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Abstract. We introduce the specialization map in Scholze’s theory of diamonds. We consider v-sheaves
that “behave like formal schemes” and call them kimberlites. We attach to them: a reduced special

fiber, an analytic locus, a specialization map, a Zariski site, and an étale site. When the kimberlite
comes from a formal scheme, our sites recover the classical ones. We prove that unramified p-adic

Beilinson–Drinfeld Grassmannians are kimberlites with finiteness and normality properties.
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Introduction

As Fargues–Scholze [8] and Scholze–Weinstein [20] show, Scholze’s theory of diamonds and v-sheaves
[18] is a powerful geometric framework to study (among other things) the local Langlands correspondence
and the theory of local Shimura varieties. One of the early milestones of Scholze’s theory roughly says
that diamonds capture correctly the étale site of an analytic adic space ([18, §15]). Moreover, the category
of diamonds contains many geometric objects of arithmetic interest that do not come from an analytic
adic space, and for these spaces one still gets a well-behaved étale site.

Although Scholze’s theory of v-sheaves is also useful to study adic spaces that are not analytic (like
the ones coming from a formal scheme), some complications arise. For example, the v-sheaf associated
to a non-analytic adic space has more open subsets than one would expect [20, §18]. In particular, a
comparison of étale sites can’t hold since even the site of open subsets do not coincide. Despite this
complications, it is still profitable to understand the behavior of the v-sheaves associated to non-analytic
adic spaces. The main motivation to work this out is because there are v-sheaves of arithmetic interest
that do not come from an adic space, but “resemble” the behavior of a formal scheme. The main examples
to keep in mind are the integral models of moduli spaces of p-adic shtukas proposed in [20, §25] or the
p-adic Beilinson–Drinfeld Grassmannians of [20, §21].

In rough terms this article does the following:

(1) Study the topological space |Spd(A,A+)| for a general Huber pair (A,A+) over Zp. We overcome
many of the technical difficulties of working with these spaces.

(2) Propose a rigorous definition of what it means for a v-sheaf to “resemble” a formal scheme. We
call these v-sheaves kimberlites.

(3) Construct specialization maps attached to kimberlites. This recovers the classical specialization
maps of formal schemes.

(4) Attach “Zariski” and “étale” sites to a kimberlite. This allow us to recover the Zariski and étale
sites of a formal scheme intrinsically from the v-sheaf attached to it.

(5) Verify that the p-adic Beilinson–Drinfeld Grassmannians attached to reductive groups over Zp

are interesting examples of kimberlites that do not come from formal schemes.

Although this work (admittedly of technical nature) is far from being a robust theory, we think it
makes appreciable progress in our understanding of this kind of v-sheaves and sets a stepping stone for
future investigations. For instance, the constructions and techniques discussed here have already found
applications in the following works:

(1) In our work on geometric connected components of local Shimura varieties [9].
(2) In our collaborative work with Anschütz, Lourenço and Richarz on the Scholze–Weinstein con-

jecture [1].
(3) In the representability results of Pappas and Rapoport [15].
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We find it reasonable to expect that our considerations will play a role in more general representability
results of integral local Shimura varieties, and a role in the study of “the nearby cycles functor” (Re-
mark 4.29).

Let us give a more detailed account of our results. In [18], Scholze sets foundations for the theory of
diamonds which can be defined as certain sheaves on the category of characteristic p perfectoid spaces
endowed with a Grothendieck topology called the v-topology. He associates to any pre-adic space X over
Zp (not necessarily analytic) a small v-sheaf X♢, and whenever X is analytic he proves that X♢ is a
locally spatial diamond. If X = Spa(B,B+) for a Huber pair (B,B+), then X♢ is denoted Spd(B,B+).
Moreover, Scholze assigns to any small v-sheaf F an underlying topological space |F| and whenever
F = X♢ he constructs a functorial surjective and continuous map |F| → |X|. When X is analytic it
is proven in [20] that this map is a homeomorphism, but this map fails to be injective almost always
for pre-adic spaces that have non-analytic points. To tackle this difficulty, we associate to a Huber pair
(B,B+) what we call below its olivine spectrum, which we denote Spo(B,B+). The definition of this
topological space is concrete enough to allow computations to take place. Moreover, in most cases of
interest Spo(B,B+) recovers |Spd(B,B+)|.

Theorem 1. Let (B,B+) be a complete Huber pair over Zp, there is a functorial bijective and continuous
map |Spd(B,B+)| → Spo(B,B+). Moreover, it is a homeomorphism if (B,B+) is topologically of finite
type over (B0, B0) for B0 ⊆ B+ a ring of definition.

In [20, §18] Scholze and Weinstein attach to a perfect scheme X in characteristic p a v-sheaf denoted
X⋄. Moreover, they prove that the functor X 7→ X⋄ is fully-faithful. It will be clear to the reader that
many of our techniques used to prove Theorem 1 are borrowed from Scholze and Weinstein’s approach
to their full-faithfulness result, but our perspective allow us to go farther.

Theorem 2. Let Y be a perfect non-analytic adic space over Fp and let X be a pre-adic space over Zp.
The natural map Hom

PreAd
(Y,X)→ Hom(Y ♢, X♢) is bijective. In particular, (−)♢ is fully faithful when

restricted to the category of perfect non-analytic adic spaces over Fp.

Theorem 2 allow us to recover Scholze and Weinstein’s result as a particular case. Also, the olivine
spectrum allows us to show that Scholze andWeinstein’s functorX 7→ X⋄ is continuous for the v-topology
and admits a right adjoint F 7→ F red at the level of topoi. We call this the reduction functor and it
plays a key role in the rest of our theory. In general, the objects obtained from the reduction functor
might not be perfect schemes, but they are “scheme theoretic v-sheaves” and they come equipped with
an underlying topological space that agrees with the Zariski topology whenever they are representable.

Let us describe our approach to study v-sheaves that “behave like” formal schemes. We consider
three layers, in each layer we get closer to capture the behavior of formal schemes. We first recall a more
classical case. Let X be a p-adic separated formal scheme topologically of finite type over Zp. One can
associate to X a rigid analytic space over Qp, that we will denote by Xη. We can also associate to X
a finite type reduced scheme over Fp, that we denote by X. Huber’s theory of adic spaces allows us to
consider Xη as an adic space and assign to it a topological space |Xη|. Moreover, one can construct a

continuous map spX : |Xη| → |X|, where |X| is the usual Zariski space underlying X [3, Remark 7.4.12]
or [13, Definition 6.4]). A theorem of Lourenço ([20, Theorem 18.4.2]) says that “nice enough” formal
schemes can be recovered from the triple (Xη, X, spX ). We propose that v-sheaves that “resemble”
formal schemes should be those for which a specialization map can be constructed.

Consider the following. Given a Tate Huber pair (A,A+) with pseudo-uniformizer ϖ ∈ A+ the
specialization map spA : Spa(A,A+) → Spec(A+/ϖ) assigns to x ∈ Spa(A,A+) the prime ideal px of
those elements a ∈ A+ for which |a|x < 1. Observe that this construction is functorial in the category of
Tate Huber pairs. We wish to exploit functoriality to descend this specialization map to more general
v-sheaves. The first question is: What should the target of the specialization map be?

One can compute directly that if (A,A+) is a uniform Tate Huber pair, then Spd(A+)red is the
perfection of Spec(A+/ϖ). This suggests that if we want to attach a specialization map to a v-sheaf F
the target of this map should be |F red|.

A key aspect that makes the specialization map for Tate Huber pairs functorial is that every map of
Tate Huber pairs Spa(A,A+)→ Spa(B,B+) automatically upgrades “integrally” to a map Spa(A+)→
Spa(B+). This motivates the following definition:

Definition 3. Let F be a small v-sheaf, (A,A+) be a Tate Huber pair and f : Spd(A,A+)→ F a map.
3



(1) We say that F formalizes f (or that f is formalizable) if there is t : Spd(A+)→ F factoring f .
(2) We say that F v-formalizes f if there is a v-cover g : Spa(B,B+) → Spa(A,A+) such that F

formalizes f ◦ g.
(3) We say that F is v-formalizing if it v-formalizes any f as above.

Given a v-formalizing v-sheaf F one could define the specialization map spF : |F| → |F red| so that
for any “formalized” map f : Spd(A+)→ F the following diagram is commutative:

| Spa(A,A+) | | Spd(A+) | | F |

| Spec(A+/ϖ)perf | | F red |

spA

|f |

spF

|fred|

The recipe to compute the specialization map would then be as follows: given x ∈ |F| represent it by a
map ιx : Spa(C,C+)→ F , find a formalization fx : Spd(C+)→ F of ιx. Apply the reduction functor to
fx to obtain a map f red

x : Spec(C+/ϖ)perf → F red. Look at the image of the closed point in Spec(C+/ϖ)
under |f red

x |. This is spF (x).
The natural question is whether or not this is well defined. The problem being that the map ιx :

Spa(C,C+)→ F might have more than one formalization. The naive guess is that this doesn’t happen
if F is separated as a v-sheaf. Unfortunately, this is false. At the heart of the problem is the following
pathology: although |Spa(C,C+)| is dense within |Spa(C+)| it is not true that |Spd(C,C+)| is dense
within |Spd(C+)|. It is this key subtlety that requires sufficient understanding of the olivine spectrum
of Huber pairs.

Definition 4. Let f : F → G be a map of v-sheaves.

(1) We say f is formally adic if the following diagram induced by adjunction is Cartesian:

(F red)⋄ (Gred)⋄

F G
(2) If F comes with a formally adic map to Spd(Zp) we say that F is p-adic.
(3) We say f is formally closed if it is a formally adic closed immersion.
(4) We say F is formally separated if the diagonal F → F ×F is formally closed.

Using the olivine spectrum we prove that |Spd(C,C+)| is “formally dense” in |Spd(C+)|. The main
feature of a formally separated v-sheaf F is that a map ι : Spa(A,A+)→ F has at most one formalization
(if any).

Combining the two inputs we say that a v-sheaf F is specializing if it is v-formalizing and formally
separated, this is the first layer of approximation to the definition. We attach functorially to such F a
continuous specialization map |F| → |F red|.

Now, specializing v-sheaves produce all the specialization maps we are interested in, but they are still
too general to capture the behavior of formal schemes.

Definition 5. Let F be a specializing v-sheaf. We say F is a prekimberlite if:

a) F red is represented by a scheme.
b) The map (F red)⋄ → F coming from adjunction is a closed immersion.

If F is a prekimberlite, we let the analytic locus be Fan = F \ (F red)⋄.

We can attach étale and Zariski sites to a prekimberlite as follows:

Definition 6. Suppose F is a prekimberlite, we let (F)qc,for-ét be the category that has as objects maps
f : G → F where G is a prekimberlite and f is formally adic, étale and quasicompact. Morphisms are
maps of v-sheaves commuting with the structure map. We call objects in this category the étale formal
neighborhoods of F . If f is also injective we call them open formal neighborhoods of F .

Theorem 7. For F a prekimberlite, the reduction functor (−)red : (F)qc,for-ét → (F red)qc,ét,sep is an
equivalence. Here, the target category are the maps of perfect schemes f : Y → F red that are quasi-
compact, étale and separated. Moreover, this functor restricts to an equivalence between open formal
neighborhoods and quasicompact open immersions.
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Now, if X is a separated formal scheme locally admitting a finitely generated ideal of definition (see
Convention 1 below for details), then X♢ is a prekimberlite and (X♢)red is the perfection of the reduced
subscheme of X. In particular, one can recover the étale site of X from (X♢)qc,for-ét through Theorem 7.

Let us describe the inverse functor, for this we consider the following construction due to Heuer
[10]. For a perfect scheme X in characteristic p we let X⋄/◦ denote the v-sheaf given by the analytic
sheafification of the rule (R,R+) 7→ X(Spec(R+/ϖ)perf) where (R,R+) is affinoid perfectoid andϖ ∈ R+

is a pseudo-uniformizer. For a prekimberlite F we get a map of v-sheaves SPF : F → (F red)⋄/◦. If

f : V → F red is étale, quasicompact and separated then F̂/V := F ×(Fred)⋄/◦ V ⋄/◦ is the étale formal

neighborhood of F with (F̂/V )
red = V . The two key ingredients are that for perfect schemes X we have

an identification (X⋄/◦)red = X, and if V → X is étale then V ⋄/◦ → X⋄/◦ is formally adic and étale.
This later statement in turn reduces to the invariance of étale sites under nilpotent thickenings and
perfection. Heuer’s construction also allows us to consider what we call formal neighborhoods. If F is a

prekimberlite and S ⊆ F red is a locally closed subscheme we can consider F̂/S := F ×(Fred)⋄/◦ S
⋄/◦. We

always have F̂/S ⊆ F and when S is constructible this is even an open immersion.1 This construction
generalizes “completion” of a formal scheme along a locally closed immersion.

We are ready for the third approximation.

Definition 8. Let F be a prekimberlite.

(1) We say F is valuative if SPF : F → (F red)⋄/◦ is partially proper.
(2) A smelted kimberlite is a pair K = (F ,D) where F is a valuative prekimberlite, D is a qua-

siseparated locally spatial diamond and D ⊆ Fan is open. The main cases of interest are when
D = Fan or when D = F ×Spd(Zp) Spd(Qp).

(3) We define the specialization map spK : |D | → |F red| as the composition |D | → |F| spF−−→ |F red|.
If the context is clear we write spD instead of spK.

(4) We say F is a kimberlite if (F ,Fan) is a smelted kimberlite and spFan is quasicompact.

The specialization map for kimberlites and smelted kimberlites is better behaved since it is even
continuous for the constructible topology.

Theorem 9. Let K = (F ,D) be a smelted kimberlite and G be a kimberlite, the following hold:

(1) spD : |D | → |F red| is a specializing, spectral map of locally spectral spaces.
(2) spGan : |Gan| → |Gred| is also a closed map.

If (F ,D) is a smelted kimberlite and S ⊆ |F red| we can define analogs of Berthelot tubes, by letting

D⊚
/S = F̂/S ×F D . We call these spaces the tubular neighborhood of D around S.

Finally, to study the p-adic Beilinson–Drinfeld Grassmannians we introduce some “finiteness” and
“normality” conditions.

Definition 10. Let K = (F ,D) a smelted kimberlite and G a kimberlite.

(1) We say D is a cJ-diamond (constructibly Jacobson) if rank 1 points are dense in the constructible
topology of D .

(2) We say that K is rich if: D is a cJ-diamond, |F red| is locally Noetherian and spD : |D | → |F red|
is surjective.

(3) We say that G is rich if: (G,Gan) is rich.
(4) If K is rich we say it is topologically normal if for every closed point x ∈ |F red| the tubular

neighborhood D⊚
/x is connected.2

Let G denote a reductive over Zp and let T ⊆ B ⊆ G denote integrally defined maximal torus and

Borel subgroups respectively. Let µ ∈ X+
∗ (TQp

) be a dominant cocharacter with reflex field E ⊆ Qp. Let

OE denote the ring of integers of E and let kE denote the residue field. Let GrG,≤µ
OE

denote the v-sheaf

parametrizing B+
dR-lattices with G-structure whose relative position is bounded by µ as in [20, Defintion

20.5.3] and let GrG,≤µ
W,kE

denote the Witt vector affine Grassmannian [22], [5]. Here is our result:

Theorem 11. GrG,≤µ
OE

is a topologically normal rich p-adic kimberlite with (GrG,≤µ
OE

)red = GrG,≤µ
W,kE

. In
particular, the specialization map is a closed, surjective and spectral map of spectral topological spaces.

1These open immersions are only formally adic when S is an open immersion.
2In a previous version of this article we had already introduced this notions, but we hadn’t realized the connection to

normality. Our motivation to call this “topologically normal” comes from [1, Proposition 2.38].
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This result has partially been generalized in our collaboration [1]. There, we prove that the local
models for parahoric groups are rich p-adic kimberlites. Nevertheless, we only improve the “normality”
part of the result if we assume that µ is minuscule and outside certain cases in small characteristic.

In [9], we use normality of GrG,≤µ
OE

to prove normality of moduli spaces of p-adic shtukas which is
a key step to prove the main theorem of [9] for the following reason. Classically, normality of formal
scheme ensures that the generic fiber and special fibers have the same connected components. This also
happens for rich smelted kimberlites.

We prove Theorem 11 by using a Demazure resolution. Our key observation is that one can do the
Demazure resolution using either B+

dR-coefficients or Ainf -coefficients. The use of Ainf -coefficients makes

it clear that GrG,≤µ
OE

is v-formalizing. Normality of GrG,≤µ
OE

can be deduced from the normality of the
source in the Demazure resolution, which in turn can be deduced inductively from it’s expression as
iterated (P1)♢-bundles.

Let us comment on the organization of the paper.

I) In the first section, we give a short review of the theory of diamonds, the v-topology and some
facts about spectral topological spaces. We also review Scholze’s ♢ functor that takes as input
a pre-adic space over Zp and returns as output a v-sheaf.

II) In the second section, we introduce and study the olivine spectrum of a Huber pair. We prove
Theorem 1 and Theorem 2.

III) In the third section, we review the small diamond functor ⋄. We prove the continuity of ⋄. We
introduce the reduction functor as the right adjoint to ⋄. We introduce and study “formally
adic” maps.

