use [51] 8.8
again. This proves that H;(Spa(R, R"), L“H,,) = {e} and finishes the proof. O

Definition 2.2.25. Let 0, := {r;}1<i<n and o, := {q;i}1<i<n denote a pair of sequences of
points in A such that F,,, F,,,, C F,,, and let o denote the tuple (0,,04). To each o of this
form we associate a v-sheaf that we call the Demazure kimberlite of o. We define them as
the contracted group product:

LT Hg, Lt Mg,

L+, _
D(0) = L*Hy, %o LYHy Xop - Xoo LH,, [L'H,,

In what follows we will prove that for any o as above the D(o) are rich p-adic kimberlites
that are proper and smooth over Og.
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Proposition 2.2.26. The map of v-sheaves D(o) — Og s representable in spatial dia-
monds, proper and {-cohomologically smooth for any ¢ # p.

Proof. Let o be as above and let ¢’ = ({r;}1<i<n—1,{¢i}1<i<n—1) be the subsequence of the
first n — 1 points of . We have a projection morphism of v-sheaves f : D(o) — D(c’) given
by forgetting the last entry corresponding to r,. It is enough to inductively show that this
map satisfies all of the properties in the hypothesis. Since the definition of D(o)(R, R™)
is independent of R to prove the map is proper it is enough to prove it is quasi-compact
and separated over D(o”). By ([51] 23.15, 10.11, 13.4) separatedness, quasi-compactness and
almost all of the requirements that a map needs to satisfy to be ¢-cohomologically smooth
([>1] 23.8) can be checked v-locally. The following diagram is Cartesian with surjective
horizontal arrows:

L¥Hy X g0+ X0 LY Hr, -, X oo (LT My, /LT H,,) —— Do)

! |

L Hr X 0o, %oy L Hr, s » D(d")

By proposition 2.2.23 we have that L™ H,. /LTH, = F lffm on.0c Which is proper, representable

in spatial diamonds and ¢-cohomologically smooth over Og for any ¢ # p. This proves the
map in the left column of the diagram is representable in spatial diamonds, ¢-cohomologically
smooth and proper. It also proves that the map in the right column of the diagram satisfy
the properties that can be checked v-locally.

We now verify the finer properties that cannot be checked v-locally. Namely, we need to
check that f : D(o) — D(0’) is representable in spatial diamonds and that f has bounded
topological transcendence degree. By ([71] 13.4) the first property can be checked pro-étale
locally. Given a map from a spatial diamond F — D(o’) we let X = F X p(,yD(0). Applying
lemma 2.2.24 repeatedly to the quotients L*H,, /LT H,, we get that pro-étale locally on F,
X is of the form F Xop FI9 , which is a spatial diamond. Moreover, if F = Spa(C’, C'")

Tnqn

with C” algebraically closed non-Archimedean field and C'* an open and bounded valuation
subring then X = Flf?mqmc, and dim.trg.(f) = dim(F1,, 4.) < oo (See [01] 21.7).
O

Proposition 2.2.27. Fiz o as above. The projection map m : W*H,, Xo0 xOgWJF”Hm —
D(o) induced from the family of injections W+H,., C LTH,, is a surjective map of v-sheaves.
It induces an identification:

W+’Hq1 W+an_1

L:D(o) X WHH,, X0 - X0y WHH, /W H,,

Consequently, D(o) is v-formalizing.
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Proof. Consider the following basechange diagram:

W+H’“l><og"'><o<> (Lt M, [LYHy,) —— L+HT1><Og~~-><O<> (LT My /LHHg,) — D(0)

I 1 l (2.8)

/
WMy X o % o0 Wy~ L¥Hry X o X oo L Moy g ———> D(c")

Proposition 2.2.23 gives the equality W*#H,, /W*H, = L*H, /L*H, and allow us to
conclude surjectivity by induction. Assume that we have an identification:

/ / + W*’qu W+an_2 + +
D) W H,, Xgo . Xgs WML JWTH,

Since WtH,, C LtH, the map ¢ is defined and surjective, we need to prove that ¢ is
also injective. Let [g1] and [g2] be two maps

W+HQ1 W+/H‘1n71

[91], 9] = Spa(R, RY) = WHH, Xgo oo Xgo WHH,, [WHH,,

and suppose that they get identified after mapping to D(o)(R, R™). By our inductive hy-
pothesis on D(¢’) we may locally for the v-topology find representatives g; and g of [g]
and [ge] whose projection to the first n — 1 coordinates is the same. That is g; are of the
form (gi,...,q¢") in WTH,, X0+ Xog, W H,, with g =g} for j € {1,...,n —1}. Since
[g1] and [go] get identified in D(o) we must have that (v-locally) ¢g; and g, are on the same
LtH,, X0o " X8, L*H,, -orbit. Since g; and g» share all of their entries except possibly

the last we have that g7 and g3 are in the same L*H,, -orbit. Since g7, g% € WTH, and
WHH,, = W*H, N LTH,, they are in the same W*H,, -orbit which proves [g1] = [ga].
Finally, by proposition 2.2.19 each W*%H,., is formalizing, proposition 1.4.11 implies the
same for the product, and since D(o) is the quotient of a v-formalizing sheaf it is also
v-formalizing. O

Lemma 2.2.28. Given two points r1,ry € A with F., C F,, the projection map of perfect
schemes Wt H,, — Wt H,, /Wt H,, = FI*S admits Zariski locally a section.

71,72

Proof. Let obs € H! g, (FIE"S W H,,) be the obstruction to finding a section. Consider

71,727
the reduction morphlsm exact sequence:

e = WHY = WhH, — Fpr! —e

We also have Fire"f = Mre/ /Py 6”: , and the cohomology class in H! g, (Flvers prert

71,72 71,727 q>'r1 o

associated to the Py’ erf ~torsor MP"f — Fire] is the image of obs. Zariski locally on FI2"f

1,72 1,72
the Py "] _torsor is tr1v1al This is known for the classical flag variety Fl,, ., over Spec(k¢)
and the vesult will follow from taking perfection. Indeed, consider a commutative diagram
trivializing the Pgp, , -torsor:
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U ——- Flp1 P
NG

M,

p1

Any such diagram having ¢ as Zariski open cover will produce a similar diagram after we
take perfections and will trivialize the ng:’: ,~torsor.

Fix an affine cover Spec(R) — FIP*"J trivializing red(obs). We claim that Spec(R) has

1,72

a section to W H,, X ppers Spec(R). By construction, we know that
7172

obs € Hi—sch(SPeC(R)a WiiHy,)

is in the image of H} ., (Spec(R), W“H,.,), but this pointed set is trivial. Indeed, we have
that H} 4., (Spec(R),G,) = {e} which is a particular case of theorem 4.1 in [5]. One can
finish the proof by using the argument given in lemma 2.2.24. O

Proposition 2.2.29. The map D(o) — Og is formally adic. Moreover, D(c)*? is repre-
sented by a qcqs scheme that is perfectly finitely presented and proper over Spec(kc) (See [5]
3.11 and 3.1} for definitions).

Proof. Let 0 = ({ri}1<i<n, {¢i}1<i<n) and let o’ = ({rit1cicn—1,{@%}1<i<n—1). In any topos
pullback commutes with finite limits and colimits, so by proposition 2.2.19 we have:

o N o Witata)®  WieaMa, ) - - .
D(o) x g Spec(kc)” = WieaHr)” X0 o X0 WieaHr,)”/ WreaM,)

T (&l &l

Since the functor ()¢ is a left adjoint it commutes with colimits, so we get:

+ +
Wrequl Wrequnfl

O
D<U) XOg Spec(k;c)o = <W:gd7_[m ke - Xke W;;dHPn /Wrtd,an>

Lemma 1.3.35 proves that D(c) — O is formally adic and that D(o)*! = D(0) X0y
Spec(kc)®. In particular W H,., /Wi Hy = Fly g,

We prove inductively that D(o)™? is represented by a qcgs scheme perfectly finitely
presented and proper over Spec(k¢). Iterating lemma 2.2.28 we see that the map D(o)™¢ —
D(o")d is Zariski locally a trivial F lf:f’qfc -bundle. Now, quasi-compactness, separatedness,
quasi-separatedness, representability in schemes, being perfectly of finite presentation and
being proper can all be checked Zariski locally on the target and are stable under basechange
and composition (See [56] Tag 02YJ). By induction, D(¢”) enjoys all of these properties over
Spec(k) and Fl,, 4, Xk, Spec(A) enjoys them over Spec(A) for any affine open Spec(A) C
D(o’)*d. This proves that D(c) also enjoys them over Spec(k¢), which finishes the proof. [

Proposition 2.2.30. For any o and any geometric point Spa(C’, Ocr) — OY the base change
D(o) Xog Spa(C’, O¢) is a cJ-diamond.
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Proof. We prove by induction that D(o) has enough facets, let 0 = ({r;}1<i<n, {qi}1<i<n)
and let o' = ({7 }1<i<n—1,{¢%}1<i<n—1). Suppose that D(c’)c has enough facets, let S :=
[1;c; Spd(B;, By) with each B; a topologically of finite type C’-algebra and let f : S —
D(c')¢cr be a surjective map. Let F = D(0)cr Xp(ery., S, we prove that F has a enough
facets. Analytically locally on S the projection map F — S is a trivial (F lrmqmc/n)o—ﬁbration.
The proof of this claim is an iteration of the argument given on lemma 2.2.24 together with
the observation that S is already a disjoint union of affinoid perfectoid spaces. We may
replace S by an analytic cover S’ so that we get the expression:

F'=D(0)cr Xp(or)e, S = H Spd (B, (B))°) X spa(c,00r) (Flyy gnc)®

By proposition 1.4.39 having enough facets is stable under products so F’ has enough facets
and consequently D(o) as well. ]

We can summarize this subsection with the following theorem:

Theorem 2.2.31. For any o as in definition 2.2.25 the Demazure kimberlite D(o) is a rich
p-adic kimberlite. The p-adic tubular neighborhoods are non-empty and connected, and the
structure morphism D(c) — Og s proper and {-cohomologically smooth.

Proof. Separatedness and the properties of the structure morphism were proven on proposi-
tion 2.2.26. That it is v-formalizing is proven in proposition 2.2.27. We have

(D(0)"™)° = D(0) X o Spec(ke)?

this implies that the adjunction morphism (D(c0)™4)® — D(o) is a closed embedding. By
proposition 1.3.31 D(¢) is formally separated and specializing. By proposition 2.2.29 D(o )4
is represented by a scheme. At this point we have proved that D(o) is a p-adic pre-kimberlite.

Since D(o)™d is represented by a proper perfectly finitely presented scheme over ko then
|D(0)™4| is a Noetherian and spectral topological space. The analytic locus D(o)%" coincides
with the generic fiber D(0) X8, Spa(C, O¢) and by proposition 2.2.30 this is a cJ-diamond.
One can easily prove inductively over the map D(c) — D(¢’) that the specialization map is
surjective on closed points. By lemmas 1.4.43 and 1.4.44 it is a quotient map. This finishes
the proof that D(o) is a rich kimberlite.

The connectedness of tubular neighborhoods will follow from lemma 2.2.32 below. Indeed,
we have already verified that all but conditions 4 and 5 of this lemma hold. Condition 5
holds by induction over the maps D(c) — D(0’) and condition 4 follows from the diagram
2.8 since each of the W*H,., is formalizing and basechanges along maps that factor through
W*H,, X0 X0y W*H,, , will give a trivial bundle. O

Lemma 2.2.32. Let f : F — G be a map of kimberlites over O%, let X — Spec(O¢t) be a
smooth projective scheme. Suppose the following properties hold:

1. f is £-cohomologically smooth for some { # p.
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NS

. [ is proper.

Co

. f i1 F = Gis a X(O)-bundle locally trivial for the v-topology.

4. For any non-Archimedean field C' in characteristic 0 and any map t : Spa(C’,Ocr) — G
there is a v-cover r : Spa(C”,Ocn) — Spa(C’,O¢r) such that G formalizes t o r and
the base change F xg O%, is isomorphic to X (OF) X0y 0%,

5. For any closed point x € |G™| the p-adic tubular neighborhood ((j/gc)77 is connected.
6. G and F™4 are perfectly finitely presented (See [5] 5.10) over Spec(k¢).

Then, for any closed point y € |F*4| the p-adic tubular neighborhood (ﬁ/y)n is also connected.

Proof. We observe that f is open and closed since it is /~cohomologically smooth and proper
(See [71] 23.11). Take a closed point y € |F*4| with z = f(y) and consider the map
f: (.7/-:/3’,)77 — (é/z)rr Assume for the moment that given C’ an arbitrary algebraically
closed non-Archimedean field and a map of the form Spa(C’, O¢/) — (é /=)y the base change
(j-: Jy)n X @) Spa(C’, O¢r) is always non-empty and connected, we finish the proof under this

assumption. Observe that the map of topological spaces |(F y)nl — (G /)y is specializing,
and by assumption surjective on rank 1 points. Take two non-empty open and closed subsets
U and V with UUV = |(Fy),|. Then f(U)Uf(V) = |(G/z)y| and consequently f(U)Nf(V) #
(). Since f is an open map f(U) and f(V') must meet in a rank 1 point, this implies that U
and V' also meet which finishes the proof under our assumption. R

Let us prove our assumption holds. Take a map ¢ : Spa(C’, O¢r) = (G/), and after re-
placing Spa(C’, O¢r) by a v-cover we can assume G formalizes the composition Spa(C’, O¢r) —
G and has the base change property of condition 4 with respect to the unique formalization
Og, — G. We get a Cartesian diagram:

]Af/y xg 0% —— X(O%+) X0, 04, — 05,

| | l

ﬁ/y > F >g

After taking reduction functor of this diagram we get the following Cartesian diagram:

Z —— X x Spec(k’) —— Spec(k')

| | |

Spec(k(y) ——r Fo ey G

Since Frd — G*d is perfectly finitely presented and k is algebraically closed we have that k =
k(y) = k(x) and the composition y : Spec(k) — G™4 is the closed immersion corresponding
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to the point . Consequently Z — Spec(k’) is a closed immersion, therefore an isomorphism.
We have that

J%/y Xg Og, = X(Oﬁ’+)oc, XF J%/y = (X<Oﬁ’+>oc/)/z

by proposition 1.4.26. But Z — X x Spec(k’) is a closed point, so (X(@?)Oc//z% is
isomorphic to an open unit ball Bt over C”, where n = dim(X) and C” is the untilt
determined by Og:. We have proved that the fibers are non-empty and connected. O]

2.2.4 Resolution of p-adic Beilinson-Drinfeld Grassmanians

In this subsection we discuss an analogue of the Demazure resolution for split reductive
groups in the context of v-sheaves (also known as Bott-Samelson resolution). We keep the
notation from the beginning of the previous subsection and we restrict our attention to
parahoric loop groups associated to points contained in our chosen alcove C. Given s; € S
we denote by L™H,, the parahoric loop group associated to the wall Fy, in C corresponding
to the reflection s;. For a point r € C we let J, C S denote the set {s; | r € Fy;}. We will
denote by L™ B the parahoric loop group associated C.

By functoriality of L(—) we can define a loop group version of the Weyl group by the
formula LW := LN/LT. We can also define the Iwahori-Weyl group as LW := LN/L*T.
There is an exact sequence of v-sheaves in groups:

e— LT/LYT - LW — LW — ¢

One can prove by a direct computation that LW = L(N/T) = W x O% and that
LT/L*T = X.(T) x O, by using the Cartan decomposition. These two imply that LW =
W x O.

Since H is a split reductive group over W (k)[t,t7!], for any element w € W we can find
a section n,, : Spec(W (k)[t,t™']) — N whose projection to W is w (See [10] 5.1.11). This
allow us to define a similar section n,, : O% — LN C LH. Also for any p € X, (T) and
any Spa(R, R*) — O we can consider the element ¢* € T(Byr(R*)). This is functorial and
defines a section Og — LT mapping to p € X.(T) x Og. In particular, for any element

W € W there is a section ng : Og — LN projecting to w in LW. We can use ng to construct
an automorphism ng : Grgo — Grgo with
C C

ng(r - LTH) :=ng-z-L"H.

We will use this discussion in the proof of theorem 2.2.34.

Proposition 2.2.33. Let 0 = (0,,0,) with o as in the previous subsection except that we
require o,,0, C C. Suppose that L™H, = L*H,, = LTH then the multiplication map
w:D(o) — GrgC = LH/L*H has geometrically connected fibers.

Proof. This proof follows the classical one. The key inputs are as follows, the basechange of
D(o) — Og by geometric points are proper spatial diamonds, rank 1 points are dense for any
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spatial diamond and the group of rank 1 geometric points of a parahoric loop group coincide
with the “parabolic subgroups” of a Tits-systems (or BN-pair). These two observations
together with ([51] 12.11) reduces the proof to the classical combinatorial case. Indeed,
properness (which includes quasi-compactness) will allow us to prove all surjectivity claims
at the level of rank 1 geometric points. We provide further details below for the convenience
of the reader.

Fix a geometric point Spa(C’, O¢r) — Og, all of the objects considered in our argument
below are considered over Spa(C’, O¢r) but we omit the basechange from the notation. Let
us start by making some reductions, observe that since we are assuming that o, C C we have
LB C L™H,, so we get a surjective map:

B

L LB
D(t):=LtH,, x ... x LYH, /LTB — D(o)

Surjectivity allows us to replace D(o) for D(7) so we may assume LTH, = LB for all
i < n. Now the flag varieties L™ H,, /LT B admit a surjective map from a finite contracted
product of the form:

L*B  L*B
L+H5j17 X ...x L"H,, [L"B— L"H, |/L™B
Where s;, € J,, and the product sj, - ----s;  is a reduced expression for the longest word

in the finite Coxeter group generated by J,,. This lets us reduce to the case in which for all
i <n, LYH,, = L*H,, for some j. Moreover, in this case the map D(r) — Gr¢, factors
through LH/L*B — Grf, which is a L™ H/L* B-bundle.

We prove inductively that D(7) — LH/L* B has connected geometric fibers. Write S(7)
for the image of D(7) in LH /L™ B. The multiplication map factors as:

LtB +

D(r) = L*H, X D() = L*H, x S(')— S(r)

Sj17 Sjl’

If we assume inductively that the map D(7') — S(7’) has connected geometric fibers, then

+
it suffices to prove that L¥H,, | n S(7') — S(7) also has connected geometric fibers.
Notice that by construction S(7') C LH/L* B is a closed subsheaf that is stable under
the action of L*TB. As in the classical case the Lt B-orbits of geometric points in LH/L™B
are indexed W. Given an element w € W we can consider C'(w) the locally-closed subsheaf
of LH/L*B associated to this L™ B-orbit and we can let S(w) = |-, C(w’') where "<’

denotes the Bruhat order of the quasi-Coxeter system S C weaelf C W. We also assume in
our inductive hypothesis that S(7) = S(w) for w € W/ of the form w = Sju, - - - Sj, Where
s;, 1s a subsequence of elements in S of the sequence appearing in the definition of D(7’).

For the induction step we have two cases, either s; -w < w or s;, -w > w. In the
first case we will have that the action of L*H,, on LH/L*B stabilizes S(w) so that the
multiplication map

k

+

LY, X S(w) — S(w)

541
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N
decomposes as the composition of an isomorphism L*H,, s (w) — L*H,, /LTB x
S(w) followed by the second projection. In this case geometric fibers are isomorphic to
LM, /LY Bon = (PL,,)¢, and we have that S(7) = S(7) = S(w) which is of the form
assumed in our inductive hypothesis.

On the other hand, if s;, - w > w we can consider the collection T of w" < w for which
s-w' < w' we have that the multiplication map

L*H,, nr Sw)\ | Sw') = S(s;,-w)\ | S(w

w'eT w'eT

is an isomorphism while the map

v, 5 sw) = | s

w'eT w'eT

has geometric fibers as in the previous case since this set is also LTH, ;,-stable. Moreover,
we have S(7) = S(s;, - w) which is again of the form assumed in our induction hypothesis,
this finishes inductive step and the proof. n

Theorem 2.2.34. Let 4 be a quasi-split reductive group over W(k), T C B C ¥4 a Borel
and a mazimal torus in ¥ defined over W (k) and take a cocharacter p € X, (%) defined over

an algebraic closure of W(k‘)[%] Let F' be a non-Archimedean field extension of W(k)[%]

containing E(u) the reflex field of u. We let Op the ring of integers of F' and the residue
field kF, assume that F is complete for the p-adic topology and that kp s perfect. Then
Grg =t is an rich p-adic kimberlite over O%. Moreover, the p-adic tubular neighborhoods of

Grzg“ at closed points are non-empty and connected.
F

Proof. In corollary 2.2.7 we show that Gr"’ #is a p-adic kimberlite so the only thing left
to prove are the statements related to the structure of p-adic tubular neighborhoods. We
first prove the case in which F'is a complete algebraically closed extension of W(k)[p] which
we will denote instead by C. In this case &4 xy ) W (k) is isomorphic to a split reductive

7_M

group, and since the functor Gr only depends on the isomorphism class of %y (), we

may assume ¢4 = H with H Spht reductive. Furthermore, we discuss first the case in which
H is semisimple and simply connected, in this case W = Wa/7.

Recall that we have inclusions X7 (%) C X,(T) C W so we may think of p as an
element of the Iwahori-Weyl group. By definition, GrH’—“ (R, R™) consists of those elements

in Gr (R R™) satisfying that for any geometric pomt q : Spa(C’,C"") — Spa(R, RT) the
type of q, [4g, 1s in the double coset

H(Br(C*)\H(Bar(C"))/H(Bip(C%)) = XJ(T) = W\W* /W,

satisfies that p1, < p in the Bruhat order. Now given any element w & W we may consider
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the subsheaf Grg’fw C Grgo given instead by the property that on a geometric point ¢ :
C C
Spa(C’,C"*) — Spa(R, RT) the type of g, [w,], in the double coset

B(Bj5(C*)\H (Bar(C*))/ H(BIR(C%)) = W /W,

satisfies that [w,] < [w] in the Bruhat order. The projection map 7 : W/ /W, —
W,\W 7T /W, is order preserving and 7~ '(u) has a unique element [w),] of largest length,
it has the property that v < w, if and only if 7(v) < p. In particular, we have equalities

of sheaves Gr GrH SH_ We prove that for any word w € W%/ the v-sheaf GrH S
C

satisfies the conclusmns of “the theorem. If we find a reduced expression for w = s;, ...s;,
we can use the theory of BN-pairs to construct a Demazure kimberlite

Lt®

D(w):=LTH X 09, ...L*H,, /L™H

841

U)

for which the multiplication map m : D(w) — Groo factors through Gr and surjects

onto it at the level of rank 1 geometric points. But m is a proper map so that by ([51] 12.11)

it is actually a surjection of v-sheaves. Moreover, this also proves that GrH< is a closed
C

subsheaf of Grgo. Theorem 2.2.31 and proposition 2.2.33 combined with lemma 1.4.45 allow
us to conclude i?l this case.