IV) In the fourth section, we develop our theory of specialization maps. We introduce specializing v-
sheaves and prekimberlites. We introduce formal neighborhoods, étale formal neighborhoods and
we prove Theorem 7. We introduce kimberlites, and smelted kimberlites and prove Theorem 9.
We prove that formal schemes give rise to kimberlites. Finally, we introduce the finiteness and
normality conditions.

V) In the fifth section, we study the specialization map for p-adic Beilinson–Drinfeld Grassmannians.
We review the contruction of twisted loop groups with B+

dR and Ainf coefficients. We construct
the two versions of the “integral” Demazure resolution. We prove Theorem 11.

1. The v-topology

We assume familiarity with the theory of perfectoid spaces and diamonds as discussed in [20, §7] or
[18, §3]. For the most part the reader can ignore the set-theoretic subtleties that arise from the theory.
Nevertheless, for some of our constructions set-theoretic carefulness is necessary.

1.1. Recollections on diamonds and small v-sheaves. We let Perfd denote the category of perfec-
toid spaces and Perf the subcategory of perfectoid spaces in characteristic p. Recall that we can endow
Perfd with two Grothendieck topologies, called the pro-étale topology and v-topology respectively [18,
Definition 7.8, Definition 8.1]. The following example of a cover for the v-topology will be used repeatedly.

Example 1.1. Let Spa(A,A+) be an affinoid perfectoid space, with pseudo-uniformizer ϖ ∈ A+. Given
x ∈ |Spa(A,A+)| let ιx : Spa(k(x), k(x)+) → Spa(A,A+) be the residue field. By [17, Corollary 6.7],
each Spa(k(x), k(x)+) is perfectoid. Let R+ :=

∏
x∈|Spa(A,A+)| k(x)

+ endowed with the ϖ-adic topology

and let R = R+[ 1ϖ ]. Then Spa(R,R+) is perfectoid and Spa(R,R+)→ Spa(A,A+) is a v-cover.
If one replaces the role of k(x) by a completed algebraic closure C(x) of k(x), and on considers

S+ :=
∏

x∈|Spa(A,A+)| C(x)+ where C(x)+ denotes the integral closure of k(x)+ in C(x), then by letting

S = S+[ 1ϖ ] we also have that Spa(S, S+) is perfectoid and that Spa(S, S+)→ Spa(A,A+) is a v-cover.

Definition 1.2. Let I be a set and {(Ci, C
+
i ), ϖi}i∈I a collection of tuples where each Ci is an alge-

braically closed nonarchimedean field, the C+
i are open and bounded valuation subrings of Ci, and ϖi

is a of pseudo-uniformizer. Let R+ :=
∏

i∈I C
+
i , let ϖ = (ϖi)i∈I , endow R+ with the ϖ-adic topology

and let R := R+[ 1ϖ ]. Any space of the form Spa(R,R+) constructed in this way will be called a product
of points.

Remark 1.3. Different choices of pseudo-uniformizers (ϖi)i∈I give rise to different adic spaces. Also,
Example 1.1 proves that products of points form a basis for the v-topology in the category of perfectoid
spaces.

Recall the notion of totally disconnected spaces.
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Definition 1.4. ([18, Definition 7.1, Definition 7.15, Lemma 7.5]) An affinoid perfectoid space Spa(R,R+)
is totally disconnected if it splits every open cover. Moreover, it is strictly totally disconnected if it splits
every étale cover.

Proposition 1.5. ([18, Lemma 7.3, Proposition 7.16, Lemma 11.27]) Let Y be an affinoid perfectoid
space. Y is represented by a strictly totally disconnected space if and only if every connected component of
Y is represented by Spa(C,C+) for C an algebraically closed field and C+ an open and bounded valuation
subring.

Proposition 1.6. Product of points are strictly totally disconnected perfectoid space.

Proof. Fix notation as in Definition 1.2. The closed-opens subsets of Spa(R,R+) are given by subsets
of I. Every x ∈ π0(Spa(R,R+)) is computed as

⋂
U∈Ux

U for some ultrafilter. This is a Zariski closed

subsets cut out by an ideal of idempotents Ix = ⟨1V ⟩, with V ⊆ I and V /∈ U . The O+-structure sheaf of
x is theϖ-completion of R+/Ix. Let V = R+/Ix and V ′ theϖ-adic completion of V . By Proposition 1.5,
it suffices to prove that V ′ is a valuation ring with algebraically closed fraction field. This easily reduces
to the same claim on V . It is not hard to see that Frac(V ) = (

∏
i∈I Ci)/Ix. Moreover, the properties of

being a valuation ring or being an algebraically closed field can be expressed in first order logic so these
properties pass to ultraproducts, alternatively we can cite [4, Lemma 3.27]. □

The v-topology on Perfd is subcanonical [18, Corollary 8.6]. We denote a perfectoid space and the
sheaf it represents with the same letter. When a distinction is needed, if X denotes a perfectoid space we
denote by hX the sheaf it represents. Let Y be a diamond [18, Definition 11.1], we recall the definition
of its associated underlying topological space |Y |.
Definition 1.7. A map p : Spa(K,K+)→ Y is a point if K is a perfectoid field in characteristic p and
K+ is an open and bounded valuation subring of K. Two points pi : Spa(Ki,K

+
i ) → Y , i ∈ {1, 2},

are equivalent if there is a third point p3 : Spa(K3,K
+
3 ) → Y , and surjective maps qi : Spa(K3,K

+
3 ) →

Spa(Ki,K
+
i ) making the following commutative diagram:

Spa(K1,K
+
1 )

Spa(K3,K
+
3 ) Y

Spa(K2,K
+
2 )

p1
q1

q2

p3

p2

We let |Y | denote the set of equivalence classes of points of Y .

Scholze proves that if Y has a presentation X/R with X and R perfectoid, then there is canonical
bijection between |Y | and |X|/|R|. Moreover, the quotient topology on |Y | coming from the surjection
|X| → |Y | doesn’t depend on the presentation [18, Proposition 11.13]. Also, if X is a perfectoid space,
then hX is a diamond and |hX | is canonically homeomorphic to |X|.

We refer to sheaves on Perf for the v-topology as v-sheaves. Recall that a v-sheaf is said to be small

if it admits a surjection from a representable sheaf. We denote by P̃erf the category of small v-sheaves.
There’s a more explicit way of defining this. Given a cut-off cardinal κ ([18, §4, §8 ] for details) denote

by Perfκ the category of κ-small perfectoid spaces in characteristic p and by P̃erfκ the topos of sheaves
for the v-topology on this category. Objects in this topos are called κ-small v-sheaves. We have natural

fully-faithful embeddings P̃erfκ ⊆ P̃erfλ for κ < λ and P̃erf =
⋃

κ P̃erfκ as a big filtered colimit over
cut-off cardinals κ.

Scholze associates to any small v-sheaf a topological space. The definition is similar to Definition 1.7,
with the role of perfectoid spaces exchanged by diamonds. The key point being that if X → Y is a map
of small v-sheaves with X a diamond then R = X×Y X is also a diamond and Y = X/R [18, Proposition
12.3]. Scholze then defines |Y | as |X|/|R| with the quotient topology and by [18, Proposition 12.7] this
is well defined. Given a topological space T we can consider a presheaf on Perf, denoted T , defined as

T (R,R+) = {f : |Spa(R,R+)| → T | f is continuous}
This is a v-sheaf but it might not be small. There is a natural transformation, X → |X| of v-sheaves.
A morphism of small v-sheaves j : U → X is open if it is relatively representable in perfectoid spaces
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and after basechange it becomes an open embedding of perfectoid spaces. Open subsheaves of X are
uniquely determined by open subsets of |X| ([18, Proposition 11.15, Proposition 12.9]). The concept of
closed immersion is a little more subtle. It is not a purely topological condition in the sense that closed
subsheaves of F are not in bijection with closed subsets of |F|. Indeed, there are more closed subsets
than closed immersions.

Definition 1.8. ([18, Definition 10.7, Proposition 10.11, Definition 5.6] ) A map of sheaves F → G is a
closed immersion if for every X = Spa(R,R+) a strictly totally disconnected space and a map X → G
the pullback X ×F G ⊆ X is representable by a closed immersion of perfectoid spaces.

The following result characterizes closed immersions.

Proposition 1.9. ([1]) For a v-sheaf F we say a subset X ⊆ |F| is weakly generalizing if for any
geometric point f : Spa(C,C+) → F we have that f−1(X) ⊆ |Spa(C,C+)| is stable under generization.
For any v-sheaf F the rule

X 7→ F ×|F| X ⊆ F
gives a bijection between weakly generalizing closed subsets of |F| and closed subsheaves of F .

1.2. Spectral spaces and locally spatial diamonds. We recall the basic theory of spectral topological
spaces. This material is taken from section [18, §2 ] where most of the proofs can be found.

Definition 1.10. Let S, T be topological spaces, and f : S → T a continuous map.

(1) T is spectral if it is quasicompact, quasiseparated, and it has a basis of open neighborhoods
stable under intersection that consists of quasicompact and quasiseparated subsets.

(2) T is locally spectral if it admits an open cover by spectral spaces.
(3) f is a spectral map of spectral spaces if S and T is are spectral and f is quasicompact.
(4) f is a spectral map of locally spectral spaces if for every quasicompact open U ⊆ S and quasi-

compact open V ⊆ T with f(U) ⊆ V f |U : U → V is spectral.

Theorem 1.11. (Hochster) For a topological space T the following are equivalent:

(1) T is spectral.
(2) T is homeomorphic to the spectrum of a ring.
(3) T is a projective limit of finite T0 topological spaces.

Moreover, the category of spectral topological spaces with spectral maps is equivalent to the pro-category
of finite T0 topological spaces.

Given a spectral space T , we say that a subset S is constructible if it lies in the Boolean algebra
generated by quasicompact open subsets of T . For a locally spectral space T , a subset S is constructible
if for every quasicompact open subset U ⊆ T the subset S ∩ U is constructible in U . The patch (or
constructible) topology on T is the one in which constructible subsets form a basis for the topology. A
spectral space is Hausdorff and profinite for its patch topology and a locally spectral space is locally
profinite for the patch topology.

Proposition 1.12. A continuous map of locally spectral spaces f : S → T is spectral if and only if it is
continuous for the patch topology.

Definition 1.13. Let f : S → T be a continuous map of topological spaces.

(1) We say f is generalizing if given t1, t2 ∈ T and s1 ∈ S with f(s1) = t1 and such that t2 generalizes
t1, then there exists an element s2 generalizing s1 with f(s2) = t2.

(2) We say f is specializing if given t1, t2 ∈ T and s1 ∈ S with f(s1) = t1 and such that t2 specializes
from t1, then there exists an element s2 specializing from s1 with f(s2) = t2.

For a locally spectral space T we say that a subset is pro-constructible if it is closed for the patch
topology, or equivalently if it is an arbitrary intersection of constructible subsets.

Proposition 1.14. ([18, Lemma 2.4]) Let T be a spectral space and S ⊆ T a pro-constructible subset.
The closure S of S in T consists of the points that specialize from a point in S.

Corollary 1.15. Let f : S → T be a spectral map of spectral spaces. If f is specializing then it is also
a closed map.

We warn the reader that the analogue of Corollary 1.15 for locally spectral spaces does not hold.
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Proposition 1.16. ([18, Lemma 2.5]) Let f : S → T be a spectral map of spectral topological spaces.
Assume f is surjective and generalizing, then it is a quotient map.

Definition 1.17. ([18, Definition 11.17]) Let X be a diamond. We say that X is a spatial diamond
if it is quasicompact, quasiseparated and |X| has a basis of open neighborhoods of the form |U | where
U ⊆ X is a quasicompact open embedding. We say that X is locally spatial if it has an open cover by
spatial diamonds.

The topology of spatial diamonds is spectral. Nevertheless, a diamond that has a spectral underlying
topological space might not necessarily be spatial since the quasicompactness and quasiseparatedness
conditions of Definition 1.17 are imposed in the topos-theoretic sense.

Proposition 1.18. ([18, Proposition 11.18, Proposition 11.19]) Let X and Y be locally spatial diamonds
and f : X → Y a morphism of v-sheaves. The following assertions hold:

(1) |X| is a locally spectral topological space.
(2) Any open subfunctor U ⊆ X is a locally spatial diamond.
(3) |X| is quasicompact (respectively quasiseparated) as a topological space if and only if X is quasi-

compact (respectively quasiseparated) as a v-sheaf.
(4) The topological map |f | is spectral and generalizing. In particular, if |X| is quasicompact and |f |

is surjective then by Proposition 1.16 it is also a quotient map.

1.3. Pre-adic spaces as v-sheaves. The theory of diamonds is mainly of “analytic” nature. On the
other hand, we wish to consider spaces that are closer to schemes or formal schemes. The category
of v-sheaves allows us to consider these three types of spaces at the same time. Recall that to any
Huber pair (A,A+) we can associate a pre-adic space, Spaind(A,A+), as in [20, Appendix to Lecture
3]. One then constructs pre-adic spaces by appropriately glueing along rational covers.3 Every pre-adic
space X has an underlying topological space, and we can define the open analytic locus |X|an and the
non-analytic locus |X|na in the naive way. That is, a point x ∈ |X| is analytic if for every open affinoid

x ∈ Spaind(A,A+) ⊆ |X| (equivalently one affinoid) x is analytic in Spa(A,A+).

Proposition 1.19. Given a pre-adic space X there is a reduced non-analytic adic space Xna and a map
Xna → X which is final in the category of maps Y → X with Y a reduced non-analytic adic space.
Moreover, the map |Xna| → |X|na is a homeomorphism.

Proof. In the affinoid case Spaind(A,A+)na = Spa(A/A◦◦ ·A,A+/A◦◦ ·A+). Since A/(A◦◦ ·A) is discrete

it is sheafy. Moreover, if (B,B+) is discrete then Hom(Spaind(B,B+),Spaind(A,A+)) is in bijection with
maps (A,A+) → (B,B+). Topological nilpotents map to 0 in B which proves the universal property.
The claim of topological spaces is clear. For general pre-adic space X we define Xna to have underlying
topological space |X|na and if V ⊆ |Xna| is of the form U ∩ |X|na for U ⊆ |X| open and of the form

U = Spaind(A,A+) we let Oind
Xna(V ) := Oind

X (U)/A◦◦ · Oind
X (U). Since the construction A 7→ A/A◦◦ is

compatible with rational localization Oind
Xna(V ) is well-defined and glues to a sheaf of ind-topological

rings on Xna. Moreover, locally the ind-topological rings come from a topological ring because A/A◦◦ is
sheafy. This implies Xna is an adic space. □

Recall that to any pre-adic space X over Zp one can associate a small v-sheaf X♢ over Spd(Zp). This
is done by letting Spd(Zp)(Y ) = {(Y ♯, ι)}/∼= and letting X♢(Y ) = {(Y ♯, ι, f)}/∼=, where Y ♯ ∈ Perfd,

ι : (Y ♯)♭ → Y is an isomorphism, and f : Y ♯ → X is a morphism of pre-adic spaces.

Proposition 1.20. ([20, Lemma 18.1.1]) For any pre-adic space X over Zp (not necessarily analytic),
the presheaf X♢ is a small v-sheaf.

From now on, given a Huber pair (A,A+) we denote (Spa(A,A+)ind)♢ by Spd(A,A+). If (R,R+) is a
Huber pair for which R+ = R◦ we will abbreviate Spa(R,R+) and Spd(R,R+) by Spa(R) and Spd(R).
For example, Spd(Fp), Spd(Zp), Spd(Qp). Given an I-adic ring R with I ⊆ R finitely generated, we will
say that (R,R) is a “formal” Huber pair.

Proposition 1.21. We collect some facts about ♢, that are either in the literature or not hard to prove.
Let PreAdZp

denote the category of pre-adic spaces over Zp and let X ∈ PreAdZp
.

(1) If X is perfectoid, then X♢ ∼= hX♭ [18, Lemma 15.2].
(2) There is a surjective map of topological spaces |X♢| → |X| [20, Proposition 18.2.2].

3One has to do this carefully since sheafiness doesn’t hold in this generality.

9



(3) If X is analytic, then X♢ is a locally spatial diamond and |X♢| ∼= |X|, [18, Lemma 15.6].

(4) The functor ♢ : PreAdZp → P̃erf commutes with limits and colimits. More precisely, if Xi is a
family of pre-adic spaces and lim−→i∈I

Xi (respectively lim←−i∈I
Xi) is represented by a pre-adic space

X then X♢ = lim−→i∈I
X♢

i (respectively X♢ = lim←−i∈I
X♢

i ).

(5) The structure map Spd(B,B+)→ Spd(Zp) is separated.
(6) The map (Xna)♢ → X♢ is a closed immersion and X♢ \ (Xna)♢ = (Xan)♢.

2. The olivine spectrum

As we will see below, the map |X♢| → |X| of item 2 in Proposition 1.21 is usually not injective
when X has non-analytic points. Although the map is always surjective, it might not be a quotient
map in pathological and drastic non-Noetherian situations. To develop a theory of specialization maps
for v-sheaves, we need better understanding of |Spd(A)| when A is an I-adic ring over Zp. To tackle
this difficulty, we introduce what we call the olivine spectrum of a Huber pair. It is a small variation
of Huber’s adic spectrum with a diamond-like twist. Under some mild “finiteness” conditions we prove
that the olivine spectrum recovers |Spd(B,B+)|. For the rest of the section we fix (B,B+) a Huber pair
(not necessarily over Zp and not necessarily complete).