Suppose now that H is an arbitrary split reductive group. In this case, u € W can be
expressed as 1 = (w,w) with w € W/ and w € Qy for the decomposition W = W/ x Q.
We may find a section n, : O — LN projecting to (e,w) in LW, this section induces an

isomorphism between Gr; Hsk and GrH<><(w ) But for any w € W%/ the v-sheaf GrH S(we)

admits a surjective map b}f a Demazure kimberlite as in the previous case.

Finally, let us deal with the general case in which F' is not assumed to be algebraically
closed. Let C' be the completion of an algebraic closure of F' and F’ the completion of the
maximal unramified subextension of F' inside C'. We have surjective maps of v-sheaves:

(@ (ﬂ< <
Grlst — Gr O“—>Gr¢ =
C O F

Lemma 1.4.45 implies that Grq =M and Gré = are rich kimberlites. Moreover, we can infer by
F/

proposition 1.4.26 that Grég“ has connected p-adic tubular neighborhoods since we have an

a2

identification (Grg’og“ yred = (Gr{é’f“ )*d. On the other hand, the map GrGFI“ — Gr{é’?f“ is a

@ <Mre

m 7 (Spec(Op))-torsor and for any closed point = € Gr,) | the action of 7/ (Spec(OF))

will permute transitively the closed points y € ]Grb’g/ ] over x. In particular, the action

F
permutes transitively the p-adic tubular neighborhoods associated to such y. This proves
that the tubular neighborhood over x is also connected. O

We finish this section with the proof of theorem 1 which is just a rephrasing of theorem
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2.2.34 in less technical language. For the convenience of the reader we write the statement
again.

Theorem 2.2.35. With notation as in the introduction the following holds:

a) The specialization map
DR |GrG 4 — |Gr§vj€‘;1|

OF1

1s a closed and spectral map of spectral topological spaces.

b) Given a closed point x € |Gr | let T, := spg,«, s Y(x), then the interior TS of T,

F
in |Gr ’—“| is a dense subset of T,.

c) T, and T are connected.

Proof of theorem 1. We may apply theorem 2.2.34 and proposition 2.2.5 to the case in which
k = IF, to conclude that Gr =H is a rich p-adic kimberlite with generic fiber GrG’—“ and with

F1

reduction GrW ke . Since Gr¥=" is a kimberlite by proposition 1.4.20 the specialization map

021
5Py |GrG 4 — \er 1|
OF1

is a spectral map of locally spectral spaces. Since Gr{é’f“ is rich, the map is surjective and
1

specializing, and since Grést is quasi-compact proposition 1.1.22 gives that the special-
ization map is closed, this ﬁnlshes the proof of the first claim. For the second claim let

—

u

x € ]GrW ] we can use proposition 1.4.29 to identify T2 with |(Grgy <M/$)n‘- Since Grb’p:

is rich we can apply proposition 1.4.33 to prove that 77 is dense in T, giving the second claim.
By 2.2.34 T} is connected and since it is dense in T}, this later one is also connected. O

2.3 Specialization for moduli of mixed characteristic
shtukas

For the rest of this section we will assume that £ = F,, and that ¢ is a reductive group over
Z,. We fix a torus and a Borel T C 5 C ¢. We fix f an algebraically closed field extension of
F, and we let Ky = W(f)[}lg], we fix an element b € 4 (Kj) and we let %, : Repgp — IsoCrysg,
denote the ®-exact functor from the category of algebraic representations of ¢ to the category
of isocrystals over Ky associated to b.

Definition 2.3.1. We define the moduli space of mized characteristic shtukas associated to
4,, which we denote by Shtf{}(f), as the functor Shtf;l}(f) : Perf — Sets:

Shtyh o (R, RY) = {(R,1, f), 7,®,7}/ =
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Where (R*, 1, f) denotes an untilt of R over Spa(W (§), W (f)), the pair (7, ®) is a shtuka as
in definition 2.1.22 and \ : T — %|yR+ 18 an equivalence class of isogenies as in definition
[r,00)

2.1.25. Here %\yRJr denotes the pullback along the natural map of locally ringed spaces
[r.00)
y[TR;O) — Spec(Ky) induced by f.

As with p-adic Beilinson-Drinfeld Grassmanians, moduli spaces of shtukas admit bounded
versions. Given a geometric point of our moduli Spa(C,C*) — Shtii’}(f) the torsor .7 can be
glued with ¥, along yﬁ;) to extend it to Vo+. This gives a ¢-torsor over Yo+ by theorem
2.1.12. One can basechange this torsor to B;,(C*) where we can choose a trivialization of

7:7 —%. The morphism 70® : ¢*F — ¢ defines an element of 4 (Byr(C*))/4(B;(C*))
whose image, (17 s), in the double coset

G (BIp(C)\Y (Bar(C)) /9 (Bir(C)) = X1 (%))

does not depend on the choice of 7. We call 17 ) the relative position of the shtuka at that
geometric point.

Definition 2.3.2. Let p € Xj(l@p). We define the moduli space of mized characteristic

shtukas associated to %, and bounded by p, which we denote by Shtf{}’(%“, as the functor

Shtf{}’(%)“ : Perf — Sets:

Sy (R RY) = {(Rf, 0, f), 7, 9,0}/ =

Where (R, 1, f) denotes an untilt of R over Spa(W (), W(f)), the pair (7, ®) is a shtuka
whose relative position is point-wise bounded by u in the Bruhat order and A : F — %|yR+

[r,00)

is an (equivalence class of ) isogenies.

Remark 2.3.3. In definition 2.3.2, let E(u) denote the reflex field of p. Since & is reductive

over Z,, E(u) is an unramified extension of Q,. Moreover, since § comes equipped with an
w 1

inclusion IF, — | we get an inclusion E(u) — W (f)[5]. We are implicitly using this inclusion
of fields to compare the relative positions.
The purpose of this section is to prove that the Shtf{}’(%“ are rich p-smelted kimberlites

that have connected p-adic tubular neighborhoods.

2.3.1 Moduli spaces of shtukas are kimberlites

In this subsection we verify that the map Shtflﬁ’(?)“ — W(§)? forms a p-smelted kimberlite.

We will need to define auxiliary spaces to simplify some of the arguments below:

Definition 2.3.4. We let LShtCﬁl}(f) denote the functor LSht’(f{}(f) : Perf — Sets:

LShtyt o (R, RT) = {(R%, ¢, f), M, \}
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Where the triple (R*, 1, f) denotes an untilt over Spa(W (f), W (f)), M € g(W(R*)[ﬁ]) and
R

A Gy — Y, is an equivalence class of isogenies defined over y[f;{;] for some r. Here 4Gy
denotes the tuple (4, ® ) with ®yy : ¢*Y — G an isomorphism given by M and defined over
Spec(IV (R*)[1 ).

Notice that there is a natural map LShtf{}(f) — Sht‘(f{}(f) given by restriction and assigning
(M, \) = (4,®,\). We denote by WY the sheaf in groups W4 (R, RT) = 4(W(R™)),
notice that (W*¥)o, = WH (¥4 ®z, Z,[t]) as in definition 2.2.14.

Proposition 2.3.5. 1. The functors Shtf[’}(f) and LShtg‘i’}(f) are small v-sheaves.

2. The map LSht(f{}(f) — Shtii’}(f) is a WY -torsor for the v-topology.

3. LSht(}i’}(f) 1s formalizing and Shtf{}(f) is v-formalizing.

Proof. To prove that it is a v-sheaf one has to prove that each of the entries descend.
A standard argument using 2.1.20 repeatedly proves this. Given N € WYY (R, R™) and
(M,\) € LSht{é’}(f)(R, RT) we let N - (M,\) = (N"'M@(N),\ o N). This specifies an
action of W% on LShtf{}(f) that makes the map LSht{I?}(f) — Shtgfl’}(f) equivariant when the
target is endowed with the trivial action. It is enough to prove that the basechange of

LShtf{}(f) — Shtf;l}(f) along product of points gives a trivial WT%-torsor.

Let Spa(R, RT) be a product of points, and take (.7, ®, \) € Sht{é’}(f)(R, R™). We can glue

7 along \ over y[fj;) to extend to a ¢-bundle over Vz+, a meromorphic isomorphism ® over

Yr+ \ V(€r:) and an isogeny A over y[ﬁ;]. We can use theorem 2.1.12 and theorem 2.1.18
to get a ¢-bundle over Spec(W(R")) with a meromorphic ® that restrict to the previous
ones. Since RT is a product of valuation rings with algebraically closed fraction field any ¥-
bundle on Spec(W (R™)) is trivial. This is the case because Spec(W(R™)) splits every étale
cover. The choice of a trivialization specifies a section (M, \) € LShtE‘ii(f)(R, R™) and after
chasing definitions one can see that the natural action of W% on the set of trivialization
acts compatibly with the action specified above.

We prove that LShtﬁl}(f) is formalizing, this already implies that Shtﬁl}(f) is v-formalizing
since the map LShti‘}m — Sht(f[ﬁ(f) is surjective. Let Spa(S,S*) € Perf, fix wg € ST a
pseudo-uniformizer and take

((S% 1, f), M, \) € LSht;t (S, 5™)

Given a map f : Spa(L, L*) — Spd(ST*,S*) we get a map of rings f : W(S*)[ﬁ] —
S
W(Lﬂ[ﬁ], and we can let My be f(M). Moreover, fix a pseudo-uniformizer w; € LT, we
L

claim that for any such choice and for any r € R there is a large enough " € R for which
the following diagram is commutative:
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N Rt
y[r ,00] y[r o]

| |

Spa(W (L"), W(L")) —— Spa(W(57), W(57))

This map allows us to pullback the isogeny A to Spa(L,L"). The equivalence class of
isogenies constructed this way does not depend of the choices of ws, wp, r or ' and the

construction is functorial, so it defines a map Spd(S*, S*) — LShtW(f) O

Moduli spaces of shtukas satisfy the valuative criterion for partial properness over W ()¢
since the definition of all of the data involved (via Tannakian formalism) takes place in the
exact category of vector bundles over y[’g;) which is equivalent (by an exact equivalence) to

the category of vector bundles over y[fg"oo).

Lemma 2.3.6. Let % — %, be a closed embeddings of reductive groups over Z, and %, an

g 774
isocrystal with 4, structure. Let 9, = %, X %, the induced map LShti‘}(f) — LSht“i’}(f) s a
closed immersion.

Proof. 1t is enough to prove that the basechange by any totally disconnected perfectoid space
is a closed immersion. Let Spa(S,S™) in Perf be totally disconnected, and let (M,\) €
LShtfé(f)(S, St). Abusing notation we let A denote a choice of representative of the equiv-
alence class of isogenies and we let » € R such that A is defined over y[fl:o]. By unraveling
the definitions we can think of M as a ring map Og, — W(Sﬂ[é} and we think of \ as a
ring map Og, — B[ roc) (with the notation as in lemma 2.1.24). Since ¢ — % is a closed
embedding of afﬁne algebraic groups we have that Og, = Oy, /I for some finitely generated
ideal I C Og,. The basechange

Spa(S, St) X LSht?

tw ()

)

is representing the moduli of maps Spa(R, RT) — Spa(S, S*) for which the compositions:

1

M : Oy — W(SH)[— -
Rt

£
)\ . Ogg — BESJF ] — B[T’oo]

| = W(R)[—]

map elements of I to 0.
Let us prove that for any element ¢ € W(S*)[i] (orte B[T’Oo]) the moduli of points in
S
Spa(S, S*) where ¢ is identically 0 forms a closed immersion. Fix t € W (ST)| lﬁ] since &g
S

is not a zero-divisor the moduli of points where t is 0 is the same as that of £ -t so we may
assume t € W (S™). Using the Teichmiiller expansion we have ¢ € (ST)Y and ¢ is 0 if and only
if each entry is 0. This defines a Zariski closed subset of Spa(.S, ST). We prove the other case,
fixte B[rOO C B[TOo and let Z C |y | be the set of valuations with [¢[, = 0. We have a
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projection map of diamonds 7 : (y[f:;o))o — Spd(S, ST) which is ¢-cohomologically smooth
and consequently universally open (See [51] 24.5). The moduli of points we are considering
is given by maps to Spa(S, S*) that factor through Z’ = |Spa(S, ST)|\ = (|y[r C>Q)| \ Z) which
is a closed subset. Since the subset of interest is closed and generalizing, it defines a closed
immersion of Spa(S,ST) (See [71] 7.6). O

Proposition 2.3.7. With notation as in lemma 2.5.6 the map Shtf;(f) — Sht{‘ié(f) 15 a closed
immersion. In particular, if we let % = 4 Xz, % and we apply the result to the diagonal

embedding A : 4 — %, we deduce that Shtg‘i’}(f) is separated over W (§)9.

Proof. We begin by proving that the map is injective. For this consider two sets of triples

= (%, ®i, ;) € Shtyp o (R, RY) withi € {1,2}

g %
and suppose that the t; ><1% = (7 ><1%, ®;, \;) become isomorphic, we need to prove t; = ts.
Since products of points form a basis for the v-topology we can assume Spa(R, R™) to be a
product of points. For a product of points any map Spa(R, R™) — Sht’(é‘}(f) factors through

LShtyp ) — Shtype. Let T; € LShty . (R, R*) factoring t; with T; := (M;, \;). The set of

@ %
choices for T; mapping to t; forms a W%, (R, R™)-torsors. Since t; % G, = t, X 4, we have

that Ty Eil 4, and Ty f<1 4, are in the same W%, (R, R™)-orbit. But \; € %(Bgfo)) so that
Mo € %(By By 0 %, (W(R*)), since W(RT) — Bgfo) is injective this intersection is
4 (W(R")). Thls together with the injectivity of lemma 2.3.6, proves that 77 and 75 are in
the same W% -orbit, which proves t1 = to.

Once we know Sht W Sht w(j) 18 injective it is enough prove that the map is proper
for it to be a closed immersion. Injectivity implies the map is a separated map of v-sheaves
and since each of them satisfies the valuative criterion of partial properness over FQ the
map between them is a partially proper map. We only have left to prove that the map
Sht %

W Shtfé(f) is quasi-compact. Consider the following commutative diagram:

@, g/
LSht{, —— LShty,

l |

4 %
Shtm‘;(f) _ Shtml;(f)

g, . .
The composition LShtW(f) — Shtm’}(f) is a quasi-compact map, and E,},le map LShti‘}(f) —
Shta‘}(f is surjective which formally implies that the map Shtﬁ‘}(f) — Sht;{}(f) is quasi—compacé.]

Proposition 2.3.8. For any u € Xj(‘Z@p) we have that Shtf{}’(?“ — Sht’b is a closed
(gb’_

immersion. Moreover, Sht}, W) is v-formalizing.
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Proof. Let LShtﬁl}’(?)“ dznote the basechange of LShtf{}(f) — Shtf[’}(f) by Shti?}’é“ . Given an
element (M, ) € LShtyp o (R, R"), M naturally defines an (R, R")-valued point of Gr%(f)

when we think of M as an element of ¢ (Bgr(R?)).
We have the following pair of Cartesian diagrams:

LShtyy5" — LShty, LSty —— LShtfh g,

| | | |

4, <p @ Gy, <p <
Grwg — Grwg) Shty gy —— Shtyy,
Since being a closed immersion can be checked v-locally on the target (See [51] 10.11), and

%b»giu‘

0
by 2.2.5 the map GryyH — Griy, is formally adic which implies that LSht(%# is formalizing

since LShtﬁ‘}(f) — Shtf{}(f) is surjective Sht — Shti’}(f) is a closed immersion. Moreover,

and consequently that Sht%’(?)” is v-formalizing. O

In what follows we will prove that the functors (Shtf{}’(%“ )rd are represented by affine
Deligne Lusztig varieties. We warn the reader that the definition that we take of affine
Deligne Lusztig varieties is not the standard one. Nevertheless, it is well known and easy to
establish that the definition we take defines the same objects as the standard definition.

Definition 2.3.9. Let ¢, be an isocrystal with & -structure and p : G, 5 — ’Z@p a cocharac-
ter. We define the v-sheaf XZ‘L : PCAIg%7 — Sets as:

X2 (R)={(7,2,N)}/ =

Where T is a 94 -torsor over Spec(W(R)), ® : ¢*T7 — T is an isomorphism defined over
SpeC(W(R)[%]) of relative position bounded by v and X\ : T — %, is a ¢-equivariant isomor-
phism over Spec(W(R)[%])

Proposition 2.3.10. We have an identification Xzz = (Shtcf[’}’(?)“)red. Moreover, the map

(X ZZ)O — Shtgj[’}’(?)“ is injective and Shtf[’}’(%” is a specializing v-sheaf.

Proof. Given a map Spec(R) — Xzz we construct functorially a map Spec(R)¢ — Shtf‘i’}’(%“

in what follows. The untilt is always the characteristic p untilt. For any perfectoid space
f : Spa(S, S*) — Spec(R)® we get a triple (f*.7, f*®, f*A) coming from the map of rings
f:W(R) — W(ST) and by restriction to the appropriate loci y[ig;o), y[%j;o) \V(p) and y[’i;)

respectively. This data defines functorially a map Spa(S,S*) — Shtgg[’}’(%)“ , consequently a
map Spec(R)® — Shtf{}’(%“ . The construction of Spec(R)® — Shtf[’}’(%)“ is clearly functorial

in PCAIg%. By adjunction, this gives a map X ZZ — (Sht'ii‘}’(%” )red, we claim this map is an

isomorphism.
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We begin by proving it is injective, since X ZIL is represented by a perfect scheme
< d %
(XG0 = X,

and we may prove that the map (X2 % ) — Sht“’”—) is injective instead. Take two arbitrary
maps g; : Spa(R, RT) — (X gZ) , it is enough to prove injectivity v-locally so we may assume
the maps factor through maps of the form g} : Spec(R*)® — (Xfl;)o. The ¢. are given by
data (7, ®;, \;) over Spec(W(R™)), Spec(W(R*)[%]) and Spec(VV_(R*)[%]) respectively and
the g; are given by restricting these data to yﬁ;), 000) \ V(p) and y[ﬁ;) respectively.
Nevertheless, we can recover g, from g; since we can use \; to glue back the restricted data
as in the proof of proposition 2.3.5.
Let us now prove surjectivity. Let f : Spec(A4)® — Sht%é” and g : Spa(R,RT) —

Spec(A)? be a map with Spa(R, RT) a product of points and A E PCAIgOp We will show
below how to construct the following commutative diagram:

Spa(R, RT) —— Spec(A)°

| |

4, 4,,<
(XS’;L)<> —— Sht, )“
Since products of points are a basis for the topology, and since (X fZ)O Sht%’g)“ is injective

this defines a map Spec(A)? — (XQZ)O factoring our original map to Sht%’ )” and proves

the desired surjectivity.

Fix a pseudo-uniformizer w € RT, we let Spa(Rs, Rs ') be a second product of points
defined as follows: RL = [[;2, R" with pseudo-uniformizer now given by wg, = (w')2;.
The product of points Spa(Rs, Rs’) comes equipped with a family of closed embeddings
ti : Spa(R, RT) — Spa(Rs, Rs™) given in coordinates by the projection onto the ith-factor.
The diagonal ring map A, : A — [, R" induces a map A, : Spa(Rw, Re’) — Spec(A)©
with the property that A, o ¢; = ¢ for every i. Since Spa(R, R ™) is a product of points,
by proposition 2.1.19, the map f o A, can be represented by a triple (Gg., ®r.., Ar. ) with
Or.. trivial After choosing a trivialization for Gr_ we can think of Az _ as a ring map

Oy — Blt= - Moreover, since fo Ay o = foAgjou; we have that for all 7 the composition

[roo

+
N Oy — BT = B =BE

[r,00] o]

lies in the same (W (R*))-orbit. Clearly 4(W (R.")) = Hfil G (W(R™)) so after a change
of trivialization we may assume that r; = r; and that \; = \; =: Ay for all 1 <1,j <oo. We
claim that Ap factors through the 1nclu81on of rings W(R*)[ | C B[T ~- Take an element

t € Og and consider s = A\g_(t) € B[ 7, after replacing r by a larger number if necessary we

T‘OO

may assume r = n € N. In particular, p* - s lies in the p—adic completion of W (R +)[[m:+ﬂ
for some large enough k € N. Let us write p* - s as Z;’io D[a;]p’ where x denotes [ ;‘”},
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0 < n(j) is a multiplicity, and «; € RE. We have that ¢;(p" - s) = Z;’;O([Z—f)”(j)[bi(aj)]pj
with ¢;(c;) € RT. In particular,

pF - An(t) € (J(H(VE o, 01)),

€N

but this intersection is W(R™) proving the claim.

Since the elements of the triple (Gr_,®gr._, g, ) are defined over Spec(W(RT)) and
Spec(W(R+)[ ]) they define a map to Spec(R*) — Xf’; The composition Spa(R, RT) —
Spec(R*)? (X g) gives the factorization we were looking for.

That Sht%’g“ is formally separated follows from lemma 1.3.32 and proposition 2.3.7, that

Shtgé}’(?“ is v- formahzlng follows from proposition 2.3.8.
O

Lemma 2.3.11. The adjunction map (X ) — Sht"”<“ arising from the identification of
proposition 2.3.10 is a closed immersion.

Proof. We will use that X ', admits a closed immersion into the Witt vector Grassmanian
Gr;\;’f. We have that

% % 9,<
X2 = |J xdnami)’
veXx (‘I@p)
and since each of this subsheaves are coming from a perfectly finitely presented proper scheme
over f, they are proper as v-sheaves over {*. Consequently, the map (X f;t N Gr; <”)<> —

Shtw’}’(f is proper and since it is injective a closed immersion.

Now, X? b is a scheme which is locally perfectly of finite type (See [1&] theorem 1.1),
and in partlcular each point admits an open neighborhood that is spectral and Noetherian
as a topological space. Using a compactness argument in the patch topology, to every
point x € |XZ % " | we may associate an open neighborhood U, C sz and finite number of

v € X (g ,) for which U = U N (U, Gre <VZ) Indeed, if U, is Noetherian every closed

1€l
subset is open in the constructible topology.

In proposition 2.3.10, we proved that Sht;; Po.< )“ is a specializing v-sheaf, so by propo-
sition 1.4.15 we get a specialization map SDgp % <n |Sht5{}’(?“ | — |X "l We let V,
W (f)

(Spsmgb(;“) LU,) for z € |X | and U, as above, this forms an open cover of Shtw(f)“ Since

being a closed immersion is v-local on the target and V, — Shté’}’(;“ is a formally adic open

immersion it is enough to verify that (V*4)® — V, is a closed immersion. But the adjunction
map (U,)? — V, fits in the following Cartesian diagram:
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Ul 1 > UY > Vs

| | !

&, <v; “ @, o, <
(Uier, Grwis” ngZ)O — (XSZ)Q — Sht; 2, f)“

Since the union of a finite number of closed immersions still defines a closed immersion we
can conclude by basechange that U — V, is also a closed immersion.

[]

Proposition 2.3.12. With the notation as above the map Sht; %, ?)“ — W ()¢ is a p-smelted
kimberlite as in definition 1.4.18.

Proof. Proposition 2.3.10 proves that Shtdb “ is a specializing v-sheaf, in proposition 2.3.10
we proved that (Shtﬁl}(;“ )red is represented by a scheme and by lemma 2.3.11 the adjunction
map ((Shtil}’(?)“ yred)o — Sht% 5 1s a closed immersion which finished the proof that Sht% s

W)

prekimberlite. Theorem 23.1.4 of [53] proves that (Shtﬁl}(?“ )y is alocally spatial diamond. [J

2.3.2 Comparison of tubular neighborhoods

Recall that in this section ¢ is a reductive group over Spec(Z,), let D = (D, ®p) be a ¥-torsor
over Spec(W(f)) together with an isomorphism ®p : ¢*D — D defined over Spec(W(f)[%]),
and fix p € XF (i@p). We can define some objects associated to this data, which are nothing
but “coordinate-free” versions of the moduli we defined in the previous sections:

Definition 2.3.13. 1. We denote the functor GrW : Perf; — Sets with

GrW(f (R, R+) = {<< ) T ) =

Where (R, 1, f) is an untilt over W (§), T is a G-torsor over Yg+ and v : T — D is
an isomorphism defined over Ygr+ \ V(Ege) that is meromorphic along Eps.

2. We denote the functor Shtﬁ,(f) : Perf; — Sets with
Shty ) (R, BY) = {((F. 1. f), 7,2, M)}/ =

Where (R*, 1, f) is an untilt over W (f), (7, ®) is a shtuka with 9-structure, and X :
T — D is an isogeny.

The functors Grﬁ/(f) and Shtev(f) come with a canonical section canp : Spec(f)¢ — Gr%,jv(f)
given by the data (¢*D, ®p) and canp : Spec(f)® — Shtev(f) given by (D, ®p, Id) respectively.
We point out that if we fix an isomorphism 7 : D — ¢ we get isomorphisms 7 : Grﬁ/(f) —
Grﬁ, and 7 : GrW H GrW(f) Moreover, if we are given a section o : Spec(f)® — Grféf(f)

we can construct a pair (D, ®p) and an isomorphism 7 : D — ¢ such that the following
diagram is commutative:
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D
Gryy

CGV
Spec(f)° v
g
Gry
Analogously, if we find a ¢-equivariant isomorphism 7 : D — %, over Spec(W(f)[zl—?]) we
get an isomorphism 7 : Sht2:=F — Shtf{}’(%“ , and given a section o : Spec(f)¢ — Shtﬁl}(f) we

W)
can construct (D, ®p) and 7 making the following diagram commutative:

D

C(V
Spec(f)? T
&,
Shtm‘}(f)

Since f is algebraically closed every tubular neighborhood of Grassmanians and moduli of
mixed characteristic shtukas at closed points are coming from the canonical one associated
to some pair (D, ®p). Indeed, every closed point of X f’; and Gl"{)i;’f is the image of a section
since the bounded version of these ind-schemes are locally perfectly of finite presentation

over Spec(f).

Theorem 2.3.14. Given (D, ®p) and pu € X*(‘I@p) as above, and with notation as below we
have a local model diagram:

LSht3" = LGr3"

— T

G Dy ~ D.<p
Shtw(f) /canp GrW(f) /canp
Moreover, both arrows are [j@p—torsors. In particular, Shtg;é;l / 18 non-empty and con-
canp

o —

<p

. . D .
nected if and only if GrW(f) Jeanp

Before proving the theorem we will need some preparation.

Definition 2.3.15. 1. We let Ija’p denote the sheaf of groups over W (§)° given by

EED<R7 R+) = {((Rﬁv L, f)vg)}
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Where (R*, v, f) is an untilt over W(f) and g : D — D is an automorphism of ¥ -
torsors defined over Spec(W (R™)) for which there is a pseudo-uniformizer w, € R™,
depending of g, such that g restricts to the identity over Spec(W (R*)/[w,]). We define

LG yp in a similar way exchanging the role of D for that of ¢*D.

2. We let L/@’D be the v-sheaf over W (§)° assigning

LGrp(R,R*) = {(R%, 1, f), T, 0, 0} =

Where (R¥, 1, f) is an untilt over W (§), T is a 4-torsor over Spec(W (R™)), ¥ : T —
D is an isomorphism over Spec(W(R*)[%]) and o : T — ¢*D is an isomorphism of 4 -
torsors over Spec(W (R™)) such that there is a pseudo-uniformizer w € R* depending
on the data for which ®p oo =1 when restric/tqﬂo Spec(W(R™1)/[w]). We may also

add a boundedness condition on 1 to obtain LGT%".

3. We let L/SED be the v-sheaf over W ()¢ assigning
LShtp(R, RY) = {(E*,1, f), 7,®,\, 0}/ =

Where (R* 1, f) is an untilt over W(§), 7 is a 9-torsor over Spec(W(RY)), ® :
O0*T — T is an isomorphism over Spec(W(R*)[%]), AT — D is an isogeny over
y[TR;o] and o : T — D is an isomorphism of G-torsors over Spec(W (R™)) such that
there 1s a pseudo- uniformz'zer w € R depending on the data for which o = X\ when
restricted to Spec(B[T OO]/[w]). We may also add a boundedness condition on ® to

/\

obtain LSht=".

Standard arguments using proposition 2.1.20 will prove that the objects in definition
2.3.15 are v-sheaves. Notice though, that the category of vector bundles over Spec(W (R™))
fibered over Perf does not form a stack for the v-topology. Nevertheless, the category fibered
over Perf that assigns to Spa(R, R") the category of pairs (7, 0) where 7 is a ¥-torsor
over Spec(W(R*1)) and o : J — ¥ is a trivialization does form a stack for the v-topology
on Perf. -

There is a natural map LGrp — Grﬁ/ that takes a triple (7,1, o) and assigns the pair

(7 ,1) restricted to ymoo and y ) \ V( €) respectively. This map is EGWD equivariant
when we consider the left action LGd,*D X LGT’D — LGrp sending an element (9, (T, 0, 0))
to (7 ,1,g00) and GrW () 1s given the trivial LG¢*D action.

Lemma 2.3.16. The natural map LGTD — Grﬁ,(f) factors through Gr%,)v(f)/ . Moreover,
canp

the map f(?rp — Grev(f)/canp s a @¢*D—tOTSOT.

Proof. We begin by proving that ZTGTTD formalizes any map coming from an affinoid per-
fectoid space Spa(A, A1). Indeed, take a map Spa(A, AT) — LGrp given by an untilt
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and a triple (7 ,1,0) and take a map f : Spa(B, B") — Spd(AT, AT), we have to define
functorially a map Spa(B,B") — L/GTTD. We can construct an untilt for B functorially
as in lemma 1.4.8. We have a map of affine schemes f : Spec(W(BT)) — Spec(W(A™))
along which we can pullback to get the triple (f*.7, f*, f*o) where in this case f*.7 is
a ¥-torsor over Spec(W(B™)), f*¢ : f*7 — D is an isomorphism over Spec(W(B*)[ﬁ]
and f*o : f*7 — ¢*D is an isomorphism over Spec(WW(B7)). We need to verify that this
triple satisfies the constraints. Take a pseudo-uniformizer @y € A* for which ®p oo =9 in
Spec(W(A™)/[wa]). By continuity, f(wa) is topologically nilpotent and there is a pseudo-
uniformizer wp € BT with f(wa) = wp -t for some ¢ € BT. We have ®p o f*o = f*1) over
Spec(W (B™)/[wg]) proving the constraint holds.

To prove that LGrp — Grﬁ,(f) factors through Grﬁ,(f) Jeanp it is enough to prove that for
any map Spd(R*, Rt) — LGrp the map of reductions (Spd(R*, RT))d = Spec(R)® —
(Gr?v(f))fed factors through the canonical map canp : Spec(f)¢ — (Grﬁf(f))red. After restrict-
ing the data (7,9, ) to Spec(W(R},)) we get the identity ®poo = ). After pullback, the
map Spec(RE,)¢ — Grev(f) is given by the tuple (.7, 1). Since this data is isomorphic via o
to (¢*D, ®p), the map factors through canp : Spec(f)® — Grﬁ/(f).

—

—

We now prove that L/CEr’p — Grﬁ,(f) is surjective. It is enough to prove this for a

/canp
product of points which we denote Spa(R, R™), with pseudo-uniformizer o € R*. In this

case, by proposition 2.1.19, a (R, R™)-valued point is given by (.7, ¢) with 7 defined over
Spec(W(R")) and ¢ : 7 — D defined over Spec(W(R*)[%]), with the additional condition

that (7, ) is isomorphic to (¢*D, ®p) when restricted to W (R ) and W(R;Zd)[i]- Such an

isomorphism o,eq : (7,1) — (¢*D, ®p) is unique and has to be given by 0,cq = P5' © Vreq,
since it has to satisfy the commutative diagram:

¢*D

The morphism ¢ = ®5' o9 : T — ¢*D is defined over y[}f;} for r sufficiently big (so
that it avoids V(£)) and it restricts to o,q. We can use lemma 2.1.25 to construct an
isomorphism o : J — ¢*D such that 0 = ¢ when restricted to Spec(B[}z;} /[@']) for some

pseudo-uniformizer @’ € R™. In particular ®p o 0 = ¢ over Spec(W(R™')/[=']). The data
(T ,1,0) constructs a map Spa(R, R™) — LGrp which evidently composes to the original

map Spa(Ru R+) - Grﬁ/(f)/canl)'

Finally, we need to prove E@“D XD " [E‘D = [//EQS*D X (f)0 [E’D. Take two sets of
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data (7, ;, 0;) over Spa(A, AT) and suppose that

(Tly o Uily, ) = (Lly o Yaly i)

The isomorphism must be given by ;" o9y : F — .7 and by the fully-faithfulness part
of theorem 2.1.15 the isomorphism extends over Spec(WW(A")). Moreover, we can define
g=o10; ooyt ¢*D — ¢*D. By hypothesis, oy 0 ;' = @, and 15 0 05,1 = $p on
Spec(W (A™)/[wa] for some suitable choice of pseudo-uniformizer wy € A*. Consequently
we can associate to the original data the tuple (g, %2, 19, 09) € Z{JZJWD X ()0 L/GT?“D(A, AT).

On the other hand, to a tuple (g, 7,1, 0) the action of I//é(b*'p associates the pair of tuples
(T ,1,go00) and (7,1, 0). Since these two constructions are functorial and compose to the
identity they define isomorphisms. m

For moduli spaces of shtukas we have a very similar story. We have a projection map
7w : LShtp — Shtev(f), which we can construct by assigning to a tuple (7, ®, )\, 0) the

tuple (7 \y s @]y e A). Moreover, this projection is LAGD—equivariant when we endow

\V(§)
)
LShtp with the left action LGp x LShtp — LShtp sending the tuple (g, (7, ®, A, 0)) to the
tuple (7, ®, A\, g o o) and when Shtev(f) is given the trivial action.

—

Lemma 2.3.17. The natural map LShtp — Shtev(f) factors through Shtﬁ,(f)

—

the map L/SRD — Sht%/jv(f)

. Moreover,
/canp

1s a LGp-torsor.
/canp

Proof. The proves that ITSED formalizes any map Spa(A, AT) — L/SED with Spa(A, AT) €

Perf, that the map L/SFtD — Shtev(f) factors through Shtg,(f) Jeanp and that this later map is
surjective in that locus follow very similar arguments to those given in the proof of lemma
2.3.16. We omit the details. - . -

Let us prove that LShtp xSth:V(f) LShtp = LGp Xy 0 LShtp. Take two sets of data

(T, @i, A\, 0;) over Spa(A, A1) and suppose that
(%B’[‘SL)’ (I)1|y[zg;>\v(§)> )‘1) = (%|y£;)’ (I)2|y[zé;>\v(§)> /\2)'

The isomorphism must be the unique lift of )\1’1 oy Do — T to y[f)‘;o). Glueing along the
A; we can also define a lift to Ya+. Since the 7 are defined over Spec(W(A™)) and by the
fully-faithfulness part of theorem 2.1.15 the isomorphism extends to Spec(W (A™). Moreover,
we can define g = 0,0\ o Xg00," : D — D. By hypothesis, o, 0 \[' = Id = A\yo 0, over
Spec(BA" /[wa]) for some suitable choice of pseudo-uniformizer wy € A*. Consequently

[r,00]

we can associate to the original data the tuple (g, %, ®2, A, 02) € LGp X w ()0 L/SFtD(A, AT).
The action map gives back isomorphic data. O

We can now prove the theorem.
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Proof. (of theorem 2.3.1/). For this proof we define ¢ to be the inverse of Frobenious, ¢ =
¢~1. We begin by observing there is an isomorphism 6 : IT@D — EEJWD given by sending
g € LGp(R,R*) with g : D — D to ¢*g : ¢*D — ¢*D. By definition of LGp, there is a
pseudo-uniformizer w, € R* for which ¢ = Id in Spec(W (R™)/[w,]). One can verify that
¢*g = Idin Spec(W (R")/[w?]) so that ¢*g € EEJ¢*D the inverse of this group homomorphism
is of course given by sending h € I/ZJ¢*D(R, R™) to ¢*h. Using 6 one can then endow LGrp
with a EEJD action for which the projection 7 : IE‘D — Grlw)/(f) of lemma 2.3.16 is a I//ap—
torsor. - -

In what follows we construct an isomorphism LGrp — LShtp. Take a perfectoid Huber
pair (A, A™) and tuple (7 ,v,0) € LGrp(A, AT). Consider the ¥-torsor ¢*.7, and consider
the map ® : 7 — ¢*.7 defined by ® = (¢*0)~! 01p. We now construct a ¢-equivariant map
A:9*7 — D. Consider the following (non-commutative!!!) diagram:

T —7— ¢*D

[

@*QLD

Each of the arrows of the diagram is defined over yﬁ;] for big enough r avoiding V'(£).
Moreover, by hypothesis there is a pseudo-uniformizer @ € A*' for which ¢ = ®p o o over
Spec(W(R*)/[w]). We can see that p*co® = ®poo over Spec(B[ﬁ";}/[w]) and in particular

the morphism ¢*o : ¢*7 — D is ¢-equivariant over this locus. By lemma 2.1.27 there is
a unique isogeny over y[f;‘;] denoted A : ¢*.7 — D such that A\ = ¢*c when restricted to

Spec(BA!

roo)/[@]). We can associate to our original data:

(T, 0) = (0" T, @, ), ¢"0)

This construction is functorial when we let (A, A™) vary by the uniqueness of A. This gives
a map O : L/G\rp — L/SED. Moreover, we have g - (¢* 7, ®,7,0%0) = (¢* T, P, 7,9 0 ¢ 0)
and g- (T, N\, 0) = (T,\ ¢*goo) so the map O is [//ap—equivariant.

We construct explicitly the inverse ©~!. Given a tuple (7, ®,\,0) € L/SED(A, AT) we
can assign:

(7,0, \,0)— (¢*T,00®,¢*0)

this construction is clearly functorial in (A, A™), and if wy € AT is such that A = o over
B[‘go]/[wA] then ®p o ¢*o = o o ® over Spec(W(A")/[w4]) since A is ¢-equivariant. This
gives a map (2 : L/SRD — E@“D the composition €2 o © is clearly the identity. One can
verify directly that © o Q(7,®, N\, 0) = (Z, P, N, 0) for some N nevertheless \' = 0 = A
over B[ﬁ’;] /|w] as ¢-equivariant maps for some w € AT. By the uniqueness part of lemma

2.1.27 we have A = \.
One can also verify directly by the construction of © that it preserves the boundedness
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—_—

condition so that © : LGr5" — LSht3" is also an isomorphism. Finally, we have

—_— e~

o(ShtP= 5 o) = TO(LSHER) = mo(LGrg") = mo(Gryt )

since the v-sheaf in groups I//E’D is connected. O

Let us prove that moduli spaces of mixed characteristic shtukas are rich p-smelted kim-
berlites.

Theorem 2.3.18. With the notation as in the beginning of this section we have that the map
Shtﬁ’(;“ — W(§)° forms a rich p-smelted kimberlite with connected p-adic tubular neighbor-
hoods.

Proof. Proposition 2.3.12 proves this map forms a p-smelted kimberlite. In [53] 23.3.3 it is

proven that the period morphism Sht;{}’(?“ — Grfv’—ff is étale. By proposition 1.4.34 and

theorem 2.2.34 we know that Shtﬁl;’(?)[ 1 is a cJ-diamond.

By theorem 1.1 of [18] we know that XZ’L is locally Noetherian. By lemmas 1.4.43
and 1.4.44 to prove that the specialization map is a quotient and specializing map we only

need to prove that for any non-Archimedean field extension C/W (f )[ | with C algebraically

gba_

closed the specialization map of the base change Sht; =" is surjective on closed points. It is

/b»_

then enough to prove that for any such C' the p-adic tubular neighborhoods of Sht
non-empty and connected.
This follows from combining theorems 2.2.34 and 2.3.14. Indeed, if f¢ denotes the residue

are

field of O¢ we may apply theorem 2.3.14 to compare (Sht"b’<“ ) o ) with (Grfvé“ )1y )y for some
Y.

Since C'/W (f¢) [Il)] is purely ramified we have identifications |(Shtg”’§“ yred| = |(Shti‘}’(%c“ ))red]
and |(Grly <“)red] = |(Gr£5[}(§fg))red]. Moreover, for any z € |(Sht“””<“)red| and any y €
|(Grg0§“ )| we have the identities

RS G2
(Shtg,, o M/m)n = (Shtmg(fclf)/w)n XW()° 0,
and -
e 9,<
(Gr Loc M/ I = (er(fg)/y)n KXW (f)© Og
which finishes the proof of the claim. m

We finish this section with the proof of theorem 2 which is a rephrasing of 2.3.18 in less
technical language. For the convenience of the reader we write the statement again.

Theorem 2.3.19. With notation as in the introduction the following holds:
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a) There is a continuous specialization map

. @
Spsm(“fl;;“ : |Sht(£¢,b,u),F§| — | X2,.(0)],

this map is a specializing and spectral map of locally spectral topological spaces. It is a
quotient map and Jy(Q,)-equivariant.

b) Given a closed point x € |XZ,(b)| let S, = SDg@<n(2), then the interior Sy of S,
< o

as a subspace of [Sht(y, F2<>| is dense in Sy.

c) S, and SS are non-empty and connected.

d) The specialization map induces a J,(Q,)-equivariant bijection of connected components

SpShtz’;S‘ : 7TO(Sht(%,b,u),FQQ) — WO(quU)))
2

Proof of theorem 1. We may apply theorem 2.3.18 and proposition 2.3.10 to conclude that
the pair (Sht%’<“ Shtiy p, ). F2<>) is a rich smelted kimberlite with reduction XZ,(b). This

implies by prop051tion 1.4.20 that the specialization map Spsmﬁ‘;j“ H[Sht gy, mol = | XZ,(b)]

Gy, <pt

is a spectral map of locally spectral spaces. Sht”% oo 18 rich, by definition the specialization

Fa

map is specializing and a quotient map. Moreover, J,(Q,) acts on Sht/ %’<“ by ¢-equivariant
automorphisms of ¥, since the construction of the specialization map 1S functorial in the

category of smelted kimberlites the map is equivariant, this finishes the proof of the first

—

: o 4,,<
clam. Let z € |XZ,(b)|, we can use proposition 1.4.29 to identify S7 with |(Sht” M/a:)”"

Since Sht"b =" is rich we can apply proposition 1.4.33 to prove that S? is dense in S, giving
the second clalm By theorem 2.3.18 Sy is connected and since it is dense in S, this later
one is also connected giving the third claim. For the last claim we may apply proposition
1.4.42. =
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Chapter 3

Geometric connected components at
infinite level.

3.1 Notation

Let us fix some notation for this chapter. We let £ be a perfect field in characteristic p with
algebraic closure k. For most things the case of interest are when k = F, or when £ is a finite
field. In most subsections we will assume that k is algebraically closed, and we will point out
when this assumption is taken. We let W (k) (respectively W (k)) denote the ring of p-typical
Witt vectors of k, respectively k, and we let K, = W(k:)[%], respectively Ko = W(E)[%] In
the sections in which we assume k = k we use the symbols K, and K, interchangeably.

We denote by o the canonical lift of arithmetic Frobenious to Ko and _abusing notation
we will also denote by o its restriction to K,. We fix an algebraic closure }U(O of f(o, and we
let C),, denote the p-adic completion of Ko. We use K (respectively K ) to denote subfields
of C, of finite degree over K, (respectively K). We let T'x (respectively I';2) denote the
continuous automorphisms of C, that fix K (respectively K ). If Ky is the algebraic closure
of Ky in C, then I'y is canonically isomorphic to Gal(Ky/K), since K is dense in C,. We
will denote by I'%¥ the opposite group which we identify with the group of automorphisms
of Spec(C,) over Spec(Kj).

We let Wy~ denote the subset of continuous automorphisms of Aut(C),) that stabilize
fu(o and act as an integral power of ¢ on lu(o. We topologize W so that I'y is an open
subgroup. Suppose £ C C), is a field of finite degree over Q,, and let Q,s be the maximal
unramified extension of QQ, contained in E. The extension £/Q,. is totally ramified and
E®q,. Ko is canonically isomorphic to the compositum E = E- K, inside of C,, since E and
Ky are linearly disjoint and have canonical inclusions into C,. We define an automorphism
& € Aut(F) as the automorphism that maps to Id ® ¢ under this identification. We let
Wik denote the continuous automorphisms of C, that stabilize E, act on E as 5™ for
some n € Z. Notice that W, fixes E.
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Through out the text G will denote a connected reductive group over Q,. In certain sub-
sections we will add the additional assumptions that G is quasi-split or even stronger that
it is unramified over Q,. We will point out when one of these two assumptions are taken.
Whenever G is quasi-split we will denote by A a maximally split sub-torus of G' defined over
Qp, T will denote the centralizer of A which is also a torus and B will denote a Q,-rational
Borel containing 7. If GG is assumed unramified we will sometimes also assume that G is
given as the basechange of a connected reductive group over Z, which we will still denote

by G.