2.1. Review, terminology and conventions. We assume familiarity with the construction of Huber’s
adic spectrum, Spa(B,B+), but we review some definitions, some key facts, and we fix some terminology.
Let x ∈ Spa(B,B+) and fix a representative | · |x : B → Γx ∪ {0}.

(1) The support supp(x) ⊆ B is the prime ideal of b ∈ B with |b|x = 0.
(2) We say x is non-analytic if supp(x) is open in B, we say it is analytic otherwise.
(3) Let H ⊆ Γx be a convex subgroup. We let | · |y : B → (Γx/H)∪{0} with |b|y = |b|x+H ∈ Γx/H

when |b|x ̸= 0 and |b|y = 0 when |b|x = 0. Equivalence classes of valuations constructed this way
are called a vertical generizations of x.

(4) There is a residue field map of complete Huber pairs ι∗x : (B,B+) → (Kx,K
+
x ), where Kx is

either a discrete field or a complete nonarchimedean field. In both cases, K+
x is an open and

bounded valuation subring of Kx. The induced map ιx : Spa(Kx,K
+
x ) → Spa(B,B+) is a

homeomorphism onto the subspace of Spa(B,B+) of continuous vertical generizations of x and
satisfies the universal property of maps that factor through this locus.

(5) Residue fields relate to vertical generizations as follows. Let K◦
x be the subring of power-bounded

elements in Kx. If y is a continuous vertical generizations of x we let K+
y = {b ∈ Kx | |b|y ≤ 1}.

This gives a bijection between the set of continuous vertical generizations of x and valuation
rings of Kx with K◦

x ⊇ K+
y ⊇ K+

x . Moreover, the residue field at y is (Kx,K
+
y ).

(6) We say x is trivial if Γx = {1}. In this case, Kx is discrete.
(7) We say that a valuation is microbial if it has a non-trivial rank 1 vertical generization.
(8) For technical reasons we take the convention that trivial valuations have rank 0.
(9) The characteristic subgroup of | · |x, denoted by cΓx, is the smallest convex subgroup of Γx

containing γ = |b|x for all b ∈ B with 1 ≤ γ.
(10) Given a convex subgroup H ⊆ Γx containing cΓx, we define | · |y : B → H ∪ {0} with |b|y = |b|x

if |b|x ∈ H and |b|y = 0 otherwise. Equivalence classes of valuations constructed in this way are
called horizontal specializations of x.

(11) Residue fields relate to horizontal specializations as follows. Let KB be the subring of Kx

generated byK+
x and the image of B inKx. Consider the induced map f : Spec(KB)→ Spec(B).

Horizontal specializations of x are in bijection with prime ideals of B that are in the image
of f . For a convex subgroup H containing cΓx and inducing y, the associated prime ideal
py = {b ∈ B | |b|x < γ for γ ∈ H}. We sometimes denote | · |y by | · |x/py.

(12) Given a topological space T we construct a partial order on T by letting t1 ⪯T t2 if t1 ∈ {t2}. We
call this partial order the generization pattern of T . We use ⪯B instead when T = Spa(B,B+).

(13) The generization pattern of Spa(B,B+) is determined by vertical generizations and horizontal
specializations. More precisely, letting (y, z) ∈ R if z is a vertical generization of y or if y is
horizontal specialization of z. Then ⪯B is the transitive closure of R.

2.2. Definitions and basic properties.

Definition 2.1. We define a topological space Spo(B,B+) which we call the olivine spectrum of B.
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(1) Let Spo(B,B+) ⊆ Spa(B,B+)2 consist of pairs, x := (| · |hx, | · |ax), such that | · |ax has rank 1 or 0
and is a vertical generization of | · |hx.

(2) Pick b1, b2 ∈ B and let Ub1≤b2 ̸=0 = {x ∈ Spo(B,B+) | |b1|hx ≤ |b2|hx ̸= 0}, we call such subsets
classical localizations.

(3) Pick b1, b2 ∈ B and let Nb1≪b2 = {x ∈ Spo(B,B+) | |b1|ax < |b2|ax ̸= 0}, we call such subsets
analytic localizations.

(4) We endow Spo(B,B+) with the topology generated by classical and analytic localizations.

We denote by h : Spo(B,B+) → Spa(B,B+) the first coordinate projection, this map is continuous
and surjective. Moreover, both Spo and h are functorial.

Definition 2.2. Let x ∈ Spo(B,B+).

(1) We say that x is discrete if | · |ax is trivial. We say that a discrete point is microbial if h(x) is
microbial. We say that a discrete point is algebraic if | · |hx is trivial.

(2) We say that x is d-analytic if | · |ax is non-trivial. Suppose that x is d-analytic, we say that it is
analytic if h(x) is analytic and we say it is meromorphic otherwise.

(3) We say that x is bounded if |B|ax ≤ 1.
(4) We say that x is formal if it is bounded and d-analytic.

For x ∈ Spo(B,B+) the set h−1(h(x)) has at most one d-analytic point and at most one discrete
point. Consequently, Card(h−1(h(x))) ∈ {1, 2}. Moreover, Card(h−1(h(x))) = 2 if and only if h(x) is
discrete and h(x) is microbial. The definitions are made so that x is analytic if and only if h(x) is, and
in this way we can talk about the analytic locus. Nevertheless, with our terminology, there is no longer
a dichotomy since meromorphic points are not analytic but they are also not discrete.

We define the bounded locus, and denote it Spo(B,B+)
† ⊆ Spo(B,B+), as the subset of bounded

points. This is a closed subset with complement of ∪b∈BN1≪b.

Remark 2.3. Let us comment on the terminology chosen. By construction, the olivine spectrum has
more points than Huber’s adic spectrum. Algebraic points of Spo(B,B+) are in bijection with the usual
Zariski spectrum of B/B◦◦. Discrete points are in bijection with the non-analytic points of Huber. Later
on we will realize that when (B,B+) is defined over Zp the d-analytic points of Spo(B,B+) correspond to
those points whose residue field is a diamond. Among d-analytic points only those that are analytic are in
bijection with the analytic points of Huber. The terms formal and meromorphic stem from Definition 2.6.
The term bounded stems from the fact that the bounded locus on Spd(Fp[t],Fp) agrees with the functor
sending a pair (R,R+) to the set of power-bounded elements R◦.

Definition 2.4. Let x ∈ Spo(B,B+), we let supp(x) := supp(h(x)), this is the support ideal. We let
sp(x) = {b ∈ B+ | |b|hx < 1}, this is the specialization ideal. If x is bounded, we let def(x) = {b ∈ B |
|b|ax < 1}, this is the deformation ideal.

Remark 2.5. The specialization ideal will be key for us later when we discuss the specialization map
for specializing v-sheaves. In contrast to Huber’s theory, the discrete point that one can construct by
killing the elements of the specialization ideal does not always lie in the topological closure of our original
point. For this reason we also have to consider what we call the deformation ideal.

Notice that x is bounded if and only if cΓxa = {1}, this only happens if x is either discrete or formal.
If x is bounded, it is discrete whenever supp(x) = def(x) and it is formal otherwise.

Definition 2.6. Let x and y be two points in Spo(B,B+).

(1) y is a vertical generization of x (x a vertical specialization of y respectively) if | · |ax = | · |ay and

| · |hy is a vertical generization of | · |hx in Spa(B,B+). We abbreviate this as y is v.g. of x (x is
v.s. of y respectively).

(2) y is a meromorphic generization of x (x a meromorphic specialization of y respectively) if y is
meromorphic, x is discrete and h(x) = h(y). We abbreviate this as y is m.g. of x (x is m.s. of y
respectively).

(3) y is a formal generization of x (x a formal specialization of y respectively) if y is formal, x is
discrete def(y) = supp(x) and | · |hx = | · |hy/def(y). We abbreviate this as y is f.g. of x (x is f.s.
of y respectively).

Remark 2.7. In Huber’s theory there are two distinguished types of specialization, namely vertical
specializations and horizontal specializations. We consider three distinguished types of specialization.
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The vertical specializations we consider arise in the same way as Huber’s vertical generizations and have
the same behavior. In contrast, Huber’s horizontal specializations are replaced by meromorphic and
formal specializations. In very rough terms, a formal generization is what you obtain when you replace
the equation b = 0 by asking instead the condition that b is a topologically nilpotent unit. Analogously,
a meromorphic specialization is what you obtain when you replace the condition that b is a topologically
nilpotent unit by the condition that |b| < 1 but for all ϵ ∈ (0, 1) ϵ < |b|. One can think of the locus
{b = 0} as one discrete end, the locus {1 > b > ϵ} as the opposite discrete end, and the locus where
b is a topologically nilpotent unit as the analytic in-between that specializes to both ends through the
formal specialization and meromorphic specialization respectively.

Given x ∈ Spo(B,B+) let I⪯(x) denote the set of generizations of x in Spo(B,B+) and let I⪯ver(x)
denote the set of vertical generizations of x. If the context is clear, for a point y ∈ Spa(B,B+) we
will also use I⪯ver(y) to denote the vertical generizations of y in Spa(B,B+). Let us make some easy
observations and set some convenient notation:

(1) If x is discrete it has a meromorphic generization (necessarily unique) if and only if x is microbial.
We denote this generization by xmer.

(2) If x is meromorphic it has a unique meromorphic specialization, we denote it by xmer.
(3) If x is formal it has a unique formal specialization, we denote it by xfor. If x is discrete, we let

xFor denote the set of formal generizations of x.

We recommend the reader to work through the following example confirming all of the claims.

Example 2.8. Let B = Fp[[u]] endowed with the discrete topology, then Spa(B) consists of 3 points:{
η = | · |η, s = | · |s, t = | · |t

}
Here | · |η is the trivial valuation with residue field Fp ((u)), | · |s is the trivial valuation with residue

field Fp and | · |t is the (u)-adic valuation on Fp[[u]] with residue affinoid field (Fp ((u)) ,Fp [[u]]). All
valuations have rank 1 or 0. The only non-trivial vertical generization in Spa(B) goes from | · |t to | · |η.

On the other hand, Spo(B) has 4 points:{
η := (| · |η, | · |η), s := (| · |s, | · |s), tf := (| · |t, | · |t), td := (| · |t, | · |η)

}
Now, {η} = U1≤u̸=0, {η, td, tf} = U0≤u̸=0, {tf} = Nu2≪u and {tf , s} = Nu≪1, and these are the only
proper open subsets. Here s, η and td are discrete. Moreover, td is microbial, and tf is both a meromorphic
and formal d-analytic point.

Figure 1. Generization pattern of Spo(Fp[[u]],Fp[[u]])

The generization pattern is: η is a vertical generization of td, td is the meromorphic specialization of
tf , and s is the formal specialization of tf . We have Spo(Fp[[u]])

† = Spo(Fp[[u]]).

The following shows that the v.g., f.s. and m.s. determine the generization pattern in Spo(B,B+).
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Proposition 2.9. Let x ∈ Spo(B,B+).

(1) If x is d-analytic then I⪯(x) = I⪯ver(x).
(2) If x is discrete then I⪯(x) = I⪯ver(x) ∪ I⪯ver(xmer) ∪ (

⋃
z∈I⪯

ver(x)
zFor).

Proof. We prove the right to left side. Let y ∈ I⪯ver(x)∪ I⪯ver(xmer)∪ (
⋃

z∈I⪯
ver(x)

zFor) if x is discrete and

let y ∈ I⪯ver(x) otherwise. Since h is continuous, y is in every classical localization of x, so it suffices to
check analytic localizations. Suppose x ∈ Nb1≪b2 , if y is a v.g. of x then | · |ay = | · |ax so y ∈ Nb1≪b2 . If x
is discrete, then |b1|ax = 0 and |b2|ax = 1, this implies |b1|axmer = 0 and that |b2|axmer ̸= 0, so xmer ∈ Nb1≪b2

in case xmer exists. Moreover, if y ∈ xFor then def(y) = supp(x) so that |b1|ay < 1, |b2|ay = 1, and

xFor ∈ Nb1≪b2 .
We prove the left to right side, let y ∈ I⪯(x). With classical localizations we deduce supp(y) ⊆

supp(x), and if x is d-analytic we claim that supp(y) = supp(x). Indeed, let b ∈ B such that |b|ax /∈
{0, 1}, and let b1 ∈ supp(x). If |b|ax < 1 then |b|ay < 1, which implies that y is d-analytic. Additionally,
the inequalities |b1|ay < |bn|ay hold for all n since x ∈ Nb1≪bn . Similarly, if 1 < |b|ax then 1 < |b|ay
and |b1 · bn|ay < |b|ay hold instead. In both cases, the archimedean property of rank 1 valuations prove

b1 ∈ supp(y). Since the only generizations of h(x) in Spa(B,B+) with the same support are v.g. we get
h(y) ∈ I⪯ver(h(x)) and y ∈ I⪯ver(x) for x d-analytic.

Suppose x is discrete, if supp(x) = supp(y) we can reason as above. Let b ∈ supp(x) \ supp(y).
Since x ∈ Nb≪1 we have 0 < |b|ay < 1 and that y is d-analytic. For all b1 ∈ B |b · bn1 |ay < 1 holds
and y is formal with supp(x) ⊆ def(y). If b2 /∈ supp(x) then x ∈ Ub≤bn2 ̸=0 for all n, giving |b2|ay = 1
and def(y) = supp(x). Let z = yfor then supp(z) = supp(x) and it follows from the construction of
horizontal specializations that z ∈ I⪯(x). As above, h(z) is a v.g. of h(x), and since both z and x are
discrete then z is a v.g. of x. In other words, z ∈ I⪯ver(x) and y ∈ zFor. □

The olivine spectrum is compatible with completion and rational localization.

Proposition 2.10. If (B̂, B̂+) denotes the completion of (B,B+), then Spo(B̂, B̂+) = Spo(B,B+).

Proof. Since Spa(B̂, B̂+) = Spa(B,B+) the map Spo(B̂, B̂+) → Spo(B,B+) is bijective and classical

localizations of Spa(B̂, B̂+) are open in Spa(B,B+). It suffices to prove Ng≪f is open in Spo(B,B+)

for f, g ∈ B̂. Let x ∈ Ng≪f and fx ∈ B with |fx|hx = |f |hx. We have Ufx≤f ̸=0 ∩ Uf≤fx ̸=0 ∩ Ng≪f =
Ufx≤f ̸=0 ∩ Uf≤fx ̸=0 ∩Ng≪fx , so we may assume f ∈ B. Take a ring of definition B0 ⊆ B and an ideal
of definition I ⊆ B0 with |ik|hx ≤ |f |hx for a finite set of generators {i1 . . . im} ⊆ I. Let gx ∈ B such that

g − gx ∈ I2 · B̂0. Then (
⋂

i Ui≤f ̸=0) ∩ Ngx≪f = (
⋂

i Ui≤f ̸=0) ∩ Ng≪f so the left hand side is open in
Spo(B,B+). □

Proposition 2.11. Let s, t1, . . . , tn ∈ B defining a rational localization Spa(R,R+) := U( t1,...,tns ) ⊆
Spa(B,B+). Then Spo(R,R+)→ Spo(B,B+) is a homeomorphism onto h−1(U( t1,...,tns )).

Proof. It suffices to check Nr1≪r2 ⊆ Spo(R,R+) is open in Spo(B,B+) for r1, r2 ∈ R. By Propo-
sition 2.10 and the construction of rational localizations we may assume r1, r2 ∈ B[ 1s ] ⊆ R. Write

r1 = b1
sn1

, r2 = b2
sn2

and let m = n1 − n2. Then Nr1≪r2 = Nb1≪b2·sm ∩ Spo(R,R+) when m ≥ 0 and
Nr1≪r2 = Nb1·sm≪b2 ∩ Spo(R,R+) otherwise. □

The following example is key to the prove Lemma 2.33 and Theorem 2. We encourage the reader to
workout this example carefully. Recalling Example 2.8 under this light might be helpful.

Example 2.12. Suppose B+ ⊆ B are valuation rings with Frac(B) = Frac(B+) both with the discrete
topology. We describe Spo(B,B+) in two steps: first observe that Spo(B,B+) ⊆ Spo(B+, B+) and
that it acquires the subspace topology. Indeed, this follows from Proposition 2.11 and the identification
Spo(B,B+) = ∩b∈B\B+U0≤b ̸=0 ⊆ Spo(B+, B+).

Second, we describe Spo(B+, B+) explicitly using that all points are bounded and admit a deformation
ideal. Since B+ is a valuation ring elements of Spa(B+, B+) are determined by their support and
specialization ideals. Consider the map Spo(B+, B+) → Spec(B+)3 with q 7→ (supp(q),def(q), sp(q)).
The following hold:

• The map is injective with image those triples (q1, q2, q3) with q1 ⊆ q2 ⊆ q3, and such that
[q1, q2] = {q1, q2} where the left term is an interval for the order defined by containment.

• A triple q = (q1, q2, q3) is meromorphic if and only if q1 ̸= q2. In this case, there is b ∈ B+ with

b ∈ q2 \ q1 and q2 =
√
(b).
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• q ∈ I⪯ver(r) if q1 = r1, q2 = r2 and q3 ⊆ r3.
• q = rmer if r1 = q1 = r2, q2 ̸= q1 and r3 = q3.
• F.g. are unique and r is the f.s. of q if q1 ̸= q2, r1 = q2 = r2 and r3 = q3.

We describe the open subsets.

• If f
g ∈ B+ then Uf≤g ̸=0 = U0≤g ̸=0 and consists of triples (q1, q2, q3) with g /∈ q1.

• If g
f ∈ B+ we can let b = g

f then Uf≤g ̸=0 = U1≤b ̸=0 and it consists of triples with b /∈ q3.

• The families {U1≤b ̸=0}b∈B+ and {U0≤g ̸=0}b∈B+ are nested. In particular, finite intersections of
classical localizations have the form U1≤b ̸=0 ∩ U0≤g ̸=0 for some b, g ∈ B+.

• When n = f
g ∈ B+ then Ng≪f is empty and Nf≪g = U0≤g ̸=0 ∩Nn≪1.

• The set Nn≪1 consists of the triples q = (q1, q2, q3) such that n ∈ q2.
• The family of sets {Nn≪1}n∈B+ is nested.

In summary, if x ∈ U ⊆ Spo(B+, B+) for U an open subset there are elements g, b, n ∈ B+ with
x ∈ U0≤g ̸=0 ∩ U1≤b̸=0 ∩Nn≪1 ⊆ U . Moreover, elements of U0≤g ̸=0 ∩ U1≤b̸=0 ∩Nn≪1 ⊆ U are explicitly
described by the constraints: g /∈ q1, b /∈ q3 and n ∈ q2.

2.3. Olivine Huber pairs. For the rest of the section (B,B+) denotes a complete Huber pair over Zp.

Proposition 2.13. If R is a Tate Huber pair, then h : Spo(R,R+)→ Spa(R,R+) is a homeomorphism.

Proof. Since (R,R+) is Tate, Spa(R,R+) has no trivial continuous valuations and h is injective. If xa is
the maximal generization of x in Spa(R,R+) then h−1(x) = {(x, xa)}. It suffices to prove that h(Nr1≪r2)
is open. But if ϖ ∈ R is a topologically nilpotent unit, then h(Nr1≪r2) =

⋃
0<n{z ∈ Spa(R,R+) | |rn1 |z ≤

|rn2ϖ|z ̸= 0}. □

We define a canonical map π : |Spd(B,B+)| → Spo(B,B+) as follows.4 Given [x] ∈ |Spd(B,B+)| rep-
resented by a map x : Spa(C♯

x, C
♯,+
x ) → Spa(B,B+), we can define π([x]) = (x(s), x(η)) ∈ Spa(B,B+)2

where s ∈ Spa(C♯
x, C

♯,+
x ) is the closed point and η ∈ Spa(C♯

x, C
♯,+
x ) is the unique rank one point. Then

x(η) has rank ≤ 1 and is a vertical generization of x(s), so (x(s), x(η)) ∈ Spo(B,B+).

Proposition 2.14. The map π : |Spd(B,B+)| → Spo(B,B+) defined above is continuous and bijective.

Proof. Continuity follows from Definition 1.7 and Proposition 2.13. For injectivity, take points y1, y2 :
Spa(Ci, C

+
i )→ Spd(B,B+) with π(y1) = π(y2) =: x. Let (Kh(x),K

+
h(x)) be the residue field Spa(B,B+).

The maps (B,B+)→ (C♯
i , C

♯,+
i ) factor through (B,B+)→ (Kh(x),K

+
h(x)). Let si be the closed point of

Spa(Ci, C
+
i ), we show that the si define the same point. We split our analysis in three cases.

Case 1: Suppose that x is analytic. In this case, s1 and s2 map to h(π(x)) in Spa(B,B+)an. This
case follows from the bijectivity of |X♢| → |X| for analytic pre-adic spaces (Proposition 1.21).

Case 2: Suppose that x is meromorphic, then h(x) is non-analytic in Spa(B,B+). Let K◦
h(x) := {k ∈

Kh(x) | |k|ax ≤ 1} since | · |ax is non-trivial K◦
h(x) ̸= Kh(x). Choose b ∈ B with 0 < |b|ax < 1 or |b|ax > 1.

The subspace topology of (K◦
h(x)) ⊆y∗

i
OC♯

i
is either the (b)-adic topology or the ( 1b )-adic topology. After

taking completion we get a commutative diagram:

Spa(C1, C
+
1 )

Spa(C2, C
+
2 ) Spd(K̂h(x), K̂

+
h(x))

Spd(Kh(x),K
+
h(x))

p′
1

y1p′
2

y2

ιx

Now, p′1(s1) = p′2(s2) in Spd(K̂h(x), K̂
+
h(x)). Since Spa(K̂h(x), K̂

+
h(x)) is analytic we may conclude as in

the first case.
Case 3: Suppose that x is discrete, in this case h(x) is non-analytic in Spa(B,B+) and (Kh(x),K

+
h(x))

has the discrete topology. Since | · |ax is trivial, y∗i (Kh(x)) ⊆ O♯,×
Ci

. After choosing pseudo-uniformizers

4The topological considerations in what follows can be done purely in the context of adic spaces without the theory

of perfectoid spaces. To do this one substitutes |Spd(B,B+)| by Spo(B,B+)
′
where this second space has Spo(B,B+) as

underlying set, but has the strongest topology making maps coming from Tate Huber pairs continuous.
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ϖi ∈ OC♯
i
we may extend the yi to continuous adic maps of topological rings p′∗i : Kh(x)[[t]]→ OC♯

i
where

Kh(x)[[t]] has the (t)-adic topology. These induce the following commutative diagram:

Spa(C1, C
+
1 )

Spa(C2, C
+
2 ) Spd(Kh(x)((t)),K

+
h(x) + t ·Kh(x)[[t]])

Spd(Kh(x),K
+
h(x))

p′
1

y1p′
2

y2

ιx

Again, p′1(s1) = p′2(s2) in Spd(Kh(x)((t)),K
+
h(x) + t ·Kh(x)[[t]]) which is also analytic.

The case by case study given above also shows that π is surjective. Indeed, we can take a completed
algebraic closures of Kh(x) (K̂h(x), or Kh(x)((t)) respectively) when x is analytic (meromorphic or discrete
respectively). □

Definition 2.15. Whenever x is d-analytic we let (Kx,K
+
x ) denote (K̂h(x), K̂

+
h(x)), and if x is discrete

we let (Kx,K
+
x ) denote (Kh(x)((t)),K

+
h(x)+ t ·Kh(x)[[t]]) as in the proof of Proposition 2.14. In both cases

we call (Kx,K
+
x ) the pseudo-residue field at x.

Remark 2.16. The pseudo-residue field map Spo(Kx,K
+
x ) → Spo(B,B+) is a homeomorphism onto

its image. The functor Spd(Kx,K
+
x )→ Spd(B,B+) surjects onto the subsheaf of Spd(B,B+) consisting

of maps that factor through I⪯ver(x), but when x is discrete the map Spd(Kx,K
+
x )→ Spd(B,B+) is not

injective. Actually, when x is discrete and | · |hx is non-trivial the subsheaf of points that factor through
I⪯ver(x) is not representable by an adic space.

Corollary 2.17. For any map of Huber pairs m∗ : (B1, B
+
1 )→ (B2, B

+
2 ) the map Spo(m) is compatible

with v.g.. More precisely, if x ∈ Spo(B2, B
+
2 ), y = Spo(m)(x) and y′ is a v.g. of y then there exist x′, a

v.g. of x, with Spo(m)(x′) = y′.

Proof. Given x ∈ Spo(B2, B
+
2 ) and y ∈ Spo(B1, B

+
1 ) as in the statement we may, after making some

choices if necessary, construct the following commutative diagram of pseudo-residue fields:

Spd(Kx,K
+
x ) Spd(Ky,K

+
y )

Spd(B2, B
+
2 ) Spd(B1, B

+
1 )

Since the map Spd(Kx,K
+
x )→ Spd(Ky,K

+
y ) is a map of locally spatial diamonds it is generalizing and

consequently surjective. But |Spd(Kx,K
+
x )| = I⪯ver(x) and analogously for y. □

Lemma 2.18. The topological spaces Spo(B,B+) and |Spd(B,B+)| have the same generization pattern.

Proof. Since |Spd(B,B+)| → Spo(B,B+) is continuous the generization pattern of |Spd(B,B+)| is
smaller than that of Spo(B,B+), it suffices by Proposition 2.9 to prove that formal, meromorphic and
vertical specializations are specializations in |Spd(B,B+)|. For x ∈ Spo(B,B+) the pseudo-residue field
map ιx : Spd(Kx,K

+
x )→ Spd(B,B+) is a bijection onto I⪯ver(x) so v.s. are specializations in Spd(B,B+).

Let x ∈ Spo(B,B+) be d-analytic and let b such that |b|ax /∈ {0, 1}. Let p : Spa(C,C+) → Spa(B,B+)
be a geometric point mapping to x and let ϖ ∈ C◦◦ be either p∗(b) or 1

p∗(b) . To this choice we will

associate two product of points as follows. Let R+ =
∏∞

i=1 C
+, let ϖ0 = (ϖ

1
n )∞n=1 and ϖ∞ = (ϖn)∞n=1.

Let R+
0 (R+

∞ respectively) be R+ endowed with the ϖ0-topology (ϖ∞-topology respectively), and let
R0 = R+

0 [
1
ϖ0

] (R∞ = R+
∞[ 1

ϖ∞
] respectively). We have diagonal maps of rings C+ → R+

∞ and C → R∞,

but we warn the reader that these maps are not continuous. On the other hand, the map C+ → R+
0 is

continuous but ϖ is not invertible in R0 so the map does not extend to a map C → R0.
Suppose that x is meromorphic. The diagonal map f : B → Kh(x) → R∞ becomes continuous giving a

map Spa(R∞, R+
∞)→ Spa(B,B+). The space π0(|Spa(R∞, R+

∞)|) is the Stone–Čech compactification of
N whose elements are ultrafilters of N. Principal ultrafilters {Un}n∈N define inclusions ιn : Spa(C,C+)→
Spa(R∞, R+

∞) that correspond to the nth-projection in the coordinate rings. The closed point of a
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principal connected component maps to x under Spo(f). We claim that the closed point of a non-
principal connected component maps to xmer. It suffices to construct a commutative diagram as below:

Spa(CU , C
+
U ) Spa(Kxmer

,K+
xmer

)

Spa(R∞, R+
∞) Spa(Kh(x),K

+
h(x)) Spa(B,B+)

We claim that the natural map Kh(x) → CU maps to OCU . It suffices to prove ϖ∞ ·Kh(x) ⊆ OCU , and

since Kh(x) = K+
h(x)[b,

1
b ] it suffices to prove that ϖ∞

ϖn ∈ OCU for n ∈ N. Clearly ϖ∞
ϖn ∈

∏∞
i=n+1 OC and

since the ultrafilter is non-principal complements of finite sets are in U , which proves the claim.
By letting t map to ϖ∞ we get a map Kh(x)((t))→ CU , the intersection of Kh(x)[[t]] with C+

U in OCU

is K+
h(x) + t · Kh(x)[[t]] = K+

xmer
which gives our factorization. The set of closed points contained in a

principal component are dense within the set of closed points of |Spa(R∞, R+
∞)|. This gives that m.s. in

Spo(B,B+) are specializations in |Spd(B,B+)|.
Suppose that x is formal. Since |B|ax ≤ 1 the map (B,B+)→ (C,C+) factors through (OC , C

+) and
def(x) = B ∩C◦◦. This allows us to define a map Spa(R0, R

+
0 )→ Spa(B,B+). As above, we prove that

principal components of π0(Spa(R0, R
+
0 )) map to x in Spo(B,B+) while the non-principal ones map to

xfor, which proves that f.s. are specializations. Let k = OC/C
◦◦ and k+ = C+/C◦◦, it suffices to prove

that (OC , C
+)→ (CU , C

+
U ) factors as:

(OC , C
+)→ (k, k+)→ (k((t)), k+ + t · k[[t]])→ (CU , C

+
U )

Now, ϖ
ϖn

0
∈
∏∞

i=n+1 OC which implies that |ϖ|U ≤ |ϖn
0 |U . Since ϖ0 is a pseudo-uniformizer in CU this

implies |ϖ|U = 0. Clearly k ⊆ OCU and we may send t to ϖ0 to construct our factorization. □

Proposition 2.19. Let (B,B) be a formal Huber pair then |Spd(B)| → Spo(B,B) is a homeomorphism.

Proof. By Proposition 2.14 the map is a continuous bijection. Let Y = Spa(B[[t]])t ̸=0 and recall that
|Y | = |Y ♢| since this is an analytic pre-adic space. Let U be open in |Spd(B)|, let x ∈ U and let y ∈ Y
mapping to x. We construct a neighborhood of x in U open in Spo(B,B). Let f : (B,B)→ (B[[t]], B[[t]])
be the canonical map. For Ub1≤b2 ̸=0 orNb1≪b2 containing x we choose quasicompact neighborhoods of y in
Spa(B[[t]]), that we denote Ub1,b2,y and Nb1,b2,y, whose image in Spo(B,B) are contained in Ub1≤b2 ̸=0 and
Nb1≪b2 respectively. For Ub1≤b2 ̸=0 pick a finite set S ⊆ B and n ∈ N such that |s|y ≤ |b2|y for s ∈ S, that

|tn|y ≤ |b2|y, and that the ideal generated by S is open in B. We let Ub1,b2,y = U(S,t
n,b1
b2

) ⊆ Spa(B[[t]]).

Rational localizations are quasicompact and clearly Spo(f)(h−1(Ub1,b2,y)) ⊆ Ub1≤b2 ̸=0. For Nb1≪b2 pick
a finite set S and n1, n2 ∈ N, such that |bn1

1 |y ≤ |b
n1
2 · t|y, that |s|y ≤ |bn1

2 · t|y for s ∈ S, that

|tn2 |y ≤ |t · bn1
2 |y and that S generates an open ideal in B. We let Nb1,b2,y = U(

S,tn2 ,b
n1
1

b
n1
2 ·t ). Since t is

topologically nilpotent in B[[t]], if z ∈ Spa(B[[t]]) then |t|z < 1 and Spo(f)(h−1(Nb1,b2,y)) ⊆ Nb1≪b2 .
Notice that Nb1,b2,y ⊆ Spa(B[[t]])t ̸=0.

LetX = (
⋂
Nb1,b2,y)∩(

⋂
Ub1,b2,y), then Spo(f)(X) ⊆ I⪯(x) and by Lemma 2.18, also Spo(f)(X) ⊆ U .

Now, Spo(f)
−1

(U) is open in Spa(B[[t]])t ̸=0 and the families, {Ub1,b2,y ∩N0,1,y} and {Nb1,b2,y}, consist of
quasicompact open subsets of Spa(B[[t]])t̸=0. A compactness argument in the patch topology of Spa(B[[t]])

proves that a finite intersection is contained in Spo(f)
−1

(U). We prove that the image under Spo(f)
of such a finite intersection is open in Spo(B,B). More generally, let Z = ∩ni=1Vi with Vi of the form
Vbi,1,bi,2 := {z ∈ Spa(B[[t]])t̸=0 | |bi,1|z ≤ |bi,2|z ̸= 0} where bi,1 ∈ B ∪ {tn}n∈N and bi,2 ∈ B ∪ t · B, we

claim that Spo(f)(Z) is open in Spo(B,B). If bi,1, bi,2 ∈ B then Vbi,1,bi,2 = Spo(f)
−1

(Ubi,1≤bi,2 ̸=0) and
for Z as above we have Spo(f)(Z ∩ Vbi,1,bi,2) = Spo(f)(Z) ∩ Ubi,1≤bi,2 ̸=0, so we can reduce to the case
where each Vi = Vbi,1,bi,2 satisfy that either bi,1 ∈ {tn}n∈N or bi,2 = b2 · t. Let Tn

Z ⊆ B with b ∈ Tn
Z

if either bi,1 = tn and b = bi,2 or if bi,1 = tn+1 and bi,2 = b · t for some i. Let T≪
Z ⊆∈ B × B with

(b1, b2) ∈ T≪
Z if (b1, b2) = (bi,1, bi,2) for some i, and let T−

Z and T+
Z denote the image of T≪

Z under the
first and second projection maps. We prove that Spo(f)(Z) is the intersection of all the sets of the form
Ubn1 ≤bn2 ·b3 ̸=0 where (b1, b2) ∈ T≪

Z and b3 ∈ Tn
Z and all the sets of the form Nb1≪b2 , with (b1, b2) ∈ T≪

Z ,
which proves Spo(f)(Z) is open.