We will often work in the situation in which we are given an element b € G(Kj) and/or
a cocharacter p : G,, — Gg. In these circumstances [b] always denotes the o-conjugacy
class of b in G(]U(O) and [u] denotes the unique geometric conjugacy class of cocharacters
(1] € Hom(G, Gg;) that is conjugate to p through the action of G¢,. Moreover, we let
E/Q, denote the field extension contained in C, over which [u] is defined. We let Ey denote
the compositum of £ and Ky in C,,.

3.2 The geometric perspective of crystalline represen-
tations

3.2.1 Vector bundles, isocrystals and crystalline representations.

Let Ky, K and C, be as in the notation. With this setup in [15], Fargues and Fontaine
construct a remarkable Q,-scheme, Xrpc,, which is now known as “the fundamental curve
of arithmetic”.

Fargues and Fontaine justify why we can think of Xppc, as a “curve” despite the fact
that the structure morphism Xgpc, — Spec(Q,) is not of finite type. Moreover, the “curve”
is “complete” in an appropriate sense which in particular implies that H*(Xrr,c,, Ox) = Q,.
The curve comes endowed with a section “at infinity” given by a map oo : Spec(C,) = Xprc,
and it also has a I'g -action whose unique I'g-fixed point (for all finite extensions K/Kj) is

0o. The completion of the stalk of the structure sheaf at oo, @;, is canonically isomorphic
to Fontaine’s period ring B, and compatibly with the 'y -action. Moreover, Xp Fc, \ 00 is
an affine scheme and H'(Xppc, \ 00,0x) = B, = Bg,!, which is a principal ideal domain.
With this curve at hand Fargues and Fontaine reinterpret geometrically the classical p-adic
Hodge theory of Fontaine. We recall this geometric reinterpretation for the case of crystalline
representations and the connection with Scholze’s theory of diamonds.

Denote by ¢—Modg, the category of isocrystals over K, that has as objects the pairs
(D, ) where D is a finite dimensional K, vector space and ¢ : ¢*D — D is an iso-
morphism. This is a @Q,-linear Tannakian category. Fargues and Fontaine associate to
(D, ) € p—Modg, a vector bundle £(D, ¢) that comes equipped with a I'y -action that is
compatible with the action on Xppc, (See [15] 10.2.1, 9.1.1). By this we mean that for any
P € F%DO inducing the associated isomorphism 6,0» : Xppc, — Xppc, we are given a family
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of compatible isomorphisms
Oor 1 0 E(D, ) = E(D, ).

The Beauville-Laszlo theorem (see [71] Lemma 5.2.9), provides us with an equivalence
from the category of vector bundles over Xppc, to the category of triples (Mg, M}, u)
where M, is a free module over B., M jR is a free module over BjR and u : M, ®p, Bar —
M® BY, Bgg is an isomorphism. This is Berger’s category of B-pairs. From this equivalence

we get a recipe to construct vector bundles by replacing (or modifying) M, by some other
B:{R-lattice A contained in Myp = M;R ®B;R Bir. If we choose A to be stable under the
action of ' on Mypg, then the new vector bundle produced in this way will have a I'?-action
compatible with the one on Xppc,. Fortunately, we can understand I'k-stable lattices in a
concrete way as we recall below.

Given a finite dimensional K vector space V' we can let Fil*V denote a decreasing filtration
of K vector spaces. If Fil*V satisfies Fil'V = V for i < 0 and Fil’ = 0 for i > 0, we say that
Fil*V is a bounded filtration. To such a filtration we can associate a BjR—lattice inV®g Bir
denoted Fil’(V ®f Byr) and given by the formula:

Fil°(V @ Bar) = Z Fil'V ®x Fil! Byg.

i+5=0

Proposition 3.2.1. (See [15] 10.4.3) Let V' be a finite dimensional vector space over K. The
map that assigns to a bounded filtration Fil*V the Bj,-lattice Fil’(V ®x Bar) in'V @k Bag
gives a bijection between the set of bounded filtrations of V and Tc-stable Bjjp-lattices A in
V ®k Bar. If we let & denote a uniformizer of Bjj, then the inverse map is given by:

Fily (V) = ((¢'- ANV @k Bip) /(€ - ANV @k & - Blp))™.

Remark 3.2.2. The careful reader may notice that the reference constructs Fily (V) in a
slightly different but equivalent way. We also point out the following. Let (ay,...a,) denote a
decreasing sequence of integers and let i : G,,, — GL,, the character defined by p(t)-e; = t%e;.
We let Fil} (K™) denote the decreasing filtration associated p with e; € FilL if aj > 1. Then
the Bgygr lattice associated to Fili is generated by £ %e;. Notice the change of signs! Later
on we will need to keep track of this.

Denote by ¢—ModFilg,k, the category of filtered p-modules that has as objects triples
(D, ¢, Fil* D) where (D, ¢) is in ¢p—Modg, and Fil* D is a bounded filtration on D ®, K.
To any triple as above Fargues and Fontaine associate a vector bundle £(D, ¢, Fil* D)
equipped with a I'-action compatible with the action on Xppe,. It is constructed as a
modification of £(D, ) as follows. There is a canonical I'kx-equivariant identification u
between D ®g, Bar and the global sections of the restriction of £(D, ) to Spec(Bygr).
Lettlng Me = HO(XFF,CP \ OO,g(D,(,D))7 MdR =D ®K0 BdR and M;R = FllO(DK QK B;R)
then (D, ¢, Fil*Dy) is given by (M., M}, u) under the Beauville-Laszlo equivalence.
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This induces an exact and fully-faithful functor

op
Ik
XFF,cp

QO—MOdFﬂK/KO — Vec

from the category of filtered isocrystals to the category of I"P-equivariant vector bundles
(See [15] 10.5.3). Any object of Ve(:;" in the essential image of this functor is called a
FF,Cp

crystalline vector bundle. Moreover, when the filtered isocrystal (D, ¢, Fil* D) is “weakly
admissible” Fargues and Fontaine prove that (D, ¢, Fil®* D) is semi-stable of slope 0 (See
[15] 10.5.2, 10.5.6). This in particular implies that £(D, ¢, Fil* D) without the I'}*-action
is non-canonically isomorphic to O% for d = dim (D) so that H*(Xppc,, £(D, ¢, Fil* D))
is a d-dimensional Q,-vector space endowed with a continuous I'g-action. This construction
recovers the classical functor of Fontaine Vs : ¢o—ModFil ;. — Repp, (Q,) that associates
to a weakly admissible filtered isocrystals a crystalline representation.

Remark 3.2.3. Since we will need this later, let us be more specific about how U'x acts on
V.= HO(XFECP,E(D, o, Fil*Dy)).

Given an element v? € I'Y we have by definition of a I'-equivariant vector bundle and by
adjunction a sequence of maps

Bvop,* @,Yop

E(D, ¢, Fil*Dg) — Oyor 070,E (D, @, Fil* Dy ) 0100 (D, @, Fil* D).

We can pass to global sections and let H°(y?) : HY(E) =V = V = H%(0,00 .E) denote the
operator obtained in this way. Notice that v°P — H°(v°P) is contravariant and does not give
a group homomorphism. But the composition of maps of sets I'xe — I'%? — Aut(V) given by

7+ Spec(y) = H(Spec(y))

18 a group homomorphism.

3.2.2 Families of B,;p-lattices

One can upgrade geometrically the situation using Scholze’s theory of diamonds, since this
theory allows us to consider “families” of Bj.-lattices as a geometric object. Recall that
the Fargues-Fontaine curve Xppc, has a counterpart X FEC in the category of adic spaces.
Moreover it also has relative analogues. If S be an affinoid perfectoid space in characteristic
p, Kedlaya and Liu (See [30] §8.7) associate to S an adic space Xppg that they call the
relative Fargues-Fontaine curve. This construction is functorial in Perfg,, the category of
affinoid perfectoid spaces in characteristic p. Moreover, if (D, ¢) is an isocrystal over Ky and
S is an affinoid perfectoid space over Spa(k, k) one can construct a vector bundle Eg(D, ¢)
over Xrpg. This construction is also functorial in Perf; and recovers £(D,¢) when S =
Spa(CZ,OCz ). Strictly speaking this also requires Kedlaya-Liu’s GAGA equivalence [3()]
8.7.5, 8.7.7.
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In the world of diamonds we have a co-equalizer diagram
Spd(K, O) = Coeq(Spa(C, Ocs) Xspa(K,0) Spa(C., Ocs) = Spa(C), Ocs))
and we also have an identification of affinoid perfectoid spaces
Spa(Cy, Ocs) Xspa(x.0x) SPA(Cy, Ocy) = T x Spa(Cy, Cp™).

If we let Sy = Spa(Cjp, O¢,) and Sy = I'% x Spa(C), Oc) then the Galois action of I'; on
Xprc, and (D, ) constructed by Far_gues and Fontaine can be reinterpreted as glueing

datum
Xrrs, = Xrrs,

over the pair of morphisms Sy == S;. Neither the Fargues-Fontaine curve as an adic spaces
nor the vector bundle £(D, ¢) descend to an adic space or a vector bundle over K. But
as we will see one can perform some geometric constructions in this context that will make
sense as geometric objects over Spd (K, Ok).

Now, given a perfectoid space S € Perfr, the data of a map S — Spd(Kj, Ok,) induces
a “section” at infinity co : S¥ — Xrprg. This is a closed Cartier divisor as in [53] 5.3.7 and
as such it has a good notion of meromorphic functions. We consider the moduli space of
meromorphic modifications of E¢(D, ¢) along oco.

Definition 3.2.4. 1. Welet Gr(E(D,¢)) denote the functor from Perfspar,,ox,) — Sets
that assigns:

(S%f) = {((S5, £V, )} =

Where (S%, f) is an untilt of S over Spa(Ko, Oy, ), V is a vector bundle over Xpp s and
a:V --»Es(D, ) is an isomorphism defined over Xpps \ 0o and meromorphic along
00.

2. Let Grgyr, denote the functor from Perfq, — Sets that assigns:

(S5 1) = {((S5, 1), Y, )} =

Where (S¥, f) is an untilt of S over Spa(Q,, Z,), V is a vector bundle over Spec(B;5(S*%))
and o : V -+ O®" is an isomorphism defined over Spec(Bgr(S*)).

These moduli spaces are ind-proper ind-diamonds over Spd(Ky, Ok,) (and Spd(Q,,Z,)
respectively) and after fixing a basis of D we get an identification

Grar, Xaq, Spd(Ko, Ok,) = Gr(E(D, ¢))

(See [19] 2.12). The second space is the Beilinson-Drinfeld Grassmanian that appears in the
Berkeley notes (See [54] 20.2.1).

We can re-interpret the canonical map Spa(C)y, Oc,) — Spa(Ko, Og,) that comes from
thinking of Ky as a subfield of C, as a map m : Spd(CZ,OCz) — Spd(Ky,Okg,). The
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basechange
Gr(Es(D, ¢)) Xspa(o.0x,)m SPACy, Ocs)

gets identified through Beauville-Laszlo glueing with the moduli space that parametrizes
B-lattices contained in D @, Bqr. This basechange comes equipped with I’ %’O—action and
the set of I'g-invariant B;R—lattices in D®k, Bagr are in bijection with natural transformations
Spd(K,Ok) — Gr(Es(D, p)).

Indeed, if we parametrize ['g-invariant lattices using filtrations as in proposition 3.2.1,
then the BJR—lattice induced by a K-filtration Fil®* Dy allows us to construct a tuple

((O;m m)? S(Da ¥, Fﬂ.DK)a CY)
where « is the canonical meromorphic isomorphism
a:E(D,p, FilI*Dg) --» E(D, ¢)

over Xpp o\ 0o coming from the construction of £(D, ¢, Fil* D) as a modification of £(D, ¢).
A priori this tuple only defines a map Spa(C’Z,OCg) — Gr(E(D,¢)) but since « is I'?-
equivariant this descends to the desired map Spd(K, Ok) — Gr(E(D, ¢)).

Going on with the story one defines Gr*@™(E(D, )) C Gr(E(D,y)) to be the subsheaf
of tuples for which V is fiberwise semi-stable of slope 0. From Kedlaya-Liu’s semi-continuity
theorem (see [54] 22.2.1) we know that this defines an open subfunctor which is called
the admissible locus. Additionally, a map Spd(K,Ok) — Gr(E(D,y)) factors through
Gredm(E(D, ¢)) if and only if it is coming from a weakly admissible filtration. A very
remarkable aspect of the situation is that if n = dimg,(D) then Gre@™(E(D, p)) admits a
pro-étale GL, (Q,)-local system L that “interpolates” between the n-dimensional crystalline
representations associated to (D, ) (See [19] 2.14). Also See [38] for background on quasi-
pro-étale local systems.

Remark 3.2.5. To be more specific, a pro-étale local system L' on Spd(K,Of) corre-
sponds to a local system L, over Spa(C]';,OCg) together with descent data along I'? X
b IK
Spa(CZ,OC;) = Spa(Cf),ch). But pro-étale local systems over Spa(Cg,OCg) are trivial
and of the form IUCZ = % ®q, V' for a Q,-vector space V. Descent datum will correspond
to giving for any vP € T'¥ an isomorphism ©,op : vP*L,, — L, in a continuous way. By
P p
adjunction and passing to global sections as in remark 3.2.5 we get a I' g -representation with
values on GL(V).

The precise claim that we will use is the following.

Proposition 3.2.6. If Fil* Dy is a weakly admissible filtration of (D, y) and

v : Spd(K, O) — Gro®™(E(D, ¢))
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is the map associated to Fil* Dy, then (*L is isomorphic to Ve.s(D, p, Fil*) when we regard
U*IL as a continuous Ik -representation.

Proof. This follows from the definition of the local system L through Kedlaya-Liu’s equiv-
alence [51] 22.3.1, from the definition of the representation associated to a pro-étale local
system discussed in remark 3.2.5 and from the compatibility discussed in remark 3.2.3 to-
gether with the paragraph preceding it. O]

Remark 3.2.7. In a computation done below a change of sign will appear. In this remark we
discuss why this change of sign appears in a simple case. Let the notation be as in proposition
8.2.0, let n = dim(D) and let V = Veis(D, @, Fil*). If we fix a trivialization o : Q) — V we
may conjugate the action of 'y on V' by a to obtain a continuous map that we denote

PHO o - FK — GLn(@p)

Now, let Triv(:*L) denote the moduli space of trivializations of *LL. It is a GL,(Q,)
right torsor over Spd(K, Ok ). The basechange Triv(t*IL)¢c, receives a semi-linear action by
'Y that we can express as:

. o (id,y°P .
P Triv(c" L) Xspack,0x) SPA(Cp, Oc,) L), Triv(e*L) Xspa(r,0x) SPA(Cyp, Oc,).

The topological space |Trive, (t*IL)| becomes a free GL,(Q,) right torsor. An element
a € Triv(*L)(Cy) defines a unique point |o| € |Triv(t*L)e,|. By functoriality of | - | we
obtain an element ¥P(|a|) € [Triv(c*L)c,|. Since GL,(Qy) acts simply transitively there is a
unique element g5, € GLn(Qp) with vP(|a) = |af - gSor this defines a group homomorphism

Po TE = GLn(Qy).

The careful readers should convince themselves that

PO = Pl 0 ()P

where (=)7L T — T'? is the group isomorphism v + Spd(y~1).

3.2.3 Isocrystals with G-structure.

We keep the notation as above, we let G' denote a connected reductive group over Q, and
Repe(Q,) denote the Tannakian category of Q,-linear algebraic representations of G. Recall
the following definition:

Definition 3.2.8. (See [75] §3) An isocrystal with G-structure F, is a ®-exact functor
F : Repa(Q,) — o—Modg,.

To an element b € G(Kj) and a representation (V,p) € Reps(Q,) we associate the
isocrystal
(Dyps 06,) := (V @ Ko, p(b) - (Id @ 7)),
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ranging this construction over (V, p) defines an isocrystal with G-structure
Fb - Repr(Q,) = ¢—Modg, .

We say that two elements by, by, € G(Kj) are o-conjugate to each other if by = g~ - by - 0(g)
for some element g € G(Ky). This defines an equivalence relation and b, is o-conjugate to
by if and only if F;, is isomorphic to Fy,.

Now, when k = k the set of equivalence classes of o-conjugacy is the set B(G) defined
and studied by Kottwitz (See [35] §1.4). In this case, every isocrystal with G-structure is
isomorphic F;, for some b € G (.f(o) and consequently B(G) parametrizes isomorphism classes
of isocrystals with G-structure. The key input in this case is Steinberg’s theorem which
shows the vanishing of the Galois cohomology set H'(T' , G(Ky)) (See [57]). The set B(G)
has a very rich theory, we recall some of it below. For the rest of this subsection, we will
carry the assumption that k = k, so that K, = R’O.

Recall that the category of isocrystals over K| is semisimple and the simple objects can
be parametrized by rational numbers A € Q. In particular, every object (D, ¢) € ¢o—Modk,

admits a canonical “slope” decomposition

(D,¢) = EP(Dr, 02).

A€Q

If we let wy, denote the composition Forg o F, where
Forg : ¢p—Modg, — Vec(Ky)

denotes the forgetful functor to the category of vector spaces over Ky, then the slope decom-
position defines ®-exact Q-grading of wy. In turn, this grading can be interpreted as a slope
morphism v, : D — G, of pro-algebraic groups, where D is the pro-torus with character set
X*(D) =Q.

Consider the abstract group defined as a semi-direct product G(Kj) x o - Z where o has
its natural action on G(Kj).

Definition 3.2.9. (See [//] 1.8) For an element b € G(K,) = G(K,) with conjugacy class
[b] € B(G) we say that:

1. b is decent if there exists an integer s such that (bo)® = (s - vp)(p)o® as elements of
G(Ko) X o - 7.

2. We say that b is basic if the map v, : D — Gk, factors through the center of G.
3. We say that [b] € B(G) is basic if all (equivalently some) element of [b] is basic.

Since we are assuming k& = k and that G is connected reductive, every o-conjugacy class
[b] € B(G) contains a decent element (See [11] 1.11).
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Assume for the rest of the subsection that G is quasi-split over QQ,, and fix subgroups
A CT C B C (@ as in the notation section.

For b € G(K,) we can let v2°™ denote the unique map v™ : D — Ty, in the conjugacy
class of v that is dominant with respect to B. The map ™ factors through A and is defined
over Q,, so we can write /™ € X(A)g = (X (Tg,) ®z Q)" (See [55] 3.2, Introduction of
[9]). This gives a well defined map N : B(G) — X (A)g usually referred to as the Newton
map.

Recall Borovoi’s algebraic fundamental group 71 (G) which can be defined as the quotient
of X, (T@) by the co-root lattice. This group comes equipped with I'g, action and Kottwitz
constructs a map ¢ : B(G) = (m1(G))ry, that is usually referred to as the Kottwitz map.

An important result of Kottwitz [35] states that the map of sets

(Vglom’ KJ(;) : B(G) — N X Wl(G)pr
is injective. This says that these invariants completely determine the isomorphism classes of
isocrystals with G-structure. Now, if we are given an element p € X, (T@) with reflex field
E we may define an element

_ Tg,
e X (A)g =X Tg)o
by averaging over the dominant elements inside a conjugacy class in the Galois orbit of u:
1

el 2
P yeGal(E/Qy)

We can now recall Kottwitz” definition of the set B(G, u) C B(G).

Definition 3.2.10. The set B(G, u) consists of those conjugacy classes [b] € B(G) for which
rka([0]) = [ul in m(G)ry, and for which i — viem € X (A)g is a non-negative Q-linear

combination of positive co-roots.

3.2.4 (G-bundles and G-valued crystalline representations

In this subsection we assume again that k is perfect but not necessarily algebraically closed.
We also assume that G is reductive over @, but not necessarily quasi-split over Q,. Just as in
the case of schemes, one has a theory of G-bundles over the relative Fargues-Fontaine curve
that uses a Tannakian approach (See [53] Appendix to lecture 19 for the details). Given
S € Perf and F : Reps(Q,) — ¢—Modg, an isocrystal with G-structure we can define a
®-exact functor Er g : Repr(Q,) = Vec(Xpps) by letting

Ers(V,p) = Es(F(V,p)),

this defines a G-bundle over Xrps. When we are given b € G(Ky) we write &, ¢ instead of
&r, 5. This allow us to extend Tannakianly definition 3.2.4.
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Definition 3.2.11. 1. We let Gr(F) denote the functor from Perfspa(ro,0x,) — Sets that
assigns:

(% F) = {((S, ). G. )}/ =

Where (S, f) is an untilt of S over Spa(Ky,Or,), G is a G-bundle over Xrps and
a: G --» Exg is an isomorphism defined over Xpps \ 0o and meromorphic along oo.

When b € G(K,) we write Gr(&,) instead of Gr(Fy).

2. We let Grg denote the functor from Perfspqq, z,) — Sets that assigns:

(% F) = {((S%, ). G. )}/ =

Where (S*, f) is an untilt of S over Spa(Qy,Z,), G is a G-bundle over Spec(B;,(S%))
and o : G --» G is a trivialization defined over Spec(Byr(S*)).

In the previous definition the meromorphicity condition asks that for every (V,p) €
Rep(Q,) the associated map of vector bundles p,(«) : p.G --+ E(Dy,, ¢p,) is meromorphic
along oo.

As with the GL, case, the two moduli spaces become isomorphic after basechange to
Spd(Ky, Ok, ). Instead of fixing a basis one has to fix an isomorphism of the fiber functors:

(wcan & KO) = Wr

Here wr : Reps(Q,) — ¢—Modg, — Ky — Vec denotes Forg o F, and if b € G(K)) we write
wp instead of wx,. A careful inspection of the construction of w, shows that (in contrast with
wz) there is a canonical choice of isomorphism wy, = we,,. We won’t really use this.

As with the GL,, case we can define the admissible locus as the subsheaf Gr®m(&,) C
Gr(&) of those tuples ((S%, f), G, ) such that 2*G is the trivial G-bundle for every geomet-
ric point x : Spa(C’,C'"") — S. This is again an open subsheaf and it admits a pro-étale
G(Qp)-torsor which we will also denote by L (See [53] 22.5.2).