It is not hard to see Spo(f)(Z) is contained in this intersection. To prove the converse, let w be in
the intersection, we construct a lift in Z. Pick a point q : Spa(C,C+) → Spa(B) over w, the choice of
ϖ ∈ C◦◦,× defines a lift of q to Spa(C,C+) → Spa(B[[t]])t̸=0. If w is discrete then |b1|aw = 0 for every
b1 ∈ T−

Z and |b2|aw = |b3|aw = 1 for every b2 ∈ T+
Z and b3 ∈ Tn

Z . In this case, any choice of ϖ defines a lift
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landing inside of Z. If w is d-analytic ϖ must be chosen more carefully. Since C is algebraically closed
we may choose nth-roots of (b3) for all b3 ∈ Tn

Z . For a lift of q to land in Z, ϖ must satisfy the following:

|ϖ|q ≤ |(b3)
1
n |q for all b3 ∈ Tn

Z and
|(b1)|q
|(b2)|q ≤ |ϖ|q for all (b1, b2) ∈ T≪

Z . We let m be the smallest of the

values in Γq of the form |b
1
n
3 |q with b3 ∈ Tn

Z and we let M be the largest of the values of the form | b1b2 |q
with (b1, b2) ∈ T≪

Z . Since w ∈ Ubn1 ≤bn2 ·b3 ̸=0 we have M ≤ m. Since w ∈ Nb1≪b2 for all pairs (b1, b2) ∈ T≪
Z

we also have M < 1. Any ϖ ∈ C with |ϖ|q < 1 and M ≤ |ϖ|q ≤ m defines a lift of q in Z. □

Definition 2.20. Let (B,B+) be a complete Huber pair over Zp, we say that (B,B+) is olivine if the
map |Spd(B,B+)| → Spo(B,B+) is a homeomorphism.

Question 2.21. Is every complete Huber pair over Zp an olivine Huber pair?

We have enough partial progress answering this question. Although we do not know what to expect
in full generality, for the Huber pairs that we consider this is true. Let us clarify. By Proposition 1.21
Tate Huber pairs are olivine. By Proposition 2.19 formal Huber pairs are olivine. By Proposition 2.11
if (B,B+) → (R,R+) induces a locally closed immersion Spd(R,R+) ⊆ Spd(B,B+) and (B,B+) is
olivine then (R,R+) is olivine. Moreover, being olivine can be verified locally in the analytic topology
of Spa(B,B+). The following criterion can be used in most circumstances of interest.

Proposition 2.22. Let (B,B+) be a complete Huber pair over Zp, suppose it is topologically of finite
type over a formal Huber pair (B0, B0). Then (B,B+) is olivine.

Proof. By definition, there is M = {Mi}ni=1 with B0 · Mi ⊆ B0 open and a strict surjection f :
B0⟨T1 . . . , Tn⟩M1,...,Mn → B. Let C be the ring of integral elements of B0⟨T1 . . . , Tn⟩M1,...,Mn , then B+ is
the integral closure of f(C) in B. Since Spd(B,B+)→ Spd(B0⟨T1 . . . , Tn⟩M1,...,Mn , C) is a closed immer-
sion it suffices to prove the claim for (B0⟨T1 . . . , Tn⟩M1,...,Mn

, C). We proceed by induction the base case
being Proposition 2.19. Let Spa(R,R+) be the rational localization corresponding to {x ∈ Spa(B,B+) |
|T1|x ≤ |1|x ̸= 0}, then (R,R+) is olivine by induction. Indeed, (R,R+) = (A0⟨T2, . . . , Tn⟩M2,...,Mn

, C ′)
for (A0, A0) = (B0⟨T1⟩{1}, B0⟨T1⟩{1}) which is a formal. Let Spa(S, S+) = {x ∈ Spa(B,B+) | |1|x ≤
|T1|x ̸= 0}. If we let A0 = B0⟨ 1

T1
⟩{1} then we may rewrite Spa(S, S+) as the locus of points in

Spa(A0⟨T2, . . . , Tn⟩M2,...,Mn
, C ′′)

such that m ≤ 1
T1
̸= 0 for m ∈ M1. By induction (A0⟨T2, . . . , Tn⟩M2,...,Mn

, C ′′) is olivine, and since

rational localizations preserve olivine Huber pairs we conclude (S, S+) is olivine. □

Remark 2.23. For an arbitrary Huber pair (B,B+) with B0 a ring of definition we can consider the
commutative diagram

| Spd(B,B+) | Spo(B,B+)

lim←−i
| Spd(Bi, B

+
i ) | lim←−i

Spo(Bi, B
+
i )

where (Bi, B
+
i ) ranges over all subrings of B that are topologically of finite type over B0. By Propo-

sition 2.22 the bottom horizontal arrow is a homeomorphism and one can verify directly that the right
vertical arrow is also a homeomorphism. It is not clear to us if the left vertical arrow is a homeomorphism
or not since taking limits of v-sheaf does not necessarily commute with taking underlying topological
spaces. Adding to the complexity of the situation the transition maps Spd(Bi, B

+
i ) → Spd(Bj , B

+
j )

might not be quasicompact. Counterexample to Question 2.21 should come from this failure. We do not
know if letting B = Fp[T1, . . . , Tn, . . . ] and B+ = Fp with the discrete topology gives an olivine Huber
pair.

2.4. Some open and closed subsheaves. By [18, Proposition 12.9] open subsets of Spo(B,B+) define
open subsheaves of Spd(B,B+), and when (B,B+) is olivine this association is bijective. Since the
formation of Spd(B,B+) commutes with localization in Spa(B,B+), one can compute the open subsheaf
corresponding to classical localizations. The following lemma describes, in some cases, the open subsheaf
associated to analytic localizations.

Lemma 2.24. Suppose that B+ is I-adic and that B ⊆ Frac(B+). Let b ∈ B, let B+
b be the (b, I)-

adic completion of B+ and let Bb = B ⊗B+ B+
b . If (Bb, B

+
b ) is Huber, then, Nb≪1 ⊆ Spd(B,B+) is

represented by Spd(Bb, B
+
b ). This condition is satisfied if B+ = B or if B and B+ are valuation rings.
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Proof. Since B ⊆ Bb is dense, Spd(Bb, B
+
b )→ Spd(B,B+) is injective. If f : Spa(R,R+)→ Spd(B,B+)

factors through Spd(Bb, B
+
b ) then f∗(b) is topologically nilpotent inR♯. This gives Spo(f)(Spa(R,R+)) ⊆

Nb≪1 and since this happens for all (R,R+) ∈ Perf, Spd(Bb, B
+
b ) → Spd(B,B+) factors through

Nb≪1. Conversely, pick f : Spa(R♯, R♯,+) → Spa(B,B+) with Spo(f)(Spa(R♯, R♯,+)) ⊆ Nb≪1. Let
x ∈ Spa(R♯, R♯,+), let ϖ ∈ R♯,+ be a pseudo-uniformizer, then |f∗bn|x ≤ |ϖ|x for some n. Let

Spa(R1, R
+
1 ) = U( f

∗bn

ϖ ) ⊆ Spa(R♯, R♯,+). Now, B+ → R+
1 is continuous for the (I, b)-topology so we get

a map (Bb, B
+
b )→ (R1, R

+
1 ). This proves f factors locally, and by injectivity it also does globally. □

In general the subsheaf Nb≪1 is not of the form Spd(R,R+). Recall that Spo(B,B+)
† ⊆ Spo(B,B+)

is the closed subset of bounded points. Observe that Spo(B,B+)
†
is stable under v.g. and by Proposi-

tion 1.9 it defines a closed subsheaf of Spd(B,B+). Let Spd(B,B+)
†
denote this closed subsheaf.

Proposition 2.25. Let F : Perf → Sets parametrize triples (R♯, ι, f) where (R♯, ι) is an untilt of R and

f : Spa(R♯,◦, R♯,+)→ Spa(B,B+) is a morphism of pre-adic spaces. Then F = Spd(B,B+)
†
.

Proof. We prove F → Spd(B,B+) is a closed immersion. Let A|B|
Zp

parametrize tuples (R♯, ι, x) with

(R♯, ι) an untilt and x : B → R♯ a map of sets. Define A|B|,†
Zp

similarly with x : B → R♯,◦. We

have a basechange identity F = A|B|,†
Zp

×A|B|
Zp

Spd(B,B+). Since limits preserve closed immersions it

suffices to prove A1,†
Zp
→ A1

Zp
is a closed immersion, which can be checked after basechange. Let fr :

Spa(R,R+)→ A1
Zp

defined by r ∈ R♯. Then A1,† ×A1
Zp

Spa(R,R+) is the complement in Spa(R,R♯,+) of⋃
ϖ∈R♯,◦◦{x ∈ Spa(R♯, R♯,+) | |1|x ≤ |r ·ϖ|x ̸= 0}. This is and stable under v.g. as we wanted to show.

Since Spd(B,B+)
†
and F are closed immersions it suffices to prove they coincide on geometric points.

This follows from the definition of the bounded locus. □

Lemma 2.26. Let (A,A+) and (B,B+) be complete Huber pairs over Zp and (B,B+)→ (A,A+) be an

adic morphism. Then Spd(A,A+)
† → Spd(B,B+)

†
is representable in spatial diamonds. In particular,

it is qcqs.

Proof. Since the map (B,B+) → (A,A+) is adic we can write (A,A+) as a (completion of a) filtered
colimit lim−→i∈I

(Ai, A
+
i ) where each (Ai, A

+
i ) is topologically of finite type over (B,B+), and the tran-

sition maps realize Ai → Aj as a topological subring for i < j. One can see that Spd(A,A+)
†
=

lim←−i
Spd(Ai, A

+
i )

†
and by [18, Lemma 12.17] it suffices to prove that Spd(Ai, A

+
i )

† → Spd(B,B+)
†
is

representable in spatial diamonds. A presentation of Ai as a topologically of finite type B-algebra gives

a closed immersion Spd(Ai, A
+
i )

† → Spd(B⟨(Tk)
n
k=1⟩Mk

)†. Since closed immersions are representable in
spatial diamonds we may assume Ai = B⟨T1⟩M1

. There is an open immersion Spd(B⟨T1⟩M1
) → A1

B

and Spd(B⟨T1⟩M1
, B⟨T1⟩+M1

) ∩ A1,†
B = Spd(B⟨T1⟩M1

, B⟨T1⟩+M1
)
†
. Clearly, A1,†

B → Spd(B,B+)
†
is rep-

resentable in locally spatial diamonds, we need to verify it is quasicompact. This can be done after

basechanges by affinoid perfectoid. But the basechange by a map Spa(R,R+) → Spd(B,B+)
†
is repre-

sentable by Spd(R♯⟨T ⟩, R′) where R′ is the minimal ring of integral elements containing R♯,+. □

The following statement says that at least the bounded locus of a Huber pair is always olivine.

Proposition 2.27. Suppose that (B,B+) is a complete Huber pair over Zp. The natural map

|Spd(B,B+)
†| → Spo(B,B+)

†

is a homeomorphism.

Proof. Let B0 ⊆ B+ be a ring of definition and express (B,B+) as a filtered colimit lim−→i∈J
(Bi, B

+
i )

with both Bi and B+
i of finite type over B0, then Spd(B,B+)

†
= lim←− Spd(Bi, B

+
i )

†
. By Proposition 2.22

each (Bi, B
+
i ) is olivine and by Lemma 2.26 the transition maps are representable in spatial diamonds.

Let πi : D×
B†

i

→ Spd(Bi, B
+
i )

†
denote the punctured open unit disc over Spd(Bi, B

+
i )

†
. Observe that πi

is open. Now, D×
B0

is a locally spatial diamond represented by (Spa(B0[[t]])
t ̸=0)♢. In particular, D×

B†
i

is

also a locally spatial diamond and since the transition maps D×
B†

i

→ D×
B†

j

are qcqs we see that by [18,

Lemma 12.17] |D×
B† | = lim←−|D

×
B†

i

|. It suffices to prove that π : |D×
B† | → Spo(B,B+)

†
is a quotient map.
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Let S ⊆ Spo(B,B+)
†
with π−1(S) open. For every point y ∈ π−1(S) there is an index jy ∈ J and an

open subset of Uy ⊆ D×
B†

i

whose preimage in D×
B† is contained in π−1(S) and contains y. Now, πjy (Uy)

is open in |Spd(Bi, B
+
i )

†| and since (Bi, B
+
i ) is olivine it is also open in Spo(Bi, B

+
i )

†
. The preimage of

πjy (Uy) in Spo(B,B+)
†
contains π(y), is open and it is contained in h−1(S). □

2.5. Discrete Huber pairs in characteristic p. For the rest of the subsection A denotes a discrete
perfect ring in characteristic p and A+ ⊆ A is integrally closed.

Proposition 2.28. Let (A,A+) be as above. The projection map Spo(A,A+)
† → Spa(A,A+) is sur-

jective. Moreover, if S ⊆ Spa(A,A+) is stable under arbitrary generization and h−1(S) is open in

Spo(A,A+)
†
then S is open in Spa(A,A+).

Proof. The complement of the bounded locus consists of d-analytic points. Since A has the discrete
topology every d-analytic point is meromorphic. If x ∈ Spo(A,A+) is meromorphic, then y := xmer is

bounded and satisfies h(x) = h(y). Consequently, h(Spo(A,A+)) = h(Spo(A,A+)
†
).

Now, observe that Spd(A((t)), A+ + t ·A[[t]])→ Spd(A,A+) surjects onto Spd(A,A+)
†
and represents

the punctured open unit ball over it. Consider, f : Spa(A((t)), A+ + t · A[[t]]) → Spa(A,A+), it suffices
to prove that if S is stable under generization and f−1(S) is open, then S is open. The rest of the
argument is a variant of the proof of Proposition 2.19, using only classical localizations. In this case, one
exploits the constructible topology of Spa(A((t)), A+ + t ·A[[t]]). We omit the details. □

Proposition 2.29. If A and A+ are valuation rings with the same fraction field then (A,A+) is olivine.

Proof. If Spo(A,A+)
†
= Spo(A,A+), then Proposition 2.27 proves that (A,A+) is olivine. Suppose

x ∈ Spo(A,A+) \ Spo(A,A+)
†
, then x is meromorphic and there is π ∈ A with 1 < |π|ax. We must

have 1
π ∈ A+ since A+ is a valuation ring and π /∈ A+. Let b = 1

π , we claim that A = A+[ 1b ]. By the
archimedean property of | · |ax for every a′ ∈ A there is a big enough n ∈ N with |bn ·a′|ax < 1. Since A+ is
a valuation ring either a′ ·bn ∈ A+ or 1

a′·bn ∈ A+, but the second case contradicts that | · |ax ∈ Spa(A,A+).
By Proposition 2.19, (A+, A+) is olivine and since Spo(A,A+) ⊆ Spo(A+, A+) is the open locus in

which b ̸= 0 we conclude by Proposition 2.11 that (A,A+) is also olivine. □

Lemma 2.30. There is a unique map Spd(A,A+)→ Spd(Zp), it is given by Spd(A,A+)→ Spd(Fp)→
Spd(Zp).

Proof. It suffices to prove that Spa(C,C+) → Spd(A,A+) → Spd(Zp) factors through Spd(Fp) for
geometric points. Consider, Spa(R∞, R+

∞) → Spd(A,A+) as in the proof of Lemma 2.18, with R+
∞ =∏∞

i=1 C
+ and ϖ∞ = (ϖpi

). The map Spa(R∞, R+
∞) → Spd(A,A+) → Spd(Zp) defines an untilt of

R∞ given by ξ = p + (ϖ∞)
1

pk · α with α ∈ W (R+
∞). For any i ∈ N the projection ιi : R∞ → C

gives an untilt of C. Since (A,A+) → (R∞, R+
∞)

ιi−→ (C,C+) is independent of the projection, all of
these untilts agree. This says that the ideal Ii generated by ιi(ξ) in W (C+) agree, we call this ideal I.

Since ιi(ξ) = p −ϖ
pi

pk ιi(α) the sequence ιi(ξ) converges to p in the (p,ϖ)-adic topology. But the ideal
associated to an untilt is closed, so p ∈ I and Spa(C,C+)→ Spd(Zp) factors through Spd(Fp). □

Lemma 2.31. Let (A,A+) be as above and let (B,B+) be a complete Huber pairs over Zp. Then
every morphism of v-sheaves Spd(A,A+)→ Spd(B,B+) comes from a unique morphism of Huber pairs
(B,B+)→ (A,A+).

Proof. Given a map g : Spd(A,A+) → Spd(B,B+) we first construct a map m : Spa(A,A+) →
Spa(B,B+), and then prove that m♢ = g. Let R = A((t

1
p∞ )), R+ = A+ + (t

1
p∞ )A[[t

1
p∞ ]] and X =

Spa(R,R+). The natural map X → Spd(A,A+) surjects onto Spd(A,A+)
†
. Since X representable,

any f : X → Spd(B,B+) is given by an untilt R♯ and a map f∗ : (B,B+) → (R♯, R♯,+). Let f be
induced by g, by Lemma 2.30 the untilt must be R. Since f factors through g, f∗(B) is invariant under
automorphism of R over A. Take b ∈ B, we show f∗(b) ∈ A ⊆ R. Now, tp

n · f∗(b) is topologically

nilpotent for big enough n. Replacing by t 7→ t
1

pm we conclude that tp
n

f∗(b) is topologically nilpotent

for n ∈ Z. This proves that f∗(b) is power-bounded so that f∗(b) ∈ A[[t
1

p∞ ]]. Write f∗(b) = a0 + t
1

pm q

with a0 ∈ A and q ∈ A[[t
1

p∞ ]]. Now, t
1

pm q converges to 0 under t 7→ tp
n

so f∗(b) = a0. We get a ring
map m∗ : B → A. The subspace topology of A in R is discrete, this gives continuity of m∗. Moreover,

R+ ∩A = A+. We have constructed m : Spa(A,A+)→ Spa(B,B+) with m♢ = g over Spd(A,A+)
†
.
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Consider (g,m♢) : Spd(A,A+)→ Spd(B,B+)×Spd(B,B+) we show that Spd(A,A+) factors through
the diagonal ∆ : Spd(B,B+) → Spd(B,B+) × Spd(B,B+). We can check this on geometric points x :

Spd(C,C+)→ Spd(A,A+). Since the maps agree on Spd(A,A+)
†
we can assume that x is meromorphic.

Pick a pseudo-uniformizer ϖ ∈ C and consider R∞ as in Lemma 2.18. Consider Spa(R∞, R+
∞) →

Spd(A,A+) given by the diagonal morphism A →
∏∞

i=1 C. Recall, C ⊆∆ R∞ ⊆
∏∞

i=1 C, and that
although C ⊆∆ R∞ is not continuous the composition A→ R∞ is. Now, Spa(R∞, R+

∞)→ Spd(A,A+)→
Spd(B,B+) × Spd(B,B+) gives two maps f1, f2 : B → R∞, and both have to factor through the
diagonal C ⊆∆ R∞. By the proof of Lemma 2.18 the residue field at a non-principal ultrafilter U
maps to xmer. Since Spa(CU , C

+
U ) → Spd(B,B+) × Spd(B,B+) factors through Spd(A,A+)

†
(being

discrete in Spo(A,A+)), it also factors through the diagonal. These ring maps are the compositions
fi : B → C → R∞ → CU . We can conclude f1 = f2 since C → CU is injective. □

Theorem 2.32. Let Y be a perfect discrete adic space over Fp and let X be a pre-adic space over Zp.
The natural map Hom

PreAd
(Y,X) → Hom(Y ♢, X♢) is bijective. In particular, ♢ is fully faithful when

restricted to the category of perfect discrete adic spaces over Fp.

This theorem says, intuitively speaking, that (up to perfection) one does not get new morphisms of
v-sheaves when the source is a discrete adic space.

Proof. It is not hard to prove injectivity. For surjectivity, the hard part is to prove that morphisms
g : Y ♢ → X♢ induce a map of topological spaces f : |Y | → |X| making the following diagram commute:

| Y ♢ | | X♢ |

| Y | | X |

g

f

Indeed, if this holds true one can reduce to Lemma 2.31 by standard glueing arguments. Verifying that
g : |Y ♢| → |X♢| descends to f : |Y | → |X| can be done locally on |Y |, we may assume Y = Spa(A,A+).
Let y ∈ |Y | and z ∈ Spo(A,A+) with h(z) = y, we define f(y) := h(g(z)). We must verify that this
doesn’t depend on z and that it is continuous. The map f is well defined if and only if h(g(z)) = h(g(zmer))
when z is meromorphic, and by Proposition 2.28 to prove continuity it suffices to prove that if S ⊆ |X|
is open then f−1(S) is stable under arbitrary generization in Spa(A,A+). Let w ∈ Spa(A,A+) be
a horizontal generization of y. Let (ky, k

+
y ) and (kw, k

+
w ) denote the affinoid residue fields of w and

y and let Kw denote the smallest ring containing k+w and A as in item 11. It suffices to prove that
|Spd(Kw, k

+
w )| → |X♢| and |Spd(ky, k+y )| → |X♢| descend to continuous maps |Spa(Kw, k

+
w )| → |X| and

|Spa(ky, k+y )| → |X|. In summary, we have reduced to the case where Y = Spa(A,A+) with A+ ⊆ A two
valuation rings with the same fraction field. We deal with this case in Lemma 2.33 below. □

Lemma 2.33. Let X and Y = Spa(A,A+) as above, with A+ ⊆ A ⊆ Frac(A+) both valuation rings.
Let g : Spd(A,A+) → X♢ be a map. Let h(cmin) ∈ Spa(A,A+) denote the unique closed point and
let cmin ∈ Spo(A,A+) denote the unique discrete point mapping to h(cmin). If h(g(cmin)) ∈ |X| lies in
Spa(B1, B

+
1 ) ⊆ X then g factors through a map Spd(A,A+) → Spd(B1, B

+
1 ) ⊆ X♢. In particular, g is

coming from a map of pre-adic spaces Spa(A,A+)→ Spa(B1, B
+
1 ) ⊆ X.

Proof. Suppose to get a contradiction that there is an “exotic” g that does not satisfy this property.
By Proposition 2.29, |Spd(A,A+)| = Spo(A,A+) and we work with the later. Let U1 ⊆ Spo(A,A+)
be pullback of Spd(B1, B

+
1 ), this a proper open subset. Let Z = Spo(A,A+) \ U1, it is quasicompact

and by [20, Lemma 18.3.2] we may find the largest prime pm ∈ Spec(A) of the form supp(z) with
z ∈ Z. Replacing A and A+ by A/pm and A+/pm we may assume that if z ∈ Z then supp(z) = 0.
Let K = Frac(A), then Z ⊆ Spo(K,A+). Since Z is a closed it contains the unique closed point
qmin ∈ Spo(K,A+).5 Now, U1 contains all analytic localizations Nn≪1 with n ̸= 0 and n ∈ supp(cmin).
Indeed, if z ∈ Z∩Nn≪1 then |n|az < 1 and either z or zfor have non-trivial support giving a contradiction.

Also, Spd(K,A+) → X♢ factors through another open affine subsheaf Spd(B2, B
+
2 ), since it has a

unique closed point. Let U2 be the pullback of Spd(B2, B
+
2 ). By Example 2.12, there is an open with

qmin ∈ U0≤b̸=0 ∩ U1≤b′ ̸=0 ∩Nn≪1 ⊆ U2. Moreover, in the notation of Example 2.12 qmin = (0, 0,m) with
m the maximal ideal of A+. This gives that n = 0 and that b′ ∈ A+ \ m so U1≤b′ ̸=0 = Spo(A,A+) and
Nn≪1 = Spo(A,A+). In summary, qmin ∈ U0≤b̸=0 ⊆ U2.

5This is the unique discrete point such that h(qmin) is closed in Spa(K,A+).
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We have found neighborhoods Nb≪1 ⊆ U1 and U0≤b̸=0 ⊆ U2. Observe that Spo(A,A+) = Nb≪1 ∪
U0≤b ̸=0. LetA+

b denote the (b)-adic completion and Ab = A+
b ⊗A+ A. Lemma 2.24 shows that Nb≪1

is represented by Spd(Ab, A
+
b ). Also, U0≤b̸=0 is represented by Spd(A[ 1b ], A

+) and Nb≪1 ∩ U0≤b̸=0 is

represented by Spa(Ab[
1
b ], A

+
b ). Notice that this is a perfectoid field. Let qb be the closed point of

Nb≪1 ∩ U0≤b ̸=0. Since the morphisms glue, there is Spa(B3, B
+
3 ) ⊆ Spa(B1, B

+
1 ) ×X Spa(B2, B

+
2 ) and

Spa(Ab[
1
b ], A

+
b )→ Spd(B3, B

+
3 ) making the following diagram commute:

Spa(Ab[
1
b ], A

+
b ) Spd(A[ 1b ], A

+)

Spd(B3, B
+
3 ) Spd(B2, B

+
2 )

Spd(Ab, A
+
b ) Spd(B1, B

+
1 ) X♢

By Lemma 2.31 the map Spd(A[ 1b ], A
+) → Spd(B2, B

+
2 ) is given by a map of Huber pairs (B2, B

+
2 ) →

(A[ 1b ], A
+). The pullback of Spd(B3, B

+
3 ) to Spo(A[ 1b ], A

+) has the form h−1(U3) for some U3 ⊆
Spa(A[ 1b ], A

+). Moreover, h(qb) is the closed point of Spa(A[ 1b ], A
+). This proves that Spd(A[ 1b ], A

+)

factors through Spd(B3, B
+
3 ) and consequently through Spd(B1, B

+
1 ) contradicting our assumption. □

We now study perfect discrete Huber pairs of the form (A,A).

Proposition 2.34. Let A be discrete ring and f∗ : (B,B+)→ (A,A) a map. The following hold:

(1) f(Spo(A,A)) = h−1(f(Spa(A))).
(2) f(Spa(A)) is stable under horizontal specializations in Spa(B,B+).
(3) f(Spa(A)) is stable under vertical generizations in Spa(B,B+).

Proof. For the first claim let y ∈ Spo(A,A) and let x = Spo(f)(y). If x is d-analytic, y is meromorphic
and ymer maps to xmer, giving h−1(h(x)) ⊆ Im(Spo(f)). Suppose that x is discrete and that xmer

exists. In this case, ymer might not exist and even if it does it might not map to xmer. Consider instead
h(y) ∈ Spa(A) and its residue field map ιh(y) : Spa(Kh(y),K

+
h(y)) → Spa(A). Notice that ιh(y) factors

through g : Spa(K+
h(y)) → Spa(A). We prove that xmer is in the image of Spo(f ◦ g). Take b ∈ B with

|b|axmer /∈ {0, 1} and replace it with its inverse in Kh(y), if necessary, so that b ∈ K+
h(y). Define K+ as the

(b)-adic completion of K+
h(y), and let K = K+[ 1b ]. We get a map Spa(K,K+) → Spo(K+

h(y),K
+
h(y)) →

Spo(B,B+). One can verify that the closed point of Spa(K,K+) maps to xmer.
The proof of the second claim also follows from observing that the residue field map ιh(y) factors

through g. Indeed, we get the following commutative diagram of adic spaces:

Spa(Kh(y),K
+
h(y)) Spa(K+

h(y)) Spa(A)

Spa(Kh(x),K
+
h(x)) Spa(K+

h(x)) Spa(B,B+)

g

g′

Where we use that K+
h(x) = K+

h(y) ∩ Kh(x) to define g′. Moreover, the vertical map on the left is

surjective since h(x) = f(h(y)) and one can deduce that the vertical map in the middle column is also
surjective because the map of valuation rings is local. A prime ideal of J ⊆ K+

h(x) determines a horizontal

specializations of | · |h(x), namely | · |h(x)/J , and every horizontal specialization of h(x) can be constructed

in this way. For J as above we let K+
J = K+

h(x)/J and KJ = Frac(K+
J ), we get the following commutative

diagram:

Spa(KJ ,K
+
J ) Spa(K+

J ) Spa(K+
h(y))

Spa(B,B+)
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The closed point of Spa(KJ ,K
+
J ) maps to the horizontal specialization of h(x) associated to the ideal J .

The third claim follows from Corollary 2.17 and from the first claim. □

Definition 2.35. We say that a subset of Spo(B,B+) is a schematic subset if it is a union of sets of
the form Spo(m)(Spo(A,A)) where (A,A) is given the discrete topology and m∗ : (B,B+) → (A,A) is
a map of Huber pairs.

The following statement is the key result that allow us to construct a well-defined specialization map.

Proposition 2.36. Suppose that Z ⊆ Spo(B,B+) is a schematic closed subset. Let σ : Spo(B,B+) →
Spec(B) denote the map x 7→ supp(x) attaching to every point of Spo(B,B+) its support ideal. Notice
that σ = supp ◦ h where supp : Spa(B,B+) → Spec(B) also attaches the support ideal. Then Z =
σ−1(V (I)) for some prime ideal I ⊆ B open for the topology in B.

Proof. Any map m∗ : (B,B+) → (A,A) with A a discrete ring factors through (B/B◦◦, B+/B◦◦),
so we may assume that B has the discrete topology. By Proposition 2.34, Z = h−1(h(Z)) and by
Corollary 2.17, Z is closed under v.g. Moreover, since Z is closed in Spo(B,B+) it is also stable under
vertical specialization. This implies that Z = σ−1(σ(Z)). We prove σ(Z) is closed. Since B has the
discrete topology, the support map admits a continuous section Triv : Spec(B) → Spa(B,B+) that
assigns to a prime ideal p ⊆ B the trivial valuation with support p. We have σ(Z) = Triv−1(h(Z)) so we
may prove h(Z) is closed instead. By Proposition 2.34, h(Z) is also closed under horizontal specialization,
this gives that the complement of h(Z) in Spa(B,B+) is stable under (arbitrary) generization. Now,
Spo(B,B+)\Z = h−1(Spa(B,B+)\h(Z)) and by Proposition 2.28 the set Spa(B,B+)\h(Z) is open. □

3. The reduction functor

3.1. The v-topology for perfect schemes. In this section, set-theoretic carefulness is necessary. We
advise the reader to review the definition and basic properties of cut-off cardinals [18, §4].

Denote by PCAlgopFp
the category of perfect affine schemes over Fp. If κ is a cut-off cardinal we

let PCAlgopFp,κ
be the category of perfect affine schemes over Fp whose underlying topological space and

whose ring of global sections have cardinality bounded by κ. Given S = Spec(A) ∈ PCAlgopFp
we associate

to it a v-sheaf in Perf given by: S⋄((R,R+)) = {f : A→ R+|f is a morphismof rings}.

Remark 3.1. Notice that Spec(A)⋄ = Spd(A) when A is given the discrete topology.

Proposition 3.2. If κ is a cut-off cardinal and S ∈ PCAlgopFp,κ
then S⋄ is a κ-small v-sheaf.

Proposition 3.2 gives rise to functors ⋄κ : PCAlgopFp,κ
→ P̃erfκ that are compatible when we vary κ

and give rise to a functor ⋄ : PCAlgopFp
→ P̃erf

Proposition 3.3. The functors ⋄ : PCAlgopFp
→ P̃erf and ⋄κ : PCAlgopFp,κ

→ P̃erfκ are fully-faithful and

commute with finite limits.

Proof. This is a direct consequence of Theorem 2.32. □

After embedding PCAlgopFp
in P̃erf one can define a Grothendieck topology on PCAlgopFp

by considering

a small family of maps of affine schemes, (Si → T )i∈F , to be a cover if the map
∐

i∈F S⋄
i → T ⋄ is a

surjective map of v-sheaves. However, there is an intrinsic way of defining this topology which we now
discuss.

Definition 3.4. ([5, Definition 2.1])

(1) A morphisms of qcqs schemes S → T , is said to be universally subtrusive (or a v-cover) if for
any valuation ring V and a map Spec(V ) → T there is an extension of valuation rings V ⊆ W
([21, Tag 0ASG]) and a map Spec(W )→ S making the following diagram commutative:

Spec(W ) S

Spec(V ) T

(2) A small family of morphisms in PCAlgopFp
, (Si → T )i∈F , is said to be universally subtrusive (or

a v-cover) if there is a finite subset F ′ ⊆ F for which
∐

i∈F ′ Si → T is universally subtrusive.
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Lemma 3.5. ([5, Remark 2.2]) A morphism f : Spec(B)→ Spec(A) of affine schemes (not necessarily
over Fp) is universally subtrusive if and only if the map of topological spaces |fad| : |Spa(B)| → |Spa(A)|
is surjective.

Lemma 3.6. Let f : S → T be a morphism of perfect affine schemes over Fp. The map f⋄ : S⋄ → T ⋄

is a quasicompact map of v-sheaves.

Proof. Observe that for a perfect discrete ring A we have the identity Spd(A)
†
= Spd(A). We can apply

Lemma 2.26. □

Proposition 3.7. (1) Let f : S → T be a morphism of perfect affine schemes over Fp. The map f
is universally subtrusive if and only if f⋄ : S⋄ → T ⋄ is a surjective map of v-sheaves.

(2) A family of morphisms (Si → T )i∈F is universally subtrusive if and only if (
∐

i∈F S⋄
i ) → T ⋄ is

a surjective map of v-sheaves.

Proof. Since f⋄ : S⋄ → T ⋄ is quasicompact, by [18, Lemma 12.11] it is surjective if and only if |f⋄|
is surjective. By Proposition 2.14 and Lemma 3.5, it suffices to prove that Spo(B,B) → Spo(A,A) is
surjective if and only if the map Spa(B)→ Spa(A) is. Surjectivity of h proves one direction, the converse
is a consequence of Proposition 2.34. The second claim, follows easily from the first. □

Remark 3.8. One can discuss the analogue of Example 1.1. Given an index set I and {Vi}i∈I a family
of perfect valuation rings over Fp, we let R =

∏
i∈I Vi. We call the affine schemes constructed in this

way a scheme-theoretic product of points. They form a basis for the v-topology on PCAlgopFp
[5, Lemma

6.2].

Given a cut-off cardinal κ we let ˜SchPerfκ be the topos associated to the site PCAlgopFp,κ
with the

v-topology, and we will refer to an object in this topos as a κ-small scheme-theoretic v-sheaf. For any
pair of cut-off cardinals κ < λ we have a continuous fully-faithful embedding of sites ι∗κ,λ : PCAlgopFp,κ

→

PCAlgopFp,λ
, which induces a morphism of topoi ικ,λ : ˜SchPerfλ → ˜SchPerfκ.

Proposition 3.9. The functor ι∗κ,λ : ˜SchPerfκ → ˜SchPerfλ is fully-faithful [18, Proposition 8.2].

Proof. It is enough to prove that the adjunction F → ικ,λ,∗ι
∗
κ,λF is an isomorphism. Define a presheaf

S 7→ G(S) constructed as follows. Let CκS denote the category of maps of affine schemes S → T with
T ∈ PCAlgopFp,κ

. This category is cofiltered and there is a λ-small set of objects IκS ⊆ CκS , that is cofinal
in CκS . We let G(S) = lim−→T∈Iκ

S

F(T ), for any choice of IκS . Unraveling the definitions we see that ι∗κ,λF
is the sheafification of G.