To make contact with crystalline representations one needs to recall how the Tannakian
formalism interacts with filtrations, we refer the reader to [18] for the details. Recall
that given a fiber functor w : Reps(Q,) — Vec(S) one can consider ®-exact filtrations
Fil*(w) which are sequences of ®-exact functors Fil"(w) : Reps(Q,) — Vec(S) indexed
by n € N such that Fil"(w) D Fil"™(w) and that are subject to various compatibility
conditions (See [18] chapitre IV §2.1.1, [I1] 4.2.6). To such a filtration one can asso-
ciate a ®-grading (gr(Fil*(w))) which produces a morphism of algebraic groups over S,
prirw) : G — Aut®(w') (See [18] chapitre IV §1.3 [11] 4.2.3). Here o' = (gr(Fil*(w))),
denotes the ®-exact functor obtained from the grading after we forget the graded structure.
If z = Spec(C) is a geometric point of S, we may find an isomorphism v/ = w, and this
defines a conjugacy class of cocharacters into Aut®(w,). This conjugacy class is independent
of the isomorphism chosen and we can denote it [ppie () (2)].

Now, fix an isomorphism wy & Ween, we get an isomorphism Aut®(w,) = Gg,. Further-
more, if we are given a conjugacy class [u] of morphisms u : G,, % — Ggy with field of
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definition Ey/Ky (See [11] 6.1.2) contained in C), then we can consider the moduli functor
of filtrations of wy, of type [u]. We denote this moduli space by

Tl 1y Schyg, — Sets,
it is given by the formula
Tl q(R) = {Fil*(wy,r) | [pritew)(z)] = [p] forallz € Spec(R)}

where Fil*(wy, ) ranges over the set of ®-exact filtrations of wy. This functor does not depend
of our choice of isomorphism wy = Wean.

Since G is defined over Q, the conjugacy class [u| will be defined over a finite exten-
sion E of Q, contained in C, and Z1 Fo 1] is isomorphic to the basechange of a similarly
defined moduli functor .%# l‘”c‘[‘:] If F//E is a finite extension and p € [u] is a representative
defined over I’ then p defines a parabolic subgroup P, C Gy and Jl;c[‘”j is isomorphic to
the generalized flag variety G/P,. In particular, .# l“cm and Z1 Fo ) A€ represented by
geometrically connected smooth projective schemes over Spec(E) and Spec(Ep) respectively
(See [11] 6.1.4). The associated adic space ( J‘l‘g’g’[u}) evaluates on a complete sheafy Huber
pair (R, RT) over Spa(Ey, Og,) to the set:

( J\Zﬁ (1]

)*/(R, R") = {Fil*(wy,r) | [priew)(z)] = [1] for allz € Spa(R, R)}

This description relies on theorem 2.7.7 [30] of Kedlaya and Liu, and on the fact that a

morphism of adic spaces Spa(R, Rt) — (F l‘g’(’) M)“d is given by a morphism of locally ringed
spaces Spa(R, RT) — FI5°

o (4] Tl M)“d ([24] 3.8). In particular, if
K /K, is a complete non-Archimedean field extension then

by the construction of (%

(%%Z,[u])“d(f(, Ok) = flﬁi,wf().

Just as [p] allows us to define .# lwz ) 1t also allows us to discuss boundedness conditions
for Scholze’s affine B;r-Grassmanians. Given an algebraically closed non-Archimedean field
C in characteristic p and C* an untilt over E we have an identification

G(Bar(C?))/G(Bp(C*) = Gre((C.CT))
([51] 19.1.2, 19.1.1). By the Cartan decomposition we have another identification
G(Br(CH\G(Bar(C*) /G(BR(C*) = Hom(G,, 5 ,Gg,)/ G-

This identification sends a conjugacy class [u] to the double coset defined by & := p(§)
where ¢ € Bj,(C*) is a uniformizer. Notice that to define the map it is crucial to have a
fixed embedding E C C* so that the conjugacy class of pic: is well defined.

The set of conjugacy classes of cocharacters comes equipped with a partial order called
the Bruhat order. Given a map m € Grg Xq, Spd(E,Og)(R, R*) and a geometric point
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x : Spa(C,Ct) — Spa(R, R™) we say that m has relative position of type [u] at z, (of type
< [p] at x respectively), if the pullback z*m lands in the double coset associated to [u] (a
coset bounded by [u] respectively). This allow us to define subsheaves

Grely € Gl € Gre x Spd(E, Og),

given by the condition that for every geometric point, the pullback x*m has relative position
(1] (bounded by [u] respectively). The space Gré%] is spatial diamond that is proper over

Spd(F, Og) and Gr[g}E C Gré%] is an open subdiamond.

We can now compare the affine B;g-Grassmanian to the flag variety. Recall that there
is a Tannakianly defined Bialynicki-Birula map ([51] 19.4.2),

Thy 1 Grdly = (Flgm ).

We emphasize that there is a change of signs which is a consequence of the change of signs that
appeared in remark 3.2.2 and of our convention on filtrations. Let us sketch the construction
of this map. Let m € G'/’[Cl;,]E(R, RT) and let (V,p) € Reps(Q,) be a representation. Then

p«(m) € GTgZ‘iE(R, R*) is a tuple ((R?, ), Vo, @pm) Where V, , is a projective Bjp(R*)-
module and «,,, an isomorphism of the form:

Qo Vo @pt Bar(RF) = V @p Bar(RF)
Let A, ,, denote o, (V,m) CV ®@p Bar(R*) and identify V @z Rf with
(V @ Bjp(R))/€ - (V ©@p Bjp(RY)).
We let
Fil,,,(V ®p B) = (€' Ny NV @5 BIp(R))/ (€ My NE(V @5 Bip(RF))).

Using the techniques discussed in ([51] 19.4.2) one can justify that each Filz’m(V ®p RY) is
a Ri-vector sub-bundle of V ®g R* and that the family Fil} (wean)[V; p] := Fil5, . (V ®p R?)

is a ®-exact filtration of we,, over R*. Then, W%L}B(m) = Fil’ (wean)-

Let Ey denote the compositum of £ and Ky in C,. With an analogous construction as
the one sketched above one can also construct the following variation of the Bialynicki-Birula
map

why 1 Gril(&) — Fl .

This allows the following group-theoretically enhanced rephrasing of proposition 3.2.1.

Proposition 3.2.12. Let b € G(Ky) let [u] € Hom(G,, Gg;)/G and let K/Eq be a finite
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field extension. Then, the Bialynicki-Birula map induces a bijection

i Grin (&) (K, Ok) = (F 15 (-

)Q (K7 OK)a
of Spd(K, Ok )-valued points.

Proof. One may take a faithful representation p : G — GL(V), this induces the following
commutative diagram.

(1]

Gri)(&) —22— (Z12 _))°

| |

lpoml w
G p.8) s (B0
In this diagram, the two vertical arrows are closed immersions. From proposition 3.2.1,
and by taking into account the boundedness conditions, one can deduce that the horizontal
bottom arrow induces a bijection
mhiy Griy (p.&) (I, Ox) = (FIG) o) (K, Oxc).

Clearly the top horizontal arrow is injective since the vertical arrows will induce injections
on (K, Ok)-points.

To prove surjectivity let m € (FI [_M])O(K, Ok). We may use that the construction
of proposition 3.2.1 and the Beauville-Laszlo theorem are functorial to produce from m a
I"?-equivariant modification of G-bundles

a:G--»&¢,.

This induces an element n : Spd(K, Og) — Gr[gj (&) with W%}B(n) =m. O

Let Repf”™(Q,) denote the category of continuous Galois representations. It is a neu-
tral Tannakian category with canonical fiber functor w x (W, 7) = W. Recall that by the
Tannakian formalism to specify a continuous representation p : I'y — G(Q,) (up to G(Q,)-
conjugation) it is sufficient to specify a ®-exact functor F : Repg(Q,) — Repfﬂ?t((@p) for
which w o F is isomorphic to wWean. Now, the full subcategory Rep?*(Q,) of crystalline
representations is Tannakian and we can define crystalline representations with G-structure
as those ®-exact functors F : Repg(Q,) — Repf™(Q,) such that F(V, p) is crystalline for
all (V. p) € Repg(Q)-

Given a pair (b, ) with b € G(Ky) and p @ G,k — Gg we can construct a filtered

isocrystal with G-structure by defining a functor

Fop : Rep(Q,) = p—ModFilgk,
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such that
Fou (Vs p) = (Db, P, Fil})
with
Fill(Dy,, © K) = @pei(V © K)For@w=t"),

Definition 3.2.13. (See [//] 1.18). We say that a pair (b, ) with b € G(Ky) and p : G,,, —
Gk 1s admissible if the functor Fy, ,, only takes values on weakly admissible filtered isocrystals.

In general, even if (b, 1) is admissible the functor V,,;s 0 F , might not define a crystalline
representation with G-structure. Indeed, the composition wg{; o Vipis 0 Fp,, might fail to be
isomorphic to weq,. Nevertheless, this issue goes away if we impose that [b], the o-conjugacy
class of b in G(Ky), lies on the Kottwitz set B(G, ) (See [11] 11.4.3).

Associated to the admissible pair (b, ) there is a map y,, : Spd(K,Ok) — ﬁl‘g’; =

defined by the filtration Fil}, on wy, and we can let x, : Spd(K, Ok) — Gr%u(é’b) denote
the unique lift of y; , of proposition 3.2.12. The following is a group-theoretic refinement of
proposition 3.2.6 and it is one of the key inputs from modern p-adic Hodge theory that we
will need later on.

Proposition 3.2.14. Suppose that (b,p) is an admissible pair with [b] € B(G,u), then

the map xy,, : Spd(K,Ok) — Gr%&(c‘fb) factors through the admissible locus Gr%’adm(&).
Moreover, if . denotes the pro-étale G(Q,)-torsor on Gr*™™(&,) then x; I agrees with the
crystalline representation with G-structure defined by the functor Viis 0 Fp .

Proof. Let (V,p) € Rep(Q,) and consider the I'x-equivariant modification

(02 Vm(b’u),p -2 gb,Cp (V7 p)

associated to p oz, € Gr(&(V, p))(K, Ok). The admissibility of (b, 1) implies that Vs, , ,
is a semi-stable vector bundle of slope 0. Moreover, by proposition 3.2.6 there is a canonical
identification

HO<XFF,Cpa V:L‘(b’u),p) = ‘/cris o ‘Fb,u<v> P)

Since Vg, . » 1s semi-stable of slope 0 we have the identification

_ 0
V"E(b,u)yp - OXFF,Cp ® H (XFF,Cp’ Vﬂf(b,u),p)'

Since [b] € B(G, i) then wlk o Vs o Fy (V. p) = Wean, and the functor

can

Vi Reps(Q,) — Vecspr,,

is isomorphic t0 Ween(—) ® OXFF,C,,~ Which says precisely that the G-torsor induced by a

geometric point over x(, ) is the trivial G-torsor so that ) lies in the admissible locus.
For the last part of the statement we may reason as in 3.2.5 by observing that quasi-pro-

étale G(Q,)-local systems over Spd(C), Ocs ) are trivial and that j L can be interpreted as
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descent datum, which in turn can be interpreted as continuous Galois representations. Using
the identity
HO(XFF,CW Vx(b,u)”o) = Viris © ]:b,u(v> p)

one can justify that we get the correct Galois representation. O]

3.2.5 M. Chen’s result on p-adic Hodge Theory

In this subsection we assume that k = k so that K, = [v(o, we also assume that G is an
unramified reductive group over Q,. In this case the group is quasi-split and we may choose
groups A CT C B C G as we have done in the notation.

Definition 3.2.15. (See [8] 5.0.4, [9] 2.5.6) Recall the notation of definition 3.2.10. We
say that a pair ([b], [u]) with [b] € B(G,p) and [p] € X.(Tg;) is HN-irreducible if all the

coefficients of i — V2™ as a Q-linear combination of simple coroots are strictly positive.

In section §4 the following result of M. Chen will be a key ingredient.

Theorem 3.2.16. (See [5] 5.0.6)
Let pp : G,, — Gk be a morphism and let b € G(Ky) be a decent element such that

b] € B(G, 1) and [u] has reflex field E. Suppose that the map Spec(K) — 9[2*’[7}1] induced

by the filtration defined by p maps to the generic point of |ﬁl°g‘fju]| under the map

Gr Wb
Tl

__ O ]Wcan n g [Wcan
4] = JlE,[*,u} XE E— 71

Ev[f'u']’

induced from the canonical isomorphism Wean ®q,: Ko = wp. Assume further that the pair
([b], [1]) is HN-irreducible, then the following hold:

1. The pair (b, j1) is admissible and defines a crystalline representation &,,, : I'x — G(Qp),
well-defined up to conjugation.

2. The Zariski closure of &,(T'x) C G contains G and &,,(Ux) contains an open
subgroup of G4 (Q,).

Remark 3.2.17. M. Chen’s result is slightly stronger, but this is the formulation that we
will use below. Observe that K has infinite transcendence degree over E, so it makes sense
for a K-point to lie topologically over the generic point of ﬁlgc[“fu].

Combining proposition 3.2.14 with Chen’s theorem 3.2.16 and using the fact that every
element b € G(Kj) is o-conjugate to a decent one we can deduce the following statement.

Corollary 3.2.18. Let b € G(Ko) and p € X/ (Tg,). Suppose that [b] € B(G,u). For

every finite extension K/Kq there is a map x : Spd(K,Ok) — Gr(é’b)%‘]’adm such that if
pz : T = G(Q,) denotes the Galois representation associated to *L, then p,(Lx)NGY (Q,)
is open in G (Q,).
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3.2.6 The geometric realization of L. and p-adic shtukas

In this section we assume k = k and we let G be any reductive group over Qp. We fix
b € G(Ko), [u] € Hom(Gy,, Gg,) and we let Ey = Ko - £ denote the field of definition of
(1] over Ky. Let K C G(Q,) denote an open compact subgroup, recall the moduli space of
p-adic shtukas that appears in the Berkeley notes.

Definition 3.2.19. (See [77] 23.3.1) We define Shtq [ : Perfy — Sets as the presheaf
that assigns to S € Perfy isomorphism classes of tuples
((S% ), € . P, )
such that:
1. (S*%, f) is an untilt of S over Ej.

2. £ is a G-bundle on the relative Fargues-Fontaine Xppg curve whose fibers on geometric
points of S are isomorphic to the trivial G-torsor.

3. a: & --+ & is a modification of G-bundles defined over Xrpg\ S* meromorphic along
S% and whose type is bounded by [u] on geometric points.

4. Px is a pro-étale K-torsor and v is an identification of Pxx*G(Q,) with the pro-étale
G(Qyp)-torsor that £ defines under the equivalence of [55] theorem 22.5.2.

It is proven in [53] that the presheaves Shte ) are locally spatial diamonds over
Spd(Fo, OF,), and that whenever p is a minuscule conjugacy class of cocharacters then
Shtgp,[u),kc is represented by the diamond associated to a smooth rigid-analytic space over
Spa(Ey, Og,). As Scholze and Weinstein prove ([53] 24.3.5) these moduli spaces are group-
theoretic generalization of (the generic fiber of) Rapoport-Zink spaces. Since all of our
arguments work for the general case of moduli spaces of p-adic shtukas we will not make
distinction with the minuscule case.

Scholze and Weinstein construct a family of “Grothendieck-Messing” period morphisms

TGM,K ShtG,b,[u]JC — GT’%Cém’S[M(Eb)

given by the formula:

(S ) . Prc, o) = (S5, £), €, )

For every IC this gives a surjective étale morphism of locally spatial diamonds. Moreover,
this family is functorial on K. That is, if K; C Ky are two compact and open subsets then
we get a commutative diagram of étale maps,

TK1,Ko

Shte p, ), > Shtg b, (),

w’cl /
TGM,Ko

GTQEC(l)mS[M (gb)
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where the transition map 7, i, is the one deduced from assigning to [Py, the corresponding
Ko-torsor Py, xX1 Ky, Also, if K C Ky is normal of finite index then the transition maps
Tk, K, are surjective and finite étale.

The flexibility of the category of diamonds allows us to define moduli spaces of p-adic
shtukas associated to an arbitrary compact subgroup X' C G(Q,) including the case K’ = {e}
(which is usually referred to as the infinite level). Indeed, the set of compact open subgroups
K C G(Q,) containing K’ is co-filtered and has intersection equal to K'. We may define the
limit of diamonds Shtg () = T&nmc’c Shte s, [k, together with a period map

e - Shtap o — GT?Eim’S[M] (&)

This sheaf has the structure of a locally spatial diamond. Moreover, although the period
map in general might not be étale it is always a quasi-proétale map (See [51] 10.1).

Moduli spaces of shtukas at infinite level (K’ = {e}) have the following pleasant descrip-
tion,

Shit,p,ju],00(S) = {(Sﬁ, f,a:G--+&}

where (S, f) denotes an untilt of S over Ey, G denotes the trivial G-bundle over Xprg and
 is a modification of G-bundles over Xrpg \ S* meromorphic along S* and whose type is
bounded by [u] on geometric points. The natural action of G(Q,) on the trivial torsor G
induces a right action of G(Q,) on Shtg (4,00 (See §2.8 to contrast the G(Q,)-action to more
obvious G(Q,)-action). Scholze and Weinstein prove that the period map mgar0o together
with the action of G(Q,) is the geometric realization of the pro-étale G(Q,)-torsor L over

Gr%dm’g[“ ] (&). In other words, they prove that the two definitions, the one given directly

0
and the one given in terms of a limit, agree.

3.2.7 Weil descent

In this section we discuss Weil descent datum and its induced Weil-group action, for this
subsection we assume k = k so that Ky = K,. Recall that we defined W /p as the subset
of continuous automorphisms of C, that act as ¢ := Idg ® 0™ on E=F K, It evidently
contains I'; and we may topologize W, /B SO that I'j, — W /g s a topological immersion
and an open map. We get a strict exact sequence of topological groups

~7
e=>Tp =2 Wpp—0o"—e

Whenever g € Wy p we will write g% € Wg’;E for the morphism of spaces g :
Spd(Cp, O¢,) — Spd(Cp, O¢,) induced by the map of fields. Note that if g; = g5 0 g3 in
Wp,p then g7 = g3¥ o g in WP .

JE 1 3 © 02 BB

Y]

Definition 3.2.20. 1. Let G be a v-sheaf over Spd(E,Oz), a Weil descent datum for G
is an isomorphism T : G — 6°P*G over Spd(E’, Op).
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2. Giwen Weil descent datum for G and n € N we define inductively

™ = 6P (" Nor1:G = 5P*G — 5P"G.

n

For —n we define =" = ¢°P*"([7"]71) : G — 6°P*~"G. We also define 7° = Idg.

Weil descent datum will provide us with actions by W instead of only I'Y. In the
following sections we will need to endow our spaces with continuous actions rather than
plain actions by an abstract group. An efficient way to provide a v-sheaf with a continuous
action is to endow it with the action of the group sheaf WE‘ZP that parametrizes continuous

maps [Spa(R, RF)| — W2
Lemma 3.2.21. Suppose we are given a right I'z-action on a v-sheaf,
m: F X FE — .F,

and suppose we are given a group homomorphism ¢ : W — Aut(F) such that 6(y°F) =
m(—,7) for all constant elements v € I'y C I'z. Then there is a unique right Wi p-action

m' : F x Wy p — F with m‘/ré = m and 6(v?) = m/(—,v) for all constant elements

v € Wg g

Proof. Let Wg% (respectively ['4*) denote the sheaf of locally constant maps [Spa(R, RT)| —

disc

Wi i (respectively I';;). We observe that any element g € Wy, 5 can be written as g“* -~y

with 7 € g and g% € W=, Moreover if g{**“y, = g§"*“y, then 7, - 75 le [ésc. To define
an action of Wy 5 it is enough to define actions of I and ngsc that agree on chsc because

Wi p(R, RT) = Wds<(R RT) -E(R, R") and ngsc(R, R™) HE(R, R*) = FdEiSC(R, R™).

E/E
Now, 6 defines an action my : F X Wg“c — F and the hypothesis ensure that my agrees

with m on ngsc.
O]

Proposition 3.2.22. If (G, 1) is a v-sheaf over Spd(E,OE) equipped with a Weil-descent
datum, then G X ; Spd(Cy, Oc,) comes equipped with a right action by WE‘/E'

Proof. We let ¢ : Spd(C,, O¢,) — Spd(F, ) denote the map induced from the canonical
inclusion. By lemma 3.2.21 it is enough to specify a right action by I' ; and a homomorphism

of abstract groups f : W2 — Aut(Gc,). Since G is defined over Eand E = C, /T, we already

have a well-defined right I";-action on G¢,. Let g € W /p Testricting to o™ on E, we define
f(g°?) as the g°P-linear map that appears in the top triangle of the following commutative
diagram with Cartesian squares.

134



Go, LT (PG = gopr (Gc,) > Spd(Cy, Oc, )

gop gop
I(g°P) L
Ge, l » Spd(Cy, Oc,)
g n N a_op,*,ng J/ N Spd(E, OE) L
\ g > Spd(Eu” OE)

Checking that f is a group homomorphism is a tedious diagram chase. To prove that
the right actions of I';; and dec restricted to Fdwc are compatible we recall that the action
r I'z on Gc, is constructed as the limit of actlons FF/E on Gp over subfields F' C C, that

are Galois and of finite degree over E. Bach of these actions by a finite discrete group are
constructed through a commutative diagram as the one above, except that for g € I' . i We
have a canonical identification G — ¢°»*(Gr). The compatibility boils down to the fact
that we defined 7° = Idg. O

Of course given two diamonds with Weil descent datum (G;, ;) over Spd(E ,Op) and a
map f : G — G satisfying a commutative diagram:

G —L— g

lﬁ lfz

Op,*g f "Op,*g

the corresponding map f : Gi Xz Spd(Cy,O¢,) — G2 X Spd(Cy, O¢,) will be Wi g
equivariant.

We can give Weil descent datum to the moduli problems we have been working with.

Proposition 3.2.23. e There are canonical identifications of v-sheaves compatible with
inclusion and with the structure map to Spd(Koy, Ok,)-

1. O'OP’*GTKO(gb) = GTK()(g (b))
2. O'OP’*GT’adm (gb) GT’adm (50(1))).

e There are canonical isomorphisms of v-sheaves compatible with the inclusion, with the
period morphism and with the structure map to Spd(E, Og).