We claim that G is already a sheaf. Indeed, since filtered colimits are exact it suffices to prove that v-
covers S′ → S in PCAlgopFp,λ

are filtered colimits of v-covers in PCAlgopFp,κ
. Let S = Spec(A) and let S′ =

Spec(B), write A = lim−→i∈Iκ
S

Ai and B = lim−→j∈Iκ
S′
Bj with Ai and Bj κ-small rings, we may assume that

the transition maps are injective. By Lemma 3.10 below we may assume that the Spec(A) → Spec(Ai)
are v-covers. Consequently, S′ → S → Spec(Ai) are v-covers and when S′ → Spec(Ai) factors through
Spec(Bj)→ Spec(Ai) this later one is also a v-cover. Replacing our index sets IκS and IκS′ by a common
index set I and replacing Bj by the smallest subring of B containing Bj and Ai for some i ∈ IκS we can
ensure (Spec(Bi)→ Spec(Ai))i∈I is defined for all i ∈ I and is a v-cover. We get our desired expression

(S′ → S) = lim←−
i∈I

(Spec(Bi)→ Spec(Ai))i∈I .

Once we know ι∗κ,λF = G, we compute ικ,λ,∗ι
∗
κ,λF(S) = F(S) since the identity is cofinal in CκS . □

Lemma 3.10. Let κ be a cut-off cardinal, S ∈ PCAlgopFp
and T ∈ PCAlgopFp,κ

. Given a morphism

g : S → T , there is T ′ ∈ PCAlgopFp,κ
together with morphisms f : S → T ′ and h : T ′ → T such that f is

a v-cover and g = h ◦ f .

Proof. Let S = Spec(B) and T = Spec(A). By replacing A by its image in B we may assume g∗ : A→ B
to be injective. We construct recursively a countable sequence of κ-small subrings

A = A0 ⊆ · · · ⊆ An ⊆ An+1 ⊆ . . . B

such that the image of Spa(B)→ Spa(An) coincides with that of Spa(An+1)→ Spa(An). Assume An is
defined and let Zn ⊆ Spa(An) be the image of Spa(B) in Spa(An). If x ∈ Spa(An) \ Zn the valuation
| · |x : An → Γx can’t be extended to a valuation | · | : B → Γ. A compactness argument proves there
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are finitely many elements {a1, . . . am} such that | · |x does not extend to An[a1, . . . , am] ⊆ B. Since
Spa(An) \ Zn is κ-small, there is λ < κ and a set {ai}i∈λ ⊆ B such that An[ai]i∈λ does not extend any

x ∈ Spa(An) \ Zn. We let An+1 = An[a
1

p∞

i ]i∈λ.
We let A∞ = lim−→i∈N Ai, it is κ-small and we claim that the map Spec(B) → Spec(A∞) is a v-

cover. We use Lemma 3.5 to prove instead that Spa(B) → Spa(A∞) is surjective. One verifies that
Spa(A∞) = lim←−i∈N Spa(Ai). Given a compatible sequence xi ∈ Spa(Ai) let Mi be the preimage of xi in

Spa(B). This gives a sequence Spa(B) ⊇ M0 ⊇ M1 . . . Since the maps Spa(B)→ Spa(Ai) are spectral,
each Mi is compact in the patch topology. Any element in this intersection maps to x∞. □

We define ˜SchPerf as the big colimit
⋃

κ
˜SchPerfκ along all cut-off cardinals and the fully-faithful

embeddings ι∗κ,λ. Objects in ˜SchPerf are called small scheme-theoretic v-sheaves.

The general formalism of topoi, specifically ([2, IV 4.9.4]), allows us to promote ⋄κ : PCAlgopFp,κ
→

P̃erfκ to a morphism of topoi fκ : P̃erfκ → ˜SchPerfκ for which f∗
κ |PCAlgop

Fp,κ
= ⋄κ.

Proposition 3.11. Given two cut-off cardinals κ < λ we have a commutative diagram of morphism of
topoi:

P̃erfλ ˜SchPerfλ

P̃erfκ ˜SchPerfκ

fλ

ικ,λ ικ,λ

fκ

Moreover, the natural morphism ι∗κ,λ ◦ fκ,∗ → fλ,∗ ◦ ι∗κ,λ is an isomorphism.

Proof. The commutativity of morphism of topoi follows formally from the similar commutativity of
continuous functors. For the second claim, given an element S ∈ PCAlgopFp,λ

we let IκS be an index set

category as in the proof of Proposition 3.9. If S = Spec(A) we let X = Spa(A((t
1

p∞ )), A[[t
1

p∞ ]]) and

Y = X ×S⋄ X. In a similar way, for T ∈ IκS with T = Spec(B) we let XT = Spa(B((t
1

p∞ )), B[[t
1

p∞ ]]) and
YT = XT ×T⋄ XT . The family of perfectoid spaces (XT )T∈Iκ

S
((YT )T∈Iκ

S
respectively) is cofinal in the

category CκX of maps X → X ′ with X ′ a κ-small perfectoid space (CκY respectively). We get the following
chain of isomorphisms:

ι∗κ,λfκ,∗F(S) = lim−→
T∈Iκ

S

Hom ˜SchPerfκ
(hT , fκ,∗F) (1)

= lim−→
T∈Iκ

S

Hom
P̃erfκ

(f∗
κhT ,F) (2)

= lim−→
T∈Iκ

S

Hom
P̃erfκ

(T ⋄κ ,F) (3)

= lim−→
T∈Iκ

S

Eq
P̃erfκ

(Hom(XT ,F) ⇒ Hom(YT ,F)) (4)

= Eq
P̃erfλ

( lim−→
T∈Iκ

S

Hom(XT ,F) ⇒ lim−→
T∈Iκ

S

Hom(YT ,F)) (5)

= Eq
P̃erfλ

(Hom(XS , ι
∗
κ,λF) ⇒ Hom(YS , ι

∗
κ,λF)) (6)

= Hom
P̃erfλ

(S⋄λ , ι∗κ,λF) (7)

= Hom ˜SchPerfλ
(hS , fλ,∗ι

∗
κ,λF) (8)

= fλ,∗ι
∗
κ,λF(S) (9)

□

Recall that a morphism of topoi consists of a pair of adjoint functors (f∗, f∗) such that f∗ commutes

with finite limits. By Proposition 3.11 above we can gather all of the morphisms of topoi fκ : P̃erfκ →
˜SchPerfκ into a pair of adjoint functors (f∗, f∗) : P̃erf → ˜SchPerf such that f∗ commutes with finite

limits. This is not a morphism of topoi because P̃erf and ˜SchPerf are not topoi, but they behave as such.

Definition 3.12. Let (f∗, f∗) be the pair of adjoint functors described above, given F ∈ ˜SchPerf we will
denote f∗F by F⋄ and given G ∈ P̃erf we will denote f∗G by (G)red. We refer to (−)red as the reduction
functor.
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Remark 3.13. By adjunction F red(S) = Hom
P̃erf

(S⋄,F). We could have simply defined it in this way,
but it is useful to know that “reduction” preserves smallness.

We can endow small scheme-theoretic v-sheaf with a topological space in a similar fashion to Defi-

nition 1.7. Given S ∈ ˜SchPerf we let |S| denote the set of equivalence classes of maps Spec(k) → S,
where k is a perfect field over Fp. Two maps p1, p2 are equivalent if we can complete a commutative
diagram as below:

Spec(k1)

Spec(k3) S

Spec(k2)

p1
q1

q2

p3

p2

Proposition 3.14. Let S ∈ ˜SchPerf the following hold:

(1) There is a pair of cut-off cardinals κ < λ and a λ-small family {Si}i∈I of objects in PCAlgopFp,κ

together with a surjective map X = (
∐

i∈I Si)→ S.
(2) The small scheme-theoretic v-sheaf R = X ×S X has a similar cover Y = (

∐
j∈J Tj)→ R, there

is a natural map |X| → |S| which induces a bijection |S| ∼= |X|/|Y |. We endow |S| with the
quotient topology induced by this bijection.

(3) The topology on |S| does not depend on the choices of X or Y .
(4) Any map of small v-sheaves S1 → S2 induces a continuous map of topological spaces |S1| →
|S2|.

3.2. Reduction functor and formal adicness.

Definition 3.15. Let F ∈ ˜SchPerf, we say it is reduced if F → (F⋄)red is an isomorphism.

Proposition 3.16. ([20, Proposition 18.3.1])

(1) If S is a perfect scheme over Fp then the Yoneda functor hS is reduced.

(2) The functor ⋄ : ˜SchPerf → P̃erf is fully-faithful when restricted to small reduced v-sheaves.

Proof. The first claim follows from Theorem 2.32. The second claim follows from adjunction. Indeed,
Hom

P̃erf
(G⋄,F⋄) = Hom ˜SchPerf(G, (F

⋄)red) = Hom ˜SchPerf(G,F). □

Intuitively, the reduction functor kills all topological nilpotent elements and removes analytic points.
One can think of reduction functor as taking the underlying reduced subscheme of a formal scheme.

Lemma 3.17. The scheme-theoretic v-sheaf Spd(Zp)
red

is represented by Spec(Fp).

Proof. This is a direct consequence of Lemma 2.30. □

For an f-adic ring A over Zp, we let Ared = (A/(A · A◦◦))perf where A · A◦◦ is the ideal generated by
the topological nilpotent elements. The following statement generalizes Lemma 3.17

Proposition 3.18. Let X be a pre-adic space over Zp and let Xna be the reduced adic space associated
to the non-analytic locus of Proposition 1.19. The following hold:

(1) The map (Xna,⋄)red → (X⋄)red is an isomorphism.

(2) If X = Spa(A,A+) for (A,A+) a Huber pair over Zp, then Spd(A,A+)
red

is represented by
Spec(Ared).

Proof. By Theorem 2.32 if S = Spec(R) ∈ PCAlgopFp
then morphisms S⋄ → X are given by maps of

pre-adic spaces f : Spa(R) → X. These factor through the non-analytic locus. The non-analytic locus
of Spa(A,A+) is represented by the Huber pair (A/A◦◦ · A,A◦◦ · A+). Since R is perfect the map
f∗ : A/A ·A◦◦ → R factors uniquely through its perfection. □

Proposition 3.19. If Y is a quasiseparated diamond, then Y red = ∅.
25



Proof. It suffices to prove that there are no maps f : S⋄ → Y for S = Spec(k) and k an algebraically
closed field. Suppose f exists and let y ∈ |Y | be the unique point in the image of |f |. Consider
Yy the sub-v-sheaf of points that factors through y. By [18, Proposition 11.10] it is a quasiseparated
diamond and |Yy| consists of one point. Using [18, Proposition 21.9] we write Yy = Spa(C,OC)/G with
C a nonarchimedean algebraically closed field over Fp and G a profinite group acting continuously and
faithfully on C.

Consider the v-cover S′ = Spa(K1, OK1
) → Spec(k)⋄ where K1 is an algebraic closure of k((t

1
p∞ )).

Similarly, let T = Spa(K2, OK2
) where K2 is an algebraically closed nonarchimedean field containing

k discretely and whose value group ΓK2
⊆ R>0 has at least two Q-linearly independent elements. By

hypothesis on K2, we can find two embeddings ι∗i : K1 → K2 with ι∗1(K1) ∩ ι∗2(K1) = k.
The composition of [g] : Spa(K1,K

+
1 ) → S⋄ → Yy satisfies [g] ◦ ι1 = [g] ◦ ι2. Since Spa(K1,K

+
1 )

and Spa(K2,K
+
2 ) are algebraically closed the maps to Yy are given by G-orbits of maps to Spa(C,OC).

Let g∗ : (C,OC) → (K1, OK1
) represent [g] in Hom(Spa(K1,K

+
1 ), Yy), we get maps ι∗i ◦ g∗ : (C,OC) →

(K2, OK2
) and since [g]◦ ι1 = [g]◦ ι2 we have ι∗1 ◦g∗(C) = ι∗2 ◦g∗(C) ⊆ k. The incompatibility of topology

between k and C gives the contradiction. □

Recall that a morphism of adic spaces X → Y is said to be adic if the image of an analytic point is
again an analytic point. For v-sheaves we can define a related notion.

Definition 3.20. A morphism F → G is formally adic if the following diagram is Cartesian:

(F red)⋄ (Gred)⋄

F G

Although the notion of a morphism of adic spaces being adic is related to the morphism of v-sheaves
being formally adic neither of this notions implies the other.

Example 3.21. Endow Fp((t)) with the discrete topology, then Spa(Fp((t)),Fp[[t]])→ Spa(Fp,Fp) is adic.
Nevertheless, Spd(Fp((t)),Fp[[t]])→ Spd(Fp,Fp) is not formally adic. Observe that Spo(Fp((t)),Fp[[t]]) has
an unbounded meromorphic point.

Example 3.22. LetK be a perfect nonarchimedean field and consider Id : Spa(K1, OK1
)→ Spa(K2, OK2

)
where K2 = K given the discrete topology and K1 = K given the norm topology. This morphism is not
adic, but the reduction diagram is Cartesian. Indeed, it looks like this:

∅ Spec(K2)
⋄

Spd(K1, OK1
) Spd(K2, OK2

)

Although formal adicness does not capture adicness in general, it does in important situations:

Proposition 3.23. Let (A,A) and (B,B) be formal Huber pairs over Zp with ideals of definition IA
and IB respectively. Then Spa(A)→ Spa(B) is adic if and only if Spd(A)→ Spd(B) is formally adic.

Proof. The reduction diagram looks as follows:

Spec(Ared)
⋄

(Spec(A/IB)
perf)⋄ Spec(Bred)

⋄

Spd(A) Spd(B)

Continuity of the morphism B → A ensures that InB ⊆ IA for some n. The morphism is adic if and
only if ImA ⊆ A · IB for some m. If the morphism is adic, then A/IA and (A/A · IB) become isomorphic
after taking perfection which gives formal adicness. Conversely, if the morphism is formally adic, by
hypothesis the rings (A/IB)

perf , and Ared are isomorphic with the isomorphism being induced by the
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natural surjective ring map with source (A/p)perf . This implies that the ideals IA and IB define the
same Zariski closed subset in Spec(A). In particular, the elements of IA are nilpotent in A/IB , and since
IA is finitely generated ImA ⊆ IB for some m. □

Proposition 3.24. Let F , G and H be small v-sheaves.

(1) If F → H and H → G are formally adic, the composition F → G is formally adic.
(2) If F → H is formally adic, the basechange G ×H F → G is formally adic.

Proof. The first claim is clear. The second follows from the commutativity of (−)red and (−)⋄ with finite
limits. □

Definition 3.25. We say that a v-sheaf F over Spd(Zp) is formally p-adic (or just p-adic when the
context is clear) if the morphism F → Spd(Zp) is formally adic.

Over Zp the situation of Example 3.22 does not happen.

Proposition 3.26. Suppose we have a Huber pair (A,A+) and a map f : Spa(A,A+)→ Spa(Zp), if f
⋄

is formally adic then f is adic (as a morphism of adic spaces).

Proof. Let U ⊆ Spa(A,A+) the open subset of analytic points. It follows from Proposition 3.19 and
Proposition 3.18 that U⋄ → Spd(A,A+) is formally adic. By Proposition 3.24, U⋄ → Spd(Zp) is
formally adic and the map must factor through Spd(Qp). This proves proves that f is adic. □

Recall that a v-sheaf F is said to be separated if the diagonal F → F ×F is a closed immersion [18,
Definition 10.7]. We need the following related notion:

Definition 3.27. Let F and G be small v-sheaves.

(1) We say F → G is formally closed if it is a formally adic closed immersion.
(2) We say that a v-sheaf is formally separated if the diagonal map F → F ×F is formally closed.

Lemma 3.28. The v-sheaf Spd(Zp) is formally separated.

Proof. To prove that the diagonal Spd(Zp)→ Spd(Zp)×Spd(Zp) is a closed immersion observe that the
basechanges by maps Spa(R,R+) → Spd(Zp) × Spd(Zp), with Spa(R,R+) ∈ Perf define the locus on
which two untilts agree in |Spa(R,R+)|. Each untilt is individually cut out of Spa(W (R+)) \ {V ([ϖ])}
as a closed Cartier divisor [20, Proposition 11.3.1]. The intersection defines a Zariski closed subset in
each of the untilts and these are represented by a perfectoid space.

We compute directly (Spd(Zp)× Spd(Zp))
red = Fp since (−)red commutes with limits. On the other

hand, Spd(Fp)×Spd(Zp)
2 Spd(Zp) = Spd(Fp), which proves that the diagonal is formally adic. □

Proposition 3.29. If F is formally p-adic, then the diagonal F → F ×F is formally adic.