1. 5_op,*G,r.E§[“](gb) = Gré[u}(gds(b))'
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) &Op7*GraEdm7§[H] (&) = G?"aédm7g[#]<505(b))'

3. 6% Shte .00 = ShtG,o0m), )00

Proof. Recall that Spd(Ky,Ok,) = Spd(k,k) Xz o Z,° and that o : Spd(Ko, Ok,) —
Spd(Ky, Ok, ) gets identified with Frob®” x id. Given an object

[S — Spd(Ky,Ok,)] € Perf o

defined by an untilt (S*, f) over Spa(Kjy, Ok, ) we let S° € Peerg be given by (S%, 0o f). For
any sheaf G over Spd(Kj, Ok,) the functor c»*G : Perf k¢ — Sets is given by the formula
o?*G(S) = G(S7). We remark that although the construction of the relative Fargues-
Fontaine curve Xpp g does not depend on the structure map S — Spd(k, k), the construction
of the G-bundle &, g does. Actually, if (D, ) € p—Modg, then Es-(D, ¢) = Es(c* D, c*¢),
and for isocrystals of the form (Dy ,, s,,), with b € G(Kj) and (V, p) € Rep(Q,), one can
compute explicitly that
(0" Do 0" 0bp) = (Do) pr Pa(v).0);

so that the equalities & g0 = E5),5 and &, g5 = Es(p),¢ hold.

From here the proof of each item is very similar and follows from applying the formula
oP*G(S) = G(57) (or the analogous formula 6°P*G(S) = G(S9)) to the different moduli
spaces. We only spell the details for 60p’*Gngm’§[“}(€b) = G’ngm’g[”} (Eosv))-

Fix S = Spa(R,R") together with a map S — Spd(E,OE) and a geometric point
x : Spd(C,C*) — S. Recall that 6 = Id ® 0° so that if . : £ — E ®q,. Ko = E is the
natural inclusion then & ot = . Recall that Gr%dm’g[“ 1(&)(5%) parametrizes modifications
a: G - Ep),s with G fiberwise the trivial bundle and a bounded on geometric points by
[1]. Now, in the preceding description we use the map z° : Spa(C,CF) — Spd(E,Op) to
define the bijection

X.(Gp)/G 2 G(BR(CH\G(Bar(CH)) /G(Br(CH)
with which we compare against u. Notice again that the set
G(Bir(CHN\G(Bar(C?)) /G (Bx(C))

does not depend of the structure morphism S — Spd(E, Op), and that the bijection only
depends on the composition x : Spd(C, C") — Spd(F, Og). Since 6ot = ¢ we may conclude.
]

Now, observe that b and o(b) are o-conjugate by b. More precisely, the family of linear
maps
p(b) : (Dd(b),m on(b),p) — (Db,pa SOb,p)
is a functorial isomorphism of isocrystals that defines an isomorphism of ®-exact functors
o Fo)y — Fp. The morphism of isocrystals ¢, extends by functoriality to morphisms of
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G-bundles ¢y : E,5) — & and allows us to endow our moduli of interest with Weil descent
datum, for example:

Ty 1 Gri, (&) = 0P Gri, (&) = Gri, (Ex))

and
Ty - ShtG,b,M,oo — (ATOP’*ShtG’MM],OO = Shtgﬂs(b)’[#]’oo

by the applications

(5%, £).G.0) = ((S%.).G. (65") 0 @)] [((S%. ). G.a) = (%, 1), G. (6" 0 )]

Moreover, it is not hard to see that the descent datum is compatible with the period mor-
phism 7gy. An important feature of the situation is that the Weil descent datum on our
moduli spaces only depends on the isomorphism class of the isocrystal F,. More precisely, if
by and by are o-conjugate by g, by = g 'byo(g) then g induces a commutative diagram like
the one below

GTKO (gbl ) ;) GTKO (8(,2)

lTb 1 lTb 2

O'Op’*GTKO(gbl) w O'Op’*GTKO(ng).

Indeed, this follows from the identity o(g)b;' = by,'g. The same applies to all the
spaces considered in proposition 3.2.23. Using proposition 3.2.22 we can endow Shtq (4,00 X
Spd(Cy, O¢,) with a right W, g-action. Moreover, the space Shtgp[],00 X Spd(Cy, O¢,) with

its right W, g-action are independent of the choice of b € [b].

3.2.8 The action of J,(Q,)

In this section we let & = k. In ([35] A.2) Kottwitz shows how to associate to the ®-
functor F : Reps(Q,) — ¢—Mod, a connected reductive group J, over Q, whose group of
Qp-valued points is the o-centralizer of b,

H(Qy) = {9 € G(Ko) | g7 -b-0(g) = b} .

Let us recall this construction. For any Q,-algebra R we let ¢—Modg, ®q, R denote the
category whose objects are the same as in ¢p—Modg, and morphisms are

Hompg((D1,¢1), (D2, 2)) := HomyMody, (D1, 1), (Da, p2)) ®q, R
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There is a natural ®-functor Sz : ¢—Modg, = p—Modg, ®g, R and J,(R) is defined as
Aut®(Pr o Fp). With J, defined in this way we have

Jb(Qp) = Aut®(.7:b) Q Aut®(Forg o ]:b) = G(KO)

Moreover, recall that the slope decomposition produces a map v, : D = Gk,, if we denote
M, the centralizer of v, in Gk, then (Jy)g, is isomorphic to M,. Since the elements of
Jp(Q,) act on Fp, then we get a homomorphism of abstract groups J,(Q,) — Aut(&s) this
already gives an action of J,(Qp) on Shtg 1,00 X Spd(Cy, Oc, ) and the other spaces we have
considered, but from this description it is not clear, for example, if this action is continuous
with respect to the p-adic topology on J,(Q,). A slightly better approach is to endow our
moduli spaces with an action of Jb((@p) Let us sketch how to do this following the ideas that
the author learned from reading ([16] I11.4.7). We point out that the reference does this in
a much cleaner but less concrete way.

We let J, : Peero — Sets denote the group sheaf that assigns to S — Spd(Kj, Ok, ) the
group of automorphlsms of & g. This is a sheaf of groups and a locally spatial diamond over
Spd(Ky, Ok,). We can endow all of the moduli problems that appear in proposition 3.2.23
with an evident left action by 7,. Moreover, it is easy to see that this action commutes with
the right action of G(Q,) on Shtg |,

Recall that the category of isocrystals p—Modg, is naturally Q-graded. This gives a
family of compatible Q-gradings on &, s(V, p) for all (V, p) € Reps(Q,) and all S € Perf K-
We let J; C J, denote the subsheaf of automorphisms of & that respect the Q-grading.
In what follows we construct an injective map ¢, : (J4(Qp))x, — Jp of group diamonds
over Spd(Ky, Ok,) that induces an isomorphism onto J;. We begin by explaining the vector
bundle case.

Suppose (D, @) is an isocrystal in p—Mod,, and that

(D, ) = @(D,\, ©x)

AEQ

is its slope decomposition. The endomorphism object internal to the category of isocrystals
End((D,y)) has as 0-graded piece

€D End((Dx, ) € End((D, ¢)).
A€Q

Analogously, if we fix S € Perf Ko We have identifications of internal objects

The right hand side is naturally graded and we have an injective map from the 0-graded
piece

D End(Es(Dy, ¢1)) € End(Es(D, ¢)).

AEQ
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Global sections of this later vector bundle are precisely the endomorphisms of Eg(D, ¢)
that respect the Q-grading. Now, each term End(Es(Dy, py)) is an algebra whose underlying
vector bundle is trivial. This last implies

H(Xpps, GB End(Es(Dx, ¢x))) = Homeon(|S], @ Endp-modr, (Dx, ¢2)).
AEQ A€Q

Here the topology on Endy-ody, (Dx, ¢a) is the one obtained from knowing that it is a
finite dimensional Q,-vector space. Passing to units and recalling that

@ EndSD—MOdKO (DM 90)\) = EndSO_MOdKO (D7 90)
A€Q

we get our desired map v(p ) @ Aut(D, @) — Aut(Es(D, p)) which identifies the left-hand
group with the automorphisms of E¢(D, ) that respect the Q-grading.

Let us discuss the general case. Given an object (V,p) € Reps(Q,) we get a natural
map of algebraic groups J, — Aut(Fy(V,p)). In particular, we get a continuous morphism
Yy @ Bh(Qp) = Aut(Fp(V, p))(Q,). Given a continuous map f : [S| — J,(Q,) we consider
the composition ¢y o f. This induces an automorphism of Es(F,(V, p)) that respects the
Q-grading, namely vz, (v, (v o f). If we are given a morphism 7 : (V, pv) — (W, pw) we
obtain the following commutative diagram:

E(Fp(m
Es(Fo(V, pv)) Y £o(Fo (W, pw))
l"]:b(V,p) (vof) l’“}_b(v,p) (bwof)
E(Fp(m
Es(Fo(V, pr)) 2 £6(Fo (W, pur))

This gives overall an automorphism of &, ¢ that respects Q-grading on each &, 5(V/ p).
This constructs the map ¢, @ J,(Q,) — J, which clearly factors through J;. Conversely,
assume we are given a map m € J{(S5). For all (V,p) € Rep,(Q,) we obtain a continuous
map

m.p) : [S| = Aut(Fo(V,0))(Qp) € Endy—nody, (Fo(V; p))-

Moreover, given an arrow (V, py) = (W, p) we obtain two maps
|S| — Homcp—ModKO (fb(‘/v PV)7 ‘Fb(VVv IOW))

One is given as the composition of F,(7) with the family of endomorphisms mw,,, ) and
the other as the composition of my,, ) with F(7) in the appropriate order. From the con-
struction of my,,) these two endomorphisms coincide. We claim this determines a unique
continuous map [S| — Jy(Q,). Indeed, Jy(Q,) is the subgroup of [], , Aut(Fp(V,p))(Qp)
that satisfies the commutativity constraints imposed by the arrows in Repe(Q,). This gives
a map |S| = J,(Q,) which a priori is only continuous with respect to the weak topology
making the maps J,(Q,) — Aut(Fp(V, p))(Q,) continuous. But if (V, p) is a faithful repre-
sentation of G then the map of algebraic groups J, — Aut(V, p) is a closed immersion. This
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gives that the weak topology on J,(Q,) is the p-adic topology.

Let us prove that the left action of J,(Q,) on our moduli spaces through ¢, commutes, in
an appropriate sense, with the Weil group action. The first thing we observe is that the group
Ty itself comes equipped with Weil descent datum Indeed, c°P*J, is canonically identified

with J,4) and the isomorphism of bundles &, ——> &y induces a Weil descent datum
T To = o T = To)

obtained from conjugating by ¢;,. One readily verifies that the action map commutes with
Weil descent datum, as in the diagram below.

Tb X ko Gricy (Ep) — G, (Ep)

l(Tb va) lTb

o%P* Ty Xy 0P *Gr ey (Ep) orrm oP*Gri, (&)

Indeed, both Weil descent data were defined by conjugating by ¢,. Mutatis mutandis
the same applies to all the moduli spaces that appear in proposition 3.2.23 and the variants
using 0.

The constant group J,(Q,) is defined over Spd(F,), this induces a canonical Weil descent
datum on (J,(Q,))k,. Let us prove that the morphism

Ly - Jb(@p) — \71,

is compatible with Weil descent datum. Let S € Perfy,, let f : |S| — J,(Q,) be a continuous
map and let S* denote an untilt of S over Ky. For all (V,p) € Repg(Q,) we obtain from
tp and f an automorphism of Es(Fy(V, p)), and analogously we obtain from o*i, and f an
automorphism of Ego (F,(V, p)) = Es(Fowy(V, p)). By abuse of notation we let o : J,(Q,) —
Jo)(Qp) denote the group isomorphism obtained from regarding J,(Q,) and J,)(Q,) as
subgroups of G(Kj) and letting ¢ act on this later group. Consider the following diagram.

( (@p Ko — 7 b) @p

\ l"(b)
N U*%

To prove that ¢, is compatible with Weil descent datum one must verify that the lower
triangle commutes. One way to do this is to verify that the upper triangle commutes and
that the square commutes. Both commutativities are left to the verification of the careful
reader. The commutativity of the upper triangle ultimately follows from the fact that if
h: K§ — K{ is a Ky-linear automorphism given by a matrix (h;;), then o*h is given by the
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matrix (o(h;j)). The commutativity of the square ultimately follows from the fact that if
g1 b-o(g) = b then the identity b=' - g-b = o(g) also holds.

From this we can conclude that the moduli spaces of proposition 3.2.23 come equipped
with a Ko-linear (respectively E-linear) left action by J,(Q,) that commutes with the o-
linear (respectively &-linear) right action of Wi, (respectively Wy / ). Indeed, the action

map is compatible with Weil descent datum and since J,(Q,) is a constant group defined
over [F,, the Weil group action on it is trivial.

3.2.9 Group functoriality

We start this subsection discussing a convention. As we have discussed above the space
Sht b, u),00 X SPA(Cyp, O¢,) comes equipped naturally with a left action by J,(Q,) and right
actions by G(Q,) and W /- We have also justified that these three actions commute. We

may always replace the left J,(Q,)-action by a right .J,(Q,)-action by defining a-j := 7' av.

In this way we can say more succinctly that Shte )00 X Spd(Cyp, O¢,) comes equipped with
a right action by the group G(Q,) x Jy(Q,) x Wy, 5. Moreover Shtg p (4,00 X Spd(Cyp, Oc,)

together with its right action by G(Q,) x Jp(Qp) X Wi only depends on b through its

associated element [b] € B(G).

In this section we briefly describe how this action behaves with respect to a morphism
of algebraic groups. Fix such a morphism f : G — H of reductive groups over Q,. Let
by =1(b) € H(L) and let [ug] = [fo p]. From the Tannakian definition of & = &€ o F, and
the identity Fp,, = Fp o f* we get a canonical identification of H-torsors f,&, = &, which
defines a morphism

foo,oo : ShtG,b,[u],oo — ShtH,bH,[uH],oo

sending

a:G--» &) [fua: H--5&,].

Associated to by we can form J,, = Aut®(Fp,, ) and we get a morphism of algebraic
groups f: J, = Jp,,. We get commutative diagrams

Jy(Qp) —— To(Qy) Shtcp 00— " Shtcpfu].00
lf lf lfoo,oo l&* foo,00
23 i Ak
JbH (@p) —H> ‘-7bH (Qp) ShtHvaﬂ[:u'HLoo —H> g ShtHvav[:u'HLoo

We conclude that the basechange of f, o, to Spd(C,, Oc,) is equivariant with respect to the
G(Qp) x Jy(Qy) x Wy p-action, where G(Qp) x Jp(Qp) acts on Shtpp, [uy),o through the

map

£:G(Q) x Jb(Qp) = H(Qy) X Sy (Qy)

obtained from the map of algebraic groups f: G x J, = H X J,,,.
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We may also impose a level structure K C G(Q,) to get a family of morphisms

fic,sc) = Shta e = Shtp by (u) fc)-

This family of maps ranges over the compact subgroups of G(Q,). Notice that even if K
is open in G(Q,), f() might not be open in H(Q,). Each morphism in this family is
J»(Qp)-equivariant and its basechange to Spd(C,, Oc,) is W /prequivariant.

3.3 The case of tori

3.3.1 Norm morphisms

In this section we study Shtg ()00 X 5 SPA(Cyp, O¢,) together with its action by G(Q,) x
Jp(Qp) x W /g in the case in which G is a torus. We change our notation slightly and let

G =T for this case. We remark that this case was tackled by M. Chen in [7] and it was also
thoroughly discussed in [141]. We recall the story in a different language.

By the work of Kottwitz we know that every element of B(T') is basic and that the
Kottwitz map rr : B(T') — m(T)r,, = X.(Ig;)r, is a bijection. The sets B(T, u) are
singletons and are determined by the image of x4 in Wl(T)FQp.

Let us show that in the case of tori moduli spaces of p-adic shtukas are 0-dimensional.

Proposition 3.3.1. If b € B(T, u) then all the maps in the following diagram are isomor-

phisms:

Grim(g) —— artg) —— arig)

T~ l |

(F1g_ )0 — Spd(E,Op)

E -

Proof. The top and left arrows in the square are isomorphisms since p is minuscule. Since T
is a torus the only parabolic subgroup of 7 is itself, this gives ﬁlgf:[_u} = Ty /Ty = Spec(E).

Now, when b € B(T, i) the admissible locus GraEdm’S[“ l(&) is non-empty and open within
Gr[Ef‘] (&). Since [Spd(E, Op)| = {*} we must have Gradm M (&,) = Spd(E, Op). O

On geometric points the situation is very simple, we have that the natural structure map
Grgim’g“ (&) = Spd(Cy, Oc,) is an isomorphism and

Shtr, .00 X Cp = T(Q,) x Spd(Cy, O, ),

since on geometric points every right 7'(Q,)-torsor is trivial. It becomes more interesting
when we compare the action of J4(Q,) and Wy to that of T(Q,). We begin by discussing

the action of J,(Q)).
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Recall that if b is basic then J, is an inner form of 7', and that since T is commutative
we must have 7" = J,. More precisely we have a canonical inclusion J,(Q,) C T(Kj) that
induces an isomorphism onto 7(Q,), we denote by j, this identification.

Proposition 3.3.2. The action of T(Q,) and J,(Q,) are inverse to each other. In other
words, if S € Perfc,, f:[S| = Jo(Qp) is a continuous map, and o € Shtypy, )00 X C,, then

a g f = o@) n(f7).

Before starting the proof of proposition 3.3.2 we recall the following lemma on Tannakian
formalism:

Lemma 3.3.3. Let X be a quasi-compact separated scheme over Q,, G an affine algebraic
group over Q, with center Z(G) and let Ty, Ta be two G-torsors over X, let U be a Q,-linear
Tannakian category and let F : Repp(Q,) — U denote an exact ®-functor.

1. There is a canonical injection 1r : Z(G)(Q,) — Aut®(F)
2. There are canonical injections v; : Z(G)(Q,) — Autx(T;) for i € {1,2}.

3. If Ty and Ty are isomorphic over X then the left action of Z(G)(Q,) on Isomy (71, 73)
through Autx (T1) coincides with the right action of Z(G)(Q,) on Isom(Ty,T3) through
Autx(T3). That is, ao1(g) = t2(g) o a for every g € T(Q,) and a € Isomx (71, 7a).

Proof. The proof of the first claim and the second claim are very similar so we only prove the
second. Let wy; and wy, denote the fiber functors associated to 77 and 7 respectively. Con-
sider the identity functor Id : Reps(Q,) — Repg(Q,), we have that Z(G)(Q,) = Aut®(Id) C
Aut® (wean,g,) = G(Q,). For any g € Z(G)(Q,) we let n, : Id — Id denote the natural trans-
formation that acts on (V,p) by p(g). Notice that ng(,v’p) € Hompe.,, ((V, p), (V, p)) since g is
central.

This gives the desired maps:

L s Aut®(Id) — Aut®(wr; o Id)

g+ wri(ng)

Let us prove the third claim, suppose now that a : wy; = wy; is an isomorphism and
let g € Z(G)(Q,). We have by definition ¢;(g) = wy;(n,). To prove the formula a o 11(g) =
12(g) o @ we must prove that the following diagram is commutative:

wr (V, p) —— wp(V,p)

lwﬁ (no) l% (no)

wr (V, p) ——= wp(V,p)

But n, : (V,p) = (V, p) is a morphism in Rep(Q,), so by definition of natural transformation
the diagram must be commutative.
]
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Proof of proposition 3.3.2. We will justify the claim with the aid of the following commuta-
tive diagram which we explain below:

AutXFFC e <— T(@p —) AutXFFC (gb)

T/ \L
\ /

Recall that F, and F, denote isocrystals with T-structure, that J,(Q,) = Aut®(F;) and that
&, = &£ o F. The triangles on the left and right of the diagram correspond to the triangles:

Aut®(Id) > Aut®(F, o Id)

\ /

Aut®(€ o Fy 0 Id)

In particular, the triangles on the first diagram are commutative. The bottom square corre-
sponds to the concrete computation of J,(Q,) as a o-centralizer that is

J(Qp) = {g € G(Ky) | g~ 'bo(g) = b},

since T is abelian this is T(K)°='? = T(Q,). This implies that the maps ¢z, and ¢z, of
lemma 3.3.3 are isomorphisms and we have that 7, = fl

By lemma 3.3.3, for all o € Isomy,.. \oo(&e; &) and all ¢ € T(Q,) we have t7,(t) o o =
aor (t). We can compute the right action of J,(Q,) as follows:

a- ) J=J oa

=ur,(b(77)) o
)

[
Q R
@)
502
£ o
<
SN
<<

On the other hand,
Shtpp[0,00(Cp) € IsomXFF,Cp\Oo(ge’ &),
and this inclusion is T(Q,) x J,(Q,)-equivariant. Moreover, the natural map of sets
Sht 7, (4,00 (Cp) = |Shtzp,[u),00 X Cp

is bijective and the J,(Q,)-action is determined by the J,(Q,)-action. This finishes the
proof. O]
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Let us study the Weil group action. In contrast to the actions of J,(Q,) and T'(Q,) the
action of W /p on Sht7p (4,00 X Cp is not Cp-linear. In particular, we can only compare the
actions of Wi p and T'(Q,) on those invariants of Shtrp, ..o X Cp, that do not depend on the
structure morphism to Spd(Cj, O¢,). In our case we compare the continuous actions on the
topological space of connected components. As we have seen above this topological space is
a topological right T'(Q,)-torsor. Let @ € mo(Shtrp ()00 X Cp) and v € Wy . We have

x 'WE“/E T=2 'G(Qp) Gry,x

for a unique element g, ., € T(Q,). Since the actions of Wy 5 and T(Q,) commute we get
a group homomorphism g_, : ng — T(Qp). Since T(Q,) is commutative this morphism is
independent of . Moreover, the naive map of sets v — g, , which would usually not be a
group homomorphism is a group homomorphism again by the commutativity of 7°(Q,). We
denote this later group homomorphism by

mry - WE/E — T(Qp)

The following line of reasoning is taken from [11] lemma 1.22, which in turn is an elab-
oration of an argument in [31] page 413/41. Let E C Q, denote a finite field extension let
{Torig, } denote the category of tori defined over Q,. Recall the functor X, (—) : {Torig, } —
Sets given by the set of maps G,, — Tg . Consider the subfunctor X, E C X, given by
the subset of maps G,,, — Ty, whose ﬁeld of definition is E. This functor is representable
by Resg/q,G,, and comes equ1pped with a universal cocharacter j, € X% (Resg/q,Gm)-
In other words, given a torus T € {Torig,} and p € XF(T) there is a unique map
Nmy, : Resgg,Gnm — T of algebraic groups over Q, such that Nm,, o p, = p in X, (7).
The universal cocharacter can be expressed on E-points as follows:

EX e—eRe (E ® E)

Associated to (i, there is a unique element of [b,] € B(Resg/q, Gy, 1) since the Kottwitz
map r : B(G) = m1(G)rg, is bijective for tori. We fix a representative b, € ReSE/Qme(Qp)
and abreviate by mg,, the map mges, /0y Grmttn) previously constructed.

We can compute the Wy, g-action on [Shtry, ()00 X Cp| by reducing it to the universal
case. Suppose we are given u € XE(T) and b € T(Kj) with [b] € B(T, j1), then automatically
(b, ) is admissible as in definition 3.2.13 and from the functoriality of the Kottwitz map
we have that [Nm,(b,)] = [b] in B(T). We may replace b by Nm,(b,) and we get a norm
morphism

Nmu : ShtResE/@p(Gm),bu,[uu],oo X Cp — ShtT,b,[u],oo X Cp.

This map is £ x W /p-equivariant when the right space is endowed with the action induced
from the map Nm,, : Resg/q,(Gn)(Q,) = E* — T(Q,). We can deduce the following.

Proposition 3.3.4. Let the notation be as above, for all T € {Torig,} and p € XF(T) we
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have
mr, = Nmy, omg,,

as maps Wi — T(Qy).

Proof. Fix = € WO(ShtResE/@p(Gm),bu,[uu],oo x Cp) with image y € mo(Shtry [0 X Cp) and
v e W /B The equivariance of the norm map with respect to £* and W /B allow us to
compute:

Y 7(Qp) mT,u(’Y) =YWy
= NmIJ»(I .WE/E /y)
= Nmy(z -px mpu, (7))

= y .T(Qp) Nmﬂ(mEv,U/u (,}/))

3.3.2 The Weil group action on the Lubin-Tate case

Our task now is to compute the action of W, 5 on |ShtResE/Qp(Gm)7b (ua]ioo X Cp|. This is the

Uy

only section in which it will pay off to let £ be a finite field. Let £ C @ be a finite field
extension of Q,, and fix a uniformizer m € £/. We let F' C E denote the maximal unramified
extension, we let h = [E : Q,] and we let s = [F': Q,]. Let Hpr, denote a Lubin-Tate formal
group law with respect to 7 [37]. We may think of Hpr, as a p-divisible group defined over
Op and endowed with a strict Og-action ([13]). This means that the induced Og-action on
Lie(Hpr) is the canonical one. As a p-divisible group Hpr has height A and dimension 1.
We let M = M(H LT’FPS) denote the covariant Dieudonné module over F' obtained from

Grothendieck-Messing theory [10]. We normalize the action of Frobenious on the covariant
Dieudonné theory as in [6], [51], [52]. Let Mrr denote the Lie algebra of the universal vector
extension of H;r over Og. We have a canonical identification M LT[%] = Myr ®r E, this

allows us to endow M with the usual one step filtration with Fil !(Mpr®pE) = Mr®@pE
and

Fil ' (Myr ®p E)/Fil°(Mpr @ E) = Lz‘e(HLT)[%].

This data gives an object Dpr = (Mpr, o7, Fil*(Mpr ®p E)) in the category of weakly
admissible filtered isocrystals. Moreover, due to our normalization of Frobenious action, the
crystalline representation associated by Fontaine, V..;s(Drr), gets identified on the nose with
the rational Tate module of H. That is, V,.;s(Drr) = T,(H LT)E] as I'g-representations, we
let Vi denote this representation.

The action of O on Hpr induces an action of £ on Dyr and on Vir respecting all
structures, this way we may endow Dyr and Vi with Resg /Qp(Gm)—structure if we reason
as in [13] remark 3.4. Since Resg/q, (Gy,) is a torus there is a unique cocharacter prr €
XE(Res £/0,(Gn)) defining the filtration on Dzp. We compute jizr.
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We may think of My as an E ®g, F' module endowed with Id ® o-linear automorphism
wrr. We get a decomposition
My = € (Mer),
vF—FE
of E-vector spaces where F-acts on (Mr), through the embedding ¢ : F* — E. Since ¢rr
permutes these embeddings we get that each (M7), has E-dimension 1. This in particular
implies that (Myr) is a rank 1 free E ®q, F-module. We get a decomposition

Mpr ®p E = @ (Mpr ®@F E).

ecldem

of E®q, F-modules where e ranges over the idempotent elements of F®q, E. The cocharacter
urr corresponds to a grading of My r ® E compatible with this decomposition. Moreover,
gr*(Mpr ®p E) maps isomorphically onto Lie(Hyr)[1]. Let ea denote the idempotent
associated to the diagonal map A : F'®q, E — E. Since the action of O on Hpr, is strict
the action of E®q, E on Lie(Hpr)[+] is through A (i.e. (61 ®eg)-m = e1-e3-m). We have that

(MLT KRp E) (MLT KRp E) and Consequently gr (MLT XRp E) = @e;«éeA(MLT XRp E)e.
The cocharacter G, p — ResE/@p(Gm) g that defines this grading is on E-valued points the
following;:

EX =4 BX 2% (E® E)*

In other words, ppr = —u,. This information is already enough to compute the Weil group
action on ShtResE/Q (Gm) b so0 X Chp-
Consider the followmg identity and notice again the change of signs coming from remark
3.2.2
Gr™ i (&y,,) = Ty

Elppr] — Spd(E OE )
On this space, L is characterized by the crystalline representation it defines since this space
consists of only one point. See remarks 3.2.3 and 3.2.5 and proposition 3.2.14. From the
compatibility of Fontaine’s functor with the Tate module we deduce that the crystalline
representation associated to L is the left action of I'g on T,,(H LT,W)[%].

After choosing a E' ®q, F' basis for Mzr and letting b, denote the action of ¢ we get
an isomorphism

TT?:U( ) X Cp - ShtResE/Q (Gm) buv[ﬂu X C

where the space on the left denotes the moduli space of trivializations of L. The space
Triv(L) x C,, being defined over Spd(E, Og), comes equipped with a canonical I'?-action,
but we emphasize that this action is not compatible with the Weil group action WOp cry
on Shtgres, J0p (Gon)buslial oo X C, that we defined in section §2.7. Despite this, the canomcal
action on Triv(L) x C, will allow us to compute the W sp-action we are interested in.

Let k denote an algebraically closed field extension of F,s and K as on the notation
section. The Weil group action on Triv(L) x C, that we are interested in comes from
replacing the canonical Weil descent datum by the Weil descent datum 7 induced from the
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automorphism
(SOSLT)_l : MLT — (Id & US)*MLT = MLT-

Let v € Wy, p with 7k, = 0™, and let

Ocans Oweir W;’;E — Aut(Triv(L) x Cp)
denote the action morphisms coming from the canonical and from the “pj -modified” Weil
descent data. Then ©., (7)™ - Owen(y) = 7 with 7 as in definition 3.2.20.

Now, recall that in the standard (or classical) normalization of covariant Dieudonné
theory one defines the isocrystal structure ¢pr : 0*Mpr — Mpr by defining 7 = M(V)
where V : Hg? — Hpr is the Verschiebung map. In the normalization we use we have
by definition ¢ = ’“TT. Recall that o7 o M(Froby,,) = p, in other words ¢rr =
M(Froby,,)~". This gives ¢} coincides with M(Frob;+). If we consider the multiplication
map [7| : Hpr — Hpr restricted to Spec(F,:) we see from the definition of a Lubin-Tate
formal group law that it agrees with the s-Frobenious automorphism of schemes. That is
Frob;; coincides with 1 as quasi-isogenies. Overall this implies that the action of ¢5, on
M r is multiplication by % ® 1, and consequently 7 acts on Triv(LL) via multiplication by
™ € E* = Resg/q,(Gm)(Qy).

We claim now that m, p = Artg where Artg denotes Artin’s reciprocity map. Indeed,
since the crystalline representation associated to L is the Lubin-Tate character, the action of
O can o0 mo(Triv(IL) x C') when restricted to the inertia subgroup /g is through the inverse of
the Lubin-Tate character. Notice again the sign change, this was discussed on remark 3.2.7.
This also gives the action of Oy since O, and Oy agree on Ig. If 6, denotes the unique
lift of Frobenious on W2 with OxE, = Id with E; the Lubin-Tate extension associated to
7, we see that O, (6,) acts trivially on 7o(Triv(L)). This gives that Owey(d,) acts on
mo(Triv(L)) by 7 which is multiplication by 7. Specifying the action of Ir and of &, is one
way of characterizing Artin’s reciprocity map Artg.

The following statement summarizes the results discussed on this section, for this state-
ment we let k = k:

Theorem 3.3.5. (Compare with [7] 4.1) Let T be a torus over Q,, b € T(Ky), u € X.(T)
with [b] € B(T, ). Let E C C, be the field of definition of u, let Artg : W — (I'g)®™ — E*
denote Artin’s reciprocity character of local class field theory, let Nm,, : Resg/q,(Gpn) — T

be the unique map with Nmy, o pi,, as discussed above and let ArtE/E denote the composition

ArtE/E cWip = W Arts, E*. where the map Wi g — Wi is the one induced by the

inclusion of fields E2 C EC C,. Then the following hold:
1. Shtpy 00 X Cp is a trivial right T(Q,)-torsor over Spd(Cy, Oc,).

2. If s € mo(Shtrp, .00 X Cp) and (g,4,7) € T(Qp) x J(Qy) X Wiy then

5-(9,5,7) =5 (g-3(G71) - (Nmy, 0 Art g, (7))
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where j, @ Jy(Q,) — T(Q,) is the isomorphism specified by regarding J,(Q,) as a
subgroup of T(Ky).

Since we have a full description of the Galois action we can easily compute from theorem
3.3.5 the connected components of Shtyp, ) - as a space over Spd(E, Op). The computation
is easier to explain with the following lemma whose proof we leave to the reader:

Lemma 3.3.6. Let IC be a locally profinite group, let L a p-adic field with Galois group I'f, and
Lx a pro-étale KC-torsor over Spd(L,Or). Define Triv(ILx) as the moduli of trivializations
of L. Then:

1. If C s the p-adic completion of an algebraic closure of L, then the choice of a map
a: Spd(C,O0¢) — Triv(Lk) determines a group homomorphism p, : T — K.

2. For any k € K we have pay, = k™ - po - k.
3. The action of IC on mo(Triv(LLg)) is transitive.

4. If mo(«v) denotes the unique connected component to which |a| maps to, then the stabi-
lizer subgroup is given by the formula K@) = pa(I'T).

Proposition 3.3.7. Let K C T(Q,) denote the largest compact subgroup, the following
statements hold.

1. mo(Shtrp u,00) is a free right T(Qp) /Nmy,(Art s, (L' 5))-torsor.
2. mo(Shtr ) = mo(Shtrp, e X Cp) and it is a free right T'(Qy)/KC-torsor.

Proof. The first statement follow directly from lemma 3.3.6 and theorem 3.3.5. The second
statement follows from the fact that the action of I'z is continuous so the action of this
compact group factors through the maximal compact subgroup. O

3.4 On the unramified case.

For this section k& = k. The purpose of this section is to compute 7o (Shte )00 X C,) together
with its right action by G(Q,) x Jy(Qp) x Wy g-action under the assumption that G is an
unramified reductive group and that (b, u) is HN-irreducible (See definition 3.2.15). We recall
that in this case the reflex field is of the form F = Qs for some s € N and consequently
E = K. Nevertheless, with the notation we have chosen, W, /B is the subgroup of Wy, of
those automorphisms of C, that lift a power of 0° : Ky — K.
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3.4.1 Connected components of affine Deligne Lusztig Varieties

As it turns out, the connected components of moduli spaces of p-adic shtukas can be com-
puted from knowledge about the connected components of affine Deligne-Lusztig varieties.
In this section we recall the relation. Recall that if G is an unramified group then there is a
connected reductive group over Z, whose generic fiber is isomorphic to GG. Let us fix such a
model and by abuse of notation denote it by G. We let K = G(Z,) and we let K = G(Ox,).
Since we are assuming k = k, the group Gy, is split over Ky and we have by the Cartan
decomposition a bijection

K\G(Ky)/K = X.(Tg;)
given by
= p* = p(p) € T(Ko).
We may construct a map kg : G(Ky) — Wl(G)pr. Given an element b € G(Kj) there

is a unique p’ € X, (Tg,) with b € K\p* /K. Then kg(b) is defined to be [1], the induced
class of i/ in Wl(G)p@p. This map is a group homomorphism that is well-defined on o-
conjugacy classes. Moreover, the map constructed in this way descends to the Kottwitz map
kG : B(G) — m1(G)r,, that we discussed on section §2.3.

Recall that associated to a pair (b, ;) one can associate an affine Deligne Lusztig variety
X5"(b). This is a perfect scheme (See [7]) over Spec(k) whose k-valued points can be
described as:

X" (b)(k) = {9 K € G(Ko)/K | g7' - b-0(g) € K\p' /K with /' < u}

In [9], [41] [22], the problem of determining connected components of affine Deligne
Lusztig varieties is thoroughly discussed. Although the description in full generality is com-
plicated, in our situation (G reductive and K hyperspecial) the problem is completely settled.
In the references provided above, the connected components are described in three steps. The
first step is to pass to the case of a simple adjoint group and it is done as follows:

Theorem 3.4.1. (See [I] 2.4.2) Let G denote the adjoint quotient of G, then there are
natural maps wg and Wgaa and elements ¢y, € T1(G) (Co,y 0y € T1(G™) respectively) well-
defined up to multiplication by 7 (G) % (respectively m (G*) % ) making the following dia-
gram commutative and Cartesian:

X5 (b) > X510 (byg)

lwc lwcad

™ (G)'% x Spec(k) —— ¢, 71 (G*YT% x Spec(k)

adsHad

In the statement above the two sets that appear on the lower horizontal arrow should be
interpreted as discrete topological groups so that the product is a disjoint union of copies of
Spec(k). Once one reduces the problem to the adjoint case, one can further simplify to the
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simple adjoint case by observing that if G = G; X G5 then we get a decomposition
XG"(b) = X" (b) i X5 (ba).

This is how the first step is completed in the references.

The second step in the strategy is to reduce the general simple adjoint group case to the
case in which (b, ) is HN-indecomposable. In this work we only consider the case in which
(b, ) is already HN-irreducible which is a stronger condition to being indecomposable. For
this reason we do not review this step.

The third and final step is the determination of mo(X5" (b)) when G is simple adjoint and
(b, ) is HN-irreducible or when it is HN-indecomposable but not HN-irreducible. Again, we
only review the HN-irreducible case.

Theorem 3.4.2. ([/1] 1.1, [9] 1.1, [22] 8.1) If (b,p) is HN-irreducible and G = G is
simple and adjoint then wq : wo(X5" (b)) — 51 (G % s a bijection.

In what follows we rephrase these result in a form that will be more useful for our
purposes. For this let G" denote the derived subgroup of G, let G* := G /G%" the maximal
abelian quotient and denote by det : G — G /G%" the quotient map. We will often refer to
the quotient map G — G as the determinant map.

Corollary 3.4.3. If G is simply connected the natural map det : X5"(b) — Xéfbab(bab)
induced from det : G — G gives a bijection of connected components mo(X5" (b))

WO(Xéfl,“b(bab)) whenever (b, i) is HN-irreducible.

~

Remark 3.4.4. Since Xéﬁ,“b(bab) is a disjoint union of copies of Spec(k) and Spec(k) is al-
gebraically closed, we could say instead that the map X5"(b) — X ke (bay) has geometrically

Gab
connected fibers.

Proof. For the convenience of the reader we provide an easy argument using theorems 3.4.2
and 3.4.1. A pair (b, 1) is HN-irreducible if and only if for every Q,-simple factor G; of G
with projection map 7; : G — G; the pair (b;, ;) := (m;(b), m; o ) is HN-irreducible. Indeed,
the coefficient of ™ — @™ associated to a positive root can be computed on the simple
factors of the adjoint quotient. From theorem 3.4.1 we get a Cartesian diagram:

mo(XG" (b)) —— mo(XG!" (b1)) % -+ % mo(XG!" (b))

|we e

oy (G)' o —— Cpy 1 (G1) % X e X gy T (Gr) T

The vertical right hand map is a bijection by theorem 3.4.2 which implies the vertical left
hand map is also a bijection by theorem 3.4.1.

The result follows from showing that in the commutative diagram below the bottom
horizontal arrow and the vertical right hand arrow are both bijective.
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mo(XE" (b)) —— mo( X5k (b))

l’u)G l’wgab

Cb,#ﬂ-l(G>FQp I Cbab’/»‘abT‘-l(Gab)FQp

Since G is simply connected we have a I'g -equivariant identification 71 (G) — 71 (G*) so
the bottom map is easily seen to be a bijection. Moreover, the adjoint quotient of G% is {e}

and theorem 3.4.1 says that wgas : Xéffbab (bab> —> Chop a1 (Gab)r@p is an isomorphism in this

case.

]

Theorem 2 explains the role that affine Deligne-Lusztig varieties will play in our compu-
tation. Let us recall it in the notation of chapter 3.

Theorem 3.4.5. Let G be an unramified reductive group over Q,, i a conjugacy class of
geometric cocharacters and [b] € B(G, ).

a) There is a continuous and J,(Q,)-equivariant specialization map

Sp ¢ [Shtgp, a0 X Cp| = | X5 (D).
b) The specialization map induces a bijection of connected components

70(SP) : 70(Shtep fuee X Cp) — To(X5" (D).

3.4.2 The simply connected case

In this subsection we compute 7mo(Shtep[),00) under the assumption that G is simply
connected.

Proposition 3.4.6. Suppose that G is as above. The determinant map induces a surjective
map of locally spatial diamonds

det : Shtgp [),00 — ShtGabbab’[#ab]yoo

Proof. We may verify surjectivity after basechanging to an algebraic closure. Moreover, we
can choose a section s : Spa(C,Ct) — Gr?g)m’g[“ ] (&) and consider the following commutative

diagram.

152



G(Q,) x Spa(C,C™T) » G(Q,) x Spa(C, CT)

F F

GTIS(([);L](SZ)) Spa(O, C+> E— ShtGabﬁab’[MabLoo XKO Spa(07 O+)

l /

ShtG,b,[,u],oo X Ko Spa(C, C+)

ShtG’,b,[u],oo X

We can consequently reduce to the surjectivity of G(Q,) — G®(Q,). That is, we must

prove that can lift continuous maps f € C°(|Spa(R, R")|,G*(Q,)) to a continuous map
f € C°(Spa(R, R")|,G(Q,)). The key point is, of course, that since G" is simply connected
by Kneser’s theorem [31] the map of groups G(Q,) — G®(Q,) is surjective.

Now, let Z(G) denotes the center of G. We get a strict map of topological abelian groups
Z(@)[Q,] = G®(Q,) with finite kernel and cokernel. Im(Z(G)[Q,]) is an open subgroups
and there is a finite number of elements g¢1,...,9, € G(Q,) with Ugy,g; - Im(Z(G)[Q,]) =
G®(Q,). The map U,g; - Z(G)[Q,]) — G®(Q,) is surjective and factors through G(Q,)

which finishes the proof. O

Lemma 3.4.7. Let G be as above (unramified and such that G* = G*). Let K C G(Q,)
be a hyperspecial subgroup. Suppose (b, u) is HN-irreducible, then

det : ShtG,b,[u],lC — ShtGab,bab,[,uab},det(IC)

has geometrically connected fibers.

Proof. Since G splits over an unramified extension, we can construct an exact sequence
der ab
e—=>G"" -G —-0" —e

of reductive groups over Z,. Indeed, this evident for split groups and we may use étale descent
from Spec(Z,:) to Spec(Z,) in the general case. An application of Lang’s theorem proves
that det(K) = G®(Z,) which is the maximal bounded subgroup of G*. By functoriality our
results on chapter 1 and 2 we have a commutative diagram of specialization maps:

| ShtG,b,[u],lC X Cp | ﬂ) | ShtGab,bab’[uab]ydet(’C) X Cp |

lspg lspgab

| XG"(b) | = X (ba) |

2\

The vertical maps give bijections of connected components by theorem 3.4.5 and the lower
horizontal map induces a bijection of connected components by corollary 3.4.3. O]

The following proposition is a particular case of an unpublished result of Hansen and
Weinstein that follows from the work done in [19]. We provide an alternative proof that
follows the steps of the analogous statement in [8] Lemme 6.1.3.
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Proposition 3.4.8. Let G be as above and let (b, i) be HN-irreducible. Then Grﬁém’g[“] (&)
is geometrically connected over Spd(Ky, Of,).

Proof. Let Spa(C,O¢) — Spd(Ky, Ok,) be a map with C' a non-Archimedean algebraically
closed field, £ C G(Q,) a hyperspecial subgroup, and let M denote a connected component
of Shtgp .0 ¥ Spd(C, O¢). We consider the restriction of the period morphism 7 x.c :

M — Grgdm’g[“}(é'b). By lemma 3.4.7, M is an open subdiamond of Sht 1)« % Spd(C, O¢)
and by étaleness of maum o the set U = meumrc(M) is a connected open subset of
Grgdm’s[“ ] (&). We claim, and prove below, that this open subset doesn’t depend on the

choice of M. This already implies Grgdm’s[“ ](&)) = mamk,c(M) and in particular that it is

connected.

Let us prove the claim, for this we take a connected component M, of Shte )00 ¥
Spd(C, O¢) that maps to M. Notice that o c(Ma) = M since the groups K' C K of finite
index are cofinal and for those the transition maps

ShtG,b,[u],IC’ X Spd(O, O(;) — ShtG’,b,[u],IC X Spd(O, Oc)

are finite étale and surjective so that on topological level the transition maps are open and
closed. This also implies U = mgp(Moo).

By lemma 3.4.7 mo(Shtq (4,6 X SpA(C, Oc)) — mo(Shtgab yab a6 geric)) 18 @ bijection. Let
M’ denote some other connected component, and let z and z’ denote the elements defined
by M and M’ in m(Shtg ¢ % Spd(C, Oc)). Now, G®(Q,) acts transitively on

WO(ShtGabbab’[HabLoo X SI)d.(C(7 OC))
and consequently G%(Q,)/det(K) acts transitively on
7TO(ShtG“b,b“b,[,uab},det(lC) X Spd(C, OC))

This allow us to find an element ¢ € G(Q,) with det(z) - det(g) = det(z’). Let z :
Spd(C,C*) — U be a geometric point and let T : Spd(C,C") — M, be a lift of .
Consider = - g. On one hand it is a lift of x, and on the other hand its projection to
Shte p .6 X Spd(C, O¢) lands on M'. Indeed, we have a commutative diagram:

Shtgyb,w’oo(c, ) —det ShtGabﬁab’[N(zb]’oo(C, C)

lﬂ—ooJC lﬂ-oo,det(lC)

Shtcp .k (C, CF) —25 Shtgas pab favy deric) (C, C)
We have:

det © Too (T + §) = oo det(kc) © det(T - g)
= Too,det(K) [det(f) ’ d@t(g)]
= Too,det(K) © det(f> ’ det(g)
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This map lands on det(z) - det(g) which is det(z"). This implies that 7 (7 - g) is a geometric
point on M’.