Proof. We have a formally adic map F → Spd(Zp), and since formal adicness is preserved by basechange
and composition we get a formally adic map F×Spd(Zp)F → Spd(Zp). By a general property of Cartesian
diagrams, the diagonal map F → F×Spd(Zp)F is also formally adic. Now, F×Spd(Zp)F is the basechange
of the diagonal Spd(Zp) → Spd(Zp) × Spd(Zp) by the projection F × F → Spd(Zp) × Spd(Zp). This
gives that F ×Spd(Zp) F → F ×F and by composition that F → F ×F are also formally adic. □

Lemma 3.30. The diagonal F → F × F is formally adic if and only if the adjunction morphism
(F red)⋄ → F is injective. Let Spa(A,A+) ∈ Perf and m ∈ F(A,A+). Then m ∈ (F red)⋄(A,A+) if and
only if Spa(A,A+) admits a v-cover Spa(R,R+)→ Spa(A,A+) and a map Spec(R+)⋄ → F making the
following diagram commutative:

Spa(R,R+) Spec(R+)⋄

Spa(A,A+) Fm

Proof. In general, a map of sheaves G → F is injective if and only if (G ×G)×F×F F = G. Now, (F red)⋄

is the sheafification of (R,R+) 7→ Hom(Spec(R+)⋄,F). The description given in the statement above is
what one gets from taking sheafification and assuming injectivity of (F red)⋄ → F . □

The following lemma will be key for our theory of specialization, it roughly says that formally adic
closed immersions behave as expected:
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Lemma 3.31. Let (A,A) be a formal Huber pair and let F → Spd(A) be formally adic closed immersion.
Then (F red)⋄ = Spec(A/J)⋄ for some open ideal J ⊆ A.

Proof. |F| ⊆ Spo(A,A) is closed and we get an expression F = Spd(A) ×|Spd(A,A+)| |F|. By Proposi-

tion 3.18, (Spd(A)
red

)⋄ = Spec(Ared)
⋄ which is closed in Spd(A). By formal adicness (F red)⋄ is closed

in Spd(A) determined by |F| ∩ |Spec(Ared)
⋄|. By Lemma 3.30, a map Spa(R,R+)→ F factors through

(F red)⋄ if after possibly replacing R by a v-cover it factors through Spec(R+)⋄ → F ∩Spec(Ared)
⋄. This

proves that |(F red)⋄| is a schematic closed subset of Spo(A,A) as in Definition 2.35. By Proposition 2.36,
it is a Zariski closed subset corresponding to an open ideal J ⊆ A. □

We will often use implicitly the following easy result.

Lemma 3.32. Let F and G be two small v-sheaves, and f : F → G a map between them. Suppose
that the adjunction map (Gred)⋄ → G is injective and that F ×G (Gred)⋄ is representable by a reduced
scheme-theoretic v-sheaf, then f is formally adic.

Proof. Let T ∈ ˜SchPerf be reduced and such that T ⋄ = F ×G (Gred)⋄. By hypothesis (Gred)⋄ → G is a
monomorphism and since (−)red is a right adjoint ((Gred)⋄)red → Gred is also a monomorphism. Recall
that for any pair of adjoint functors (L,R) the compositions R→ R ◦L ◦R→ R and L→ L ◦R ◦L→ L
are the identity. This implies that ((Gred)⋄)red → Gred is an isomorphism. We compute directly:

(T ⋄)red = (F ×G (Gred)⋄)red

= F red ×Gred ((Gred)⋄)red

= F red ×Gred Gred

= F red

and

(F red)⋄ = ((T ⋄)red)⋄

= T ⋄

□

4. Specialization

4.1. Specialization for Tate Huber pairs.

Definition 4.1. Given a Tate Huber pair (A,A+) over Zp and a pseudo-uniformizer ϖ ∈ A, we define
the specialization map spA : |Spa(A,A+)| → |Spec(A+

red)| by sending a valuation | · |x ∈ |Spa(A,A+)| to
the ideal p ⊆ A+ given by p = {a ∈ A+ | |a|x < 1}.

These maps of sets are functorial in the category of Tate Huber pairs. We thank David Hansen for
providing reference and an explanation of the following statement.

Proposition 4.2. ([3, Theorem 8.1.2]) The specialization map spA : |Spa(A,A+)| → |Spec(A+
red)| is a

continuous, surjective, spectral and closed map of spectral topological spaces.

Proposition 4.3. For a strictly totally disconnected space Spa(R,R+), the specialization map spR is a
homeomorphism.

Proof. By Proposition 4.2 the map is surjective and a quotient map so it suffices to prove injectivity. One
first proves that if spR(x) = spR(y), then x and y are in the same connected component of |Spa(R,R+)|.
In this way one reduces to prove injectivity component by component. Using Proposition 1.5 we can
assume R = C, and this case follows from generalities of valuation rings. □

Remark 4.4. One can also prove Proposition 4.2 if we knew already that Proposition 4.3 holds.

4.2. Specializing v-sheaves. We now discuss the specialization map for v-sheaves. The idea is to
descend the specialization map from the case of formal Huber pairs.

Definition 4.5. We say that a small v-sheaf F is v-locally formal if there is a set I, a family (Bi, Bi)i∈I

of formal Huber pairs over Zp and a surjective map of v-sheaves
∐

i∈I Spd(Bi)→ F .

Definition 4.6. Let F ∈ P̃erf, (A,A+) be a Tate Huber pair and f : Spd(A,A+)→ F a map.

(1) We say that F formalizes f (or that f is formalizable) if there is t : Spd(A+)→ F factoring f .
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(2) We say that F v-formalizes f if for some v-cover g : Spa(B,B+) → Spa(A,A+), F formalizes
f ◦ g.

(3) We say that F is formalizing if it formalizes maps with source an affinoid perfectoid space.
(4) We say that F is v-formalizing if it v-formalizes any f as above.

We use this extensively because it gives an abstract way to verify that a v-sheaf is v-locally formal.

Lemma 4.7. The following statements hold:

(1) The v-sheaf Spd(Zp) is formalizing.
(2) Spd(B) is formalizing for any formal Huber pair over Zp.
(3) A small v-sheaf F is v-formalizing if and only if it is v-locally formal.

Proof. Let Spa(R,R+) ∈ Perf in characteristic p and an untilt ι : (R♯)♭ → R. Let ξ = p + [ϖ]α be a
generator of the kernel of W (R+)→ (R♯)+. The image of ξ under W (R+)→W (A+) defines an untilt of
Spa(A,A+) for every map Spa(A,A+) → Spd(R+), and gives a map Spd(R+) → Spd(Zp). Now, given
Spa(R♯, R♯,+)→ Spa(B) we get B → R♯,+ and Spd(R♯,+)→ Spd(B). For the third claim, assume that
F is v-formalizing. Since it is small there is a set I and a surjective map by a union of affinoid perfectoid
spaces

∐
i∈I Spa(Ri, R

+
i ) → F . After refining this cover we may assume that each Spa(Ri, R

+
i ) → F

formalizes to Spd(R+
i ) → F . Then

∐
i∈I Spd(R

+
i ) → F is surjective, so F is v-locally formal. If F is

v-locally formal a map Spa(R,R+)→ F will v-locally factor through a map Spa(R,R+)→ Spd(Bi). By
the second claim, this map formalizes Spd(R+)→ Spd(Bi). □

Proposition 4.8. The following properties are easy to verify.

(1) If f : F → G is a surjective map of small v-sheaves and F is v-formalizing then G is v-formalizing.
(2) If Spec(R) ∈ PCAlgopFp

then Spec(R)⋄ is formalizing.

(3) If X ∈ ˜SchPerf then X⋄ is v-formalizing by Lemma 3.30.
(4) Non-empty v-formalizing v-sheaves have non-empty reduction. Quasi-separated diamonds are not

v-formalizing.
(5) If F formalizes f : Spa(A,A+) → F then F formalizes f ◦ g for any map g : Spa(B,B+) →

Spa(A,A+).

Proposition 4.9. Let F be a small v-sheaf, and f : Spa(R,R+) → F a map with Spa(R,R+) affinoid
perfectoid in characteristic p. If F is formally separated then f admits at most one formalization.

Proof. Pick two maps gi : Spd(R+) → F that agree on Spa(R,R+). Consider (g1, g2) : Spd(R+) →
F×F , and the pullback along ∆F : F → F×F to get G ⊆ Spd(R+) a formally closed subsheaf. We prove
G = Spd(R+), it suffices to show |G| = |Spd(R+)|. Moreover, since |Spa(R,R+)| ⊆ |G| and |Spd(R+)| =
|Spa(R,R+)| ∪ |Spec(R+

red)
⋄| it suffices to prove |(Gred)⋄| = |Spec(R+

red)
⋄|. We first assume (R,R+) =

(C,C+) for C is a nonarchimedean field and C+ ⊆ C an open and bounded valuation subring. Let

k+ = C+
red and k = Frac(k+), then Spec(k+) = Spd(C+)

red
and by Lemma 3.31 (Gred)⋄ = Spec(k+/I)⋄

for some ideal I. Since Spa(C,C+) ⊆ G and |G| is closed, |G| contains the formal specialization of
Spa(C,OC), which is the image of Spec(k)⋄. By formal adicness |(Gred)⋄| = |G|∩ |Spec(k+)⋄| and we can
conclude that Spec(k)⋄ ⊆ (Gred)⋄. This proves I = {0} and (Gred)⋄ = Spec(k+)⋄ in this case.

In the general case, for every map Spa(C,C+)→ Spa(R,R+) the canonical formalization Spd(C+)→
Spd(R+) factors through G. In particular, after taking reduction, the map Spec(k+) → Spec(R+

red)

factors through Gred. This says that |Gred| contains every point of |Spec(R+
red)| in the image of the

specialization map. By Lemma 3.31 Gred → Spec(R+
red) is a closed immersion and by Proposition 4.2 the

specialization map is surjective, these two imply that Gred = Spec(R+
red). □

Proposition 4.10. The following statements hold:

(1) Given two maps of v-sheaves F → H, G → H if F and G are v-formalizing and H is formally
separated then F ×H G is v-formalizing.

(2) The subcategory of v-sheaves that are v-formalizing and formally separated is stable under fiber
product and contains Spd(Zp).

Proof. Given a map Spa(A,A+) → F ×H G we can find a cover Spa(B,B+) → Spa(A,A+) for which
the compositions with the projections to F and G are both formalizable. By formal separatedness any
pair of choices of formalizations Spd(B+)→ G and to Spd(B+)→ F define the same formalization to H
and a map to F ×H G. The second claim follows from the stability of separatedness by basechange and
composition, from Lemma 3.28 and from Lemma 3.30. Indeed, we need to prove that (F red)⋄ ×(Hred)⋄
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(Gred)⋄ is a subsheaf of F×HG, but this follows from knowing that F red (respectively H, G) is a subsheaf
of F (respectively H, G). □

Definition 4.11. Let F ∈ P̃erf, we say it is specializing if it is formally separated and v-locally formal.

Definition 4.12. Let F be a specializing v-sheaf and let f :
∐

i∈I Spd(Bi) → F be a surjective map.

The specialization map for F , denoted spF , is the unique map spF : |F| → |F red| making the following
diagram commutative: ∐

i∈I | Spd(Bi) | | F |

∐
i∈I | Spec((Bi)red) | | F red |

f

spBi

|fred|

Remark 4.13. We use Proposition 4.9 to prove that this map of sets is well defined and does not depend
on the choices taken. Indeed, given [x] ∈ |F| we take a formalizable representative x : Spa(Kx,K

+
x )→ F .

Consider, its unique formalization Spd(K+
x )→ F and apply reduction to obtain Spec((K+

x )red)→ F red.
The maximal ideal of (K+

x )red maps to spF ([x]).

Proposition 4.14. For any specializing v-sheaf F the specialization map spF : |F| → |F red| is continu-
ous. Moreover, this construction is functorial in the category of specializing v-sheaves.

Proof. Functoriality follows from uniqueness of formalizations, functoriality of the reduction functor and
Remark 4.13. For continuity, take a cover f :

∐
i∈I Spd(R

+
i ) → F . We get the following commutative

diagram:

|
∐

i∈I Spd(R
+
i ) | | F |

| Spec((R+
i )red) | | F red |

f

sp
R

+
i

spF

fred

Now, f red is continuous by Proposition 3.14, f is continuous and a quotient map, and the maps spR+
i
are

continuous by Proposition 4.2. Since the diagram is commutative, the map spF is also continuous. □

4.3. Pre-kimberlites, formal schemes and formal neighborhoods.

Definition 4.15. Let F be a specializing v-sheaf. We say F is a prekimberlite if:

(1) F red is represented by a scheme.
(2) The map (F red)⋄ → F coming from adjunction is a closed immersion.

If F is a prekimberlite, we let the analytic locus be Fan = F \ (F red)⋄.

In what follows, we prove that the v-sheaf associated to separated formal schemes are prekimberlites.
For this we fix a convention of what we mean by a “formal scheme”. We follow [19, §2.2].

Convention 1. Denote by NilpZp
the category of algebras in which p is nilpotent, and endow NilpopZp

with the structure of a site by giving it the Zariski topology. By a formal scheme X over Zp we mean
a Zariski sheaf on NilpopZp

which is Zariski locally of the form Spf(A). Here A is a topological ring

given the I-adic topology for a finitely generated ideal of A containing p, and Spf(A) denotes the functor
Spec(B) 7→ lim−→n

Hom(A/In, B).

For a formal scheme X over Zp we let Xred denote its reduction in the sense of formal schemes ([21,
Tag 0AIN]). Recall that this is a sheaf in NilpopZp

which is representable by a scheme. Moreover, the map

Xred → X is relatively representable in schemes, it is a closed immersion and for any open Spf(A) ⊆ X
the pullback to Xred is given by the reduced subscheme of Spec(A/I) (for an ideal of definition I ⊆ A).

We say that X is separated if Xred is a separated scheme ([21, Tag 0AJ7]).

Recall the following result of Scholze and Weinstein.6

Proposition 4.16. ([19, Proposition 2.2.1]) The functor Spf(A) 7→ Spa(A,A) extends to a fully faithful
functor X 7→ Xad from formal schemes over Zp as in Convention 1 to the category of pre-adic spaces.

Proposition 4.17. If X is a separated formal scheme over Zp, then (Xad)♢ is a prekimberlite.

6What is called adic spaces in [19] is what we call pre-adic spaces here and in [20].
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Proof. Let X = Xad and let W = Xna, then W = (Xred)
ad. Clearly X♢ is v-locally formal. By

Proposition 3.18 we have (W♢)red = (X♢)red which is the perfection of Xred. The adjunction morphism
agrees with the map W♢ → X♢ which by Proposition 1.21 is a closed immersion.

The only thing left to prove is that X♢ → Spd(Zp) is separated, we first prove that X♢ is qua-
siseparated. Let Z = Spa(R,R+) be a strictly totally disconnected space and take a map f : Z →
X♢ ×Spd(Zp) X

♢. Since Z splits any open cover we may assume that f factors through an open neigh-
borhood of the form Spd(B1)×Spd(Zp)Spd(B2) for an open subset Spf(B1)×Spf(Zp)Spf(B2) ⊆ X×Spf(Zp)X.

Consider the following basechange diagrams, where Y = Yad

Y Spf(B1)×Spf(Zp) Spf(B2) Y Spa(B1)×Zp
Spa(B2)

X X×Spf(Zp) X X X ×Zp
X

Since X is separated Y is quasicompact. This implies that Y admits a finite open cover of the form∐n
i=1 Spa(Ai) → Y . Moreover, the diagonal map X → X ×Zp X is adic. By Lemma 2.26 the maps

Spd(Ai) → Spd(B1) ×Zp Spd(B2) are quasicompact, which proves that Y ♢ → Spd(B1) ×Zp Spd(B2)
and any basechange of it is also quasicompact. Now we may use the valuative criterion of separatedness
[18, Proposition 10.9]. Given Spa(K,OK) → X♢ we must show there is at most one extension to
Spa(K,K+) → X♢ where K+ ⊆ OK is an open and bounded valuation subring. Maps Spa(K,K+) →
X♢ are in bijection with maps Spf(K+)→ X. On the other hand, maps g : Spf(K+)→ X are in bijection
with pairs (gη, gs) where gη : Spf(OK)→ X, gs : Spec(K

+/K◦◦)→ Xred and such that gη = gs when we
restrict the maps to Spec(OK/K◦◦). At this point we may use the valuative criterion of separatedness
of Xred. □

Definition 4.18. Let F be a prekimberlite and let S ⊆ F red be a locally closed immersion of schemes.

We let F̂/S , the formal neighborhood of S on F , be the subsheaf given by the Cartesian diagram:

F̂/S | S |

F | F | | F red |spF

If S ⊆ F red is open we call it open formal neighborhood.

Proposition 4.19. Suppose (A,A) is a formal Huber pair over Zp with ideal of definition I. Let J ⊆ A
be a finitely generated ideal containing I and B the completion of A with respect to J . The closed

immersion of schemes, S = Spec(Bred)→ Spec(Ared), induces an identification Ŝpd(A)/S = Spd(B).

Proof. Let S = Spec(Bred) and T = Spec(Ared). The reduction of Spd(B) → Spd(A) induces S → T .
Since specialization is functorial, points coming from Spd(B) specialize to S. Consequently, the map

factors as Spd(B) → Ŝpd(A)/S → Spd(A). Since A is dense in B, this map is an injection. To prove

surjectivity onto Ŝpd(A)/S , let f : A → R+ be a map such that f : Spec(R+
red) → Spec(Ared) factors

through |S|. If a ∈ J , then f(a) is nilpotent in Spec(R+/ϖn). Since J is finitely generated there is an
m for which Jm ⊆ (ϖn) in R+. This proves that the map f : A → R+ is continuous for the J-adic
topology on A. Since R+ is complete the map f : A→ R+ factors through B. □

Proposition 4.20. Let f : G → F be a map of prekimberlites and S ⊆ |F red| a locally closed subscheme.

Let T = S ×Fred Gred, then F̂/S ×F G = Ĝ/T . In particular, G → F factors through F̂/S if and only if

Gred → F red factors through S.

Proof. Since