This proves that any topological point of U also comes from a point in M’, and that
Tam (M) C maar (M), Since the roles of M and M’ in the proof can be reversed the converse
also holds. O

Lemma 3.4.9. Let K be a hyperspecial subgroup of G(Q,) and let K% = KNG (Q,). Let
m € mo(Shtgab pav [00) o X SPA(C, O¢)) and let X, denote the space defined by the following
Cartesian diagram:

X, > Spd(C, O¢)

! I

Shtg,b,[#]po x O —det ShtGab}bab’[MabLoo x C.

Then K" acts transitively on mo(X,,).

Proof. Since Shtgab pab 00 o X SPA(C, O¢) is 0-dimensional, the space X, is the collection of
connected components of Shte (4,00 X Spd(C, O¢) that map to m. Let z,y € mo(X,,), using
lemma 3.4.7 we see that Too () = Teoxc(y), we let M denote this connected component.
Since Sht (4,00 X SPA(C, O¢) is a K-torsor over Shte ), X Spd(C, O¢), K acts transitively
on the set of connected components of Sht¢ p, 4,00 X Spd(C, O¢) over M. In particular, there
is an element g € K with x - g = y. Since det(x) = det(y) we must have that m - det(g) = m,
but the action of G*(Q,) on m(Shtg .00 X Spd(C,O¢)) is simple so det(g) = e and
g € G*"(Q,) as we wanted to show. O

We can now describe connected components at infinite level.

Theorem 3.4.10. Suppose G is an unramified group over Q,, suppose that G is simply
connected and suppose that (b, pu) is HN-irreducible, then the determinant map

detoo,oo : ShtG,b,[,u],oo — ShtGab’baby[uabLoo

has connected geometric fibers.

Proof. Since Shtgab pab et 00 X SPA(Cyp, O¢,) is isomorphic to G?(Q,) x Spd(Cy, Oc,), we
may prove instead that the determinant map induces a bijection

Wo(det) . WO(ShtG,b,[M],oo X Spd(Cp, Ocp)) — ﬂo(shtGabybabiuab]’OO X Spd(Cp, Ocp)).

Indeed, we may use [51] 16.2 which says that cohomology of a locally spatial diamond is
invariant under the change of geometric point. In particular, this applies to the set of
connected components since it is a cohomological invariant.

Let x € mo(Shte p [),00 X SPA(Cp, Oc,)). Given K a finite extension of Ky we let 2x denote
the image of z on mo(Shte 00 X SPA(K, Ok)) and let f : Spd(K,Ox) — Gredm=skl(g,)
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be a point whose associated crystalline representation is as in corollary 3.2.18. Let Sy :=
Triv(f*(L)) the geometric realization of f*L. This space is also the fiber over f of the
infinite level Grothendieck-Messing period map. Let s € my(Sf) be an element mapping to
Tx. In summary we have taken a commutative diagram as follows:

x — 2 WO(Shth[u] X Spd(cpaOCp))

]

7T0(Sf) L) WO(ShtG,b,[u]po X Spd(K, OK))

We let G2 (respectively G2 and G9°") denote the stabilizer in G%"(Q,) of its action
on 7o(Shte p,[),00 X SPA(Cy, Oc,)) (respectively mo(Shtep ()00 X SPA(K, Ok)) and mo(Sy)).

By Chen’s theorem 3.2.16 (phrased in terms of lemma 3.3.6) G is an open subgroup of
G"(Q,) and we have inclusions G, G4" C G, By lemma 3.4.9, GI - K% = G%"(Q,)
which implies that Gi‘;{r - Kder = G (Q,) as well. In particular, the projection map K% —
GUT(Q,)/Gr is surjective.

Since Gder((@p) /G has the discrete topology and K% is compact, we get that G
is closed and of finite index within G4 (Q,). Moreover, since G%" is quasi-split (even
unramified) all of the simple factors of G4 are isotropic. By Margulis theorem [39] I 5.1
we can conclude that Gde’" G%(Q,). Since the argument doesn’t depend on the choice of
x the action of Gd"((@p) on mo(Shte b0 X SPA(K, Ok)) is trivial.

Now, Spd(Cy, Oc,) = Jm m Spd(K, OK) and we may use [51] 11.22 to compute the action
map

G (Qp) X [Shtgp (00 X SPA(Cy, Oc, )| = [Shtg p (.00 X SPA(Cp, Oc, )|

as the limit of the action maps

lim [G*"(Q,) % [Shtep, 00 X SPA(K, Ox)| = [Shtcp, )00 X SPA(K, Ok)|]
KCC,y

Since in the transition maps [Shte ()00 X Spd(K1, Ok, )| = [Shtep [),009Pd(K2, Ok, )|
every connected component on the source surjects onto a connected component on the tar-
get we have that mo(Shtq 00 X Spd(Cyp, O¢,)) = Lﬂ'g(Shth[u] x Spd(K,Ok)). In
particular, G%(Q,) acts trivially on the set of connected components. This defines a transi-
tive action of G**(Q,) on 7o (Shte .00 X SPA(Cp, Oc,)). The map mo(det) is surjective and
equivariant for this action. Since G“b((@p) acts freely on 7o (Shtgab gab 00 00 X SPA(Cyp, Oc,)),
mo(det) must be a bijection.

O

Corollary 3.4.11. For G, b and p as in theorem 3.4.10 and any compact subgroup K C

G(Qyp) the map
ShtG,b,[,u],lC — ShtGabybabiuadeet(’C)

has non-empty connected geometric fibers.

156



Proof. One can deduce the claim for arbitrary compact K from the identity
Shte 1,60 = Shtap ],00 /K.
Indeed, the formation of my commutes with colimits, so that

7o (Sht p,u.c) = To(Shtc p,ju,00) /K

which is 7o (Shtgab pav [e0) o) /det (K). O

Using functoriality and equivariance for the three actions we can describe the actions by
the three groups on my(Shte p[),00 X Cp) in the spirit of theorem 3.3.5.

Theorem 3.4.12. (Compare with [7] 4.1) Let G, b and p as in theorem 3.4.10. Let E C C,
be the field of definition of [u|, let ArtE/E : Wigip — £ be as in theorem 5.5.5, let Nmya

Resg/q,(Gn) = G® be the norm map associated to ™ then:

1. The G(Q,) right action on mo(Shtg (4,00 X Cp) makes it a trivial right G**(Q,)-torsor.

2. If s € mo(Sht 00 X Cp) and j € Jp(Q,) then

S 5@ J = 8 "gavg,) det(G7H)

where det = jJyaodety, with dety = Jp(Qp) — Jyao (Qy) the map obtained from functoriality
of the formation of Jy, respectively Jyw, and where the map jyao is the isomorphism
Jpov + Jpar (Q)) = G(Q,) obtained from regarding Jyw(Q,) as a subgroup of G*(Ky).

3. If s € my(Shtgp [),00 X Cp) and v € Wi p then

§ ‘WE/E

Y =5 geb(Q,) [Nmyas o ATtE/E(V)]-

3.4.3 z-extensions

In this subsection we extend theorem 3.4.10 to the case in which G is not necessarily simply
connected but we still assume that G is unramified and (b, i) is HN-irreducible. In what
follows we will denote by G*¢ the central simply connected cover of G%*" and we denote by
G° = G(Q,)/Im(G*(Q,)). Notice that when G%" is simply connected G° = G*(Q,). In
general, G° surjects onto G%(Q,) and the kernel is a finite group.

Recall the following definition used extensively by Kottwitz:

Definition 3.4.13. A map of connected reductive groups f : G' — G is a z-extension if:
e f is surjective.
o 7 = ker(f) is central in G'.

o 7 is isomorphic to a product of tori of the form Resg, g, Gm for some finite extensions
F,CQ,
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e (& has simply connected derived subgroup.

By [32] lemma 1.1 whenever G is an unramified group over Q,, that splits over Q,s, there
exists a z-extension G' — G with Z isomorphic to a product of tori of the form Resg,. /g, Gm.
In particular, it is unramified as well.

In [35] Kottwitz proves that for any reductive group G and cocharacter p the natural
morphism B(G) — B(G?) induces a bijection B(G,u) =& B(G*, u*?). From here we can
easily deduce the following:

Lemma 3.4.14. Let A C T C B C G as in the notation section. Assume that Qs is a
splitting field for G. Let p € XH(T), [b] € B(G,u), and f : G' — G a z-extension with
Z = ker(f) isomorphic to a finite product of copies of Resq,, jq,Gm. Let T' = f~'(T) denote
the mazimal torus of G' projecting onto T'. Then:

1. For any choice of ' € X.(T")" lifting p there is a unique lift [V'] € B(G') lifting [b]
with V'] € B(G", ).

2. Forb' and u' as in the previous claim (b, 1) is HN-irreducible if and only if (b, ') is
HN-irreducible.

3. If E is the field of definition of pn with Q, C E C Qs then there is a lift ¢/ € X.(T")*
with field of definition E.

Proof. The first claim follows directly from the identifications
B(G, u) = B(G™, i*) = B(G', i)).

The second claim follows from the first claim, from the fact that Z := ker(f) is central and
from the fact that HN-irreducibility can be checked on the adjoint quotient once it is known
that v € B(G, ¢') holds.

For the third claim consider the exact sequence of I'g,-modules:
e— Xo(Z) = X (T") = X (T) - ¢

Since G and G’ split over Qs the subgroup I'g., € I'y C I'g, acts trivially on all
of these groups. We treat this as an exact sequence of Gal(Q,:/E)-modules. Since Z =
1T, Resg, o, (Gm) for some n, we can conclude that X.(Z) is an induced Z|Gal(Qy:/E))-
module and by Shapiro’s lemma H'(Gal(Q,:/E), X.(Z)) = 0. This implies that

X*(T/)FE _ X*(T/)Gal(st/E) N X*(T>Gal(st/E) _ X*(T)FE

is surjective as we wanted to prove.

]

Proposition 3.4.15. Suppose that G’ is an unramified group, (b',u') a pair with [V/] €
B(G', 1), suppose that Z C G’ is a central torus, and let G = G'/Z with projection map
f:G = G. Let b= f(V) and i = f o u the following hold:
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1. Grelwl(&y) — Greli(&,) is an isomorphism.
2. Grodmsl(g,) — Grodm=lil(&,) is an isomorphism.

3. If Ley (respectively L) denotes the pro-étale G'(Q,)-torsor (respectively G(Q,)-torsor)
then LG = f*LG/.

Proof. Both Gr=I¥1(&,) and Gr=I¥(&,) are spatial diamonds that are proper over Spd(Ky, Ok, ),
any morphism between them is qcgs and by [51] 12.5 it is enough to prove the map is a bijec-
tion at the level of geometric points. In this case after fixing an isomorphism Byg(C') = C((t))
we may reason as in the classical case. That is,

Gr(&y)(C,CT) = G'(C((1)))/G(C[E),

also

Gr(&)(C,CT) = G(C((1)))/G(CI[t])
and the map
G'(C((1)/G () = G(C((®))/G(CH])
is a Z(C((t)))/Z(C][t]])-torsor. On the other hand Z(C((t)))/Z(C][t]]) = X.(Z) and we

have an exact sequence:
e = Xu(Z) = X (T') = X (T) — e,

and the lifts of p also form a X,(Z)-torsor. Given a point z € Gr(&)(C,CT) of type
pw € X(T) and a lift p” € XF(T') there is a unique y € Gr(&)(C,CT) of type p” this
finishes the proof of the first claim.

Let us prove the second claim, by the previous claim Gro®™=<lwl(£,) and Grodm=ltl(g,)
are two open sub-diamonds of Gr=l¥(&,). By [51] 11.15 it is enough to understand the un-
derlying topological space of this open subsheaves. We prove that Gre@™=ltl(&,)(C, C*) —
Gradm=ll(£,)(C,CY) is a bijection.

If we represent an element x € Gr=l¥1(&,)(C,C*) by a modification (ay : & --» &),
then f(z) is represented by (f.o : fuls -+ &). By definition z € Gredm=Il(&,)(C,C*)
when &, is a trivial G’-torsor this implies f,&, is trivial so that f(z) € GredmslH(g,)(C,C*).
Assume instead f(z) € Gredm=k(&)(C,C*), and let [V,] € B(G’) be the unique element
with & = &,. We need to prove [0/,] = [e]. We begin by proving that «([b,]) = ~([b']) — [i'].
Indeed using ([14] 2.15) we can deduce that x(&,) is independent of x € Gr=lH(&,)(C,C*)
since Gr=lt(&y) is connected. It is then enough to prove x([b,]) = s([t']) — [¢/] when
r € GrelM(£)(C,C*) is the point associated to £#. This is precisely the content of ([27]
6.4.1).

By the assumption V' € B(G', i) we have £([b,]) = [e] € m(G')r,,, so that to prove
[0},] = [e] it is enough to prove that [V)] is basic. But f([b,]) = [e] so 14, must factor through
X.(Z) ® Q, and since Z is central [V,] is basic.

For the last claim, recall that for any (V, p) € Reper(Q,) and x € Gredm=ll(&,)(R, R*),
p:Le (z) evaluates to HY(Xppr, px&:). When p = 70 f we get H(Xrp g, T€f(x)) which is

159



the evaluation of Lg at (V,7) € Repa(Q,). O
Proposition 3.4.16. If (b, ) is HN-irreducible then the following hold:
1. Grodm=lul(g,)) x Spd(C, O¢) is connected

2. The right action of G(Qyp) on mo(Shte b 00 X SPA(C, O¢)) makes this set into a G°-
torsor.

Proof. Using lemma 3.4.14 we may find a z-extension f : G’ — G and lift (b, u) to a pair
(0, 1) over G' which is also HN-irreducible. The first claim now follows from proposition
3.4.15 and by proposition 3.4.8 applied to G’, since by definition of z-extension (G’)%" is
simply connected.

Let Z = Ker(f), since this is an induced torus Hilbert’s 90 theorem together with
Shapiro’s lemma proves the surjectivity of the map f : G'(Q,) = G(Q,). Using this together
with proposition 3.4.15 we see that

f : ShtG/,b/,[;/],oo X Spd(c, Oc) — ShtG,b,[u],oo X Spd(C, Oc>

is Z(Q,)-torsor. In particular, the map of sets of connected components is also surjective.

Since Gredm=lH(&,) is connected the action of G(Q,) on mo(Shtg .00 X Spd(C, O¢)) is tran-
sitive. Let & € mo(Shtg (), X Spd(C, O¢)) and denote by G, the stabilizer of  in G(Q,).
Let y € mo(Shter p [),00 X SPA(C, O¢)) a lift of x, we wish to prove that Im(G*(Q,)) = G,.

By theorem 3.4.10 the stabilizer of y in G'(Q,) is (G")%*"(Q,). By equivariance of f with
respect the actions of G'(Q,) and G(Q,), we have that Im((G')*"(Q,)) C G,. Since G’ is
a z-extension Im((G")%*"(Q,)) = Im(G*(Q,)). On the other hand, any g € G, has a lift
¢ € G'(Q,) and we may write f(y-¢') = x-¢g = x. Since f(y-g¢') = f(y), there is an
element 2 € Z(Q,) with y-¢'- 2 = y. In other words, z - ¢’ € (G')%*"(Q,) which implies that
g € Im(G*(Q,)) finishing the proof. O

As we have done in previous subsections we can describe the action of J,(Q,) and W 5
on 7o(Shte p[u,00 X Spd(C, O¢)) in terms of the action of G°. We first describe the action
of J,(Q,). To do this we need to construct a map det® : J,(Q,) — G° that generalizes the
determinant map det : J,(Q,) — G®(Q,) that appears in theorem 3.4.12. A peculiar aspect
of the situation is that G° does not necessarily have algebraic structure (its not the Q,-points
of an algebraic group). Consequently det® is does not come directly from a map of algebraic
groups. The map is constructed as follows: Given G and b € G(K,) we may choose an
unramified z-extension f : G’ — G and a lift i’ € G'(Ky) with f(b') = b. Let Z = Ker(f).
We get a sequence of maps of reductive groups

e— 22— Jy — J, —> e

Since Z is an induced torus, by Hilbert’s theorem 90 and Shapiro’s lemma H'(Q,, Z) = {0} so
that we obtain a surjection Jy (Q,) = J5(Q,). We can construct the following commutative
diagram of topological groups:
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i
S

Jb’ (Qp)

Ji b(@p)

Now, det® is defined as the unique morphism that could make this diagram commutative.
More explicitly, if j € J,(Q,) we pick a lift j' € J,(Q,), and we define det°(j) := f*(det(j')).
This doesn’t depend on the choice of j'. Indeed, two lifts of j differ by an element of Z(Q,)
but the induced map Z(Q,) — G° is the 0 map, since it factors through the map to G.
Similarly the construction of det® does not depend of the choice of b € G'(Ky) lifting b since
the possible choices differ by an element of Z(Ky). Finally, we justify that the construction
of det® doesn’t depend on the choice of z-extension G’ — G taken. This will follow from the

fact that the category of z-extensions of G is cofiltered. Given two z-extensions G, Gy — G
we may find a third z-extension making the following diagram commutative:

G VGQ\G
N

Choosing a lift of by € G5(Ky) and defining b; = f;(b3) we obtain the following diagram:

Ty (Qp) —L 10, (Q) —— J(Qy)

ldet ldet det? <{ \)detg

G(Q,) — G(@,) —— &
It is easy to verify det; = dets.

Remark 3.4.17. Another way one can define det® is as follows. Since G is quasi-split
we may define groups A C T C B C G as in the notation section §2.2. The domi-
nant Newton point vi°™ is a Q,-rationally defined map D — A and we may define M,
as the centralizer of v, in G. One may then reconstruct J, as a twisted inner form of
M,. Using z-extensions one may construct an isomorphism from Jy(Qp)/[Js(Qp), Jp(Qp)]
and My(Q,)/[My(Qy), My(Q,)] (the mazimal abelian quotients when regarded as an abstract
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groups). The inclusion M,(Q,) C G(Q,) induces a map My(Q,) — G° which overall gives a
map Jp(Q,) — G°. Again, one must justify that this morphism didn’t depend of the choices
made.

By functoriality, equivariance and theorem 3.4.12 we can do the following computation.
Pick G', t/ and y/ as in the proof of proposition 3.4.16. We obtain a map

f : ShtG/,b/,[u/},oo X Spd(C, Oc) — ShtG,b,[u],oo X Spd(C’, Oc),

let x € mo(Shte 00 X SPA(C, O¢)) and let y € mo(Shter p (w00 X SPA(C, O¢)) be a lift of
x. Let j € J,(Q,), and let j' € Jy,(Q,) be an element lifting j. We have:

T 5007 =FW @) J)
= f(y e, Jv(dety (7))
=2 -go det®(j7 )

We now describe the action of W /Es We will also need to introduce a variant of the
norm map discussed for tori. Given a connected reductive group G and a conjugacy class
of cocharacters [p] with reflex field E' we define a norm map Nmj, : E* — G° as follows.
Since is G is quasi-split we may fix Q,-rationally defined Borel a maximal torus 7' C B C G
and the unique dominant cocharacter u € X (T') representing [u] and defined over E. We
get a norm map Nm, : E* — T(Q,) and we may define N mp, as the composition:

Nmy,

Nmy,: B — T(Q,) — G(Q,) — G°.

We claim that this map is independent of the choice of B and 7. Indeed, recall that
the action of G(Q,) on the set of pairs (B,T) with B a rationally defined Borel and T a
rationally defined maximal torus contained in B is transitive. If (By, T3) = g - (B1,T1) - g~ !
for some element g € G(Q,) then Nmg 1 =g- Nmy,g~!, and since G° is abelian we get

Nm? Nm[u]

lg-pg™t

Proposﬂslon 3.4.18. With notation as in proposition 3.4.16 the action of WE/E on
7o (Shte p,[u),00 X SPA(C, O¢))
s given by the map Nmfu] o ArtE/E Wip — G°. More precisely, if
x € mo(Shtp [),00 X SpA(C, O¢))

and vy € WE’/E then:
T Wy, V=T ae Nmy ) (Art g p(7))-

Proof. We let f: G’ — G be a z-extension and we let (I, /') be a pair over G” lifting (b, u1),
and let Z = ker(f). By 3.4.14 we can always choose G’ and p’ so that y' has the same field
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of definition as p. We get a morphism

ShtG/,b’,[u’],oo — Sht(Gl)abb/ab,[,ul]’oo.

Let ACT C B C G as above and let 7" = f~(T'). Recall that for tori the set B(T", /') has
a unique element, we fix a representative b,,. This allows us to construct a map

ShtT’,bux,[,u/],oo — Sht(G’)ab,b’aby[

w'],00

and by functoriality we also get map
ShtT/,bH/,[,u/],oo — ShtT,bu,[,u],oo

We can collect all of these maps in the following commutative diagram of spaces.
ShtG’,b’,[u’],oo — Sht(G/)ab’b/ab7[#/]’oo — ShtT',buu[M'],OO
ShtG,b,[u],oo ShtT,bM,[u],oo

Since G’ is simply connected we get an equivariant bijection of geometric connected compo-
nents

WO(ShtG’,b’,[u’],oo X Spd(C, Oc)) — 7TO(Sht(G’)ab,b’ab,[u’ab],oo X Spd(C’, Oc))
After forming geometric connected components and choosing a base point
x e WU(ShtT’,bM/,[u’],oo X Spd(C, Oc))
the above diagram looks like this:

T - G/ab(@p) = .. G/ab(@p) - . T’(Qp)

! |

- G° z-T(Qyp)

All of the maps are equivariant with respect to the groups involved. Since the map
T'(Q,) — G° factors through the map 7"(Q,) — T(Q,), we get a canonical surjective and
Wi p-equivariant map

7TO<ShtT,bH,[u],oo X Spd(C’, Oc)> — WO(ShtG,b,[u},oo X Spd(C', Oc))

By theorem 3.3.5, the action on 7T0<ShtT,bH,[u],oo> is through Nm,, o ArtE/E. Equivariance
and the definition of Nmy, imply that the action of W, on To(Sht b, u),00 X SPA(C, O¢))
is through Nmg, o ATtE/E. O
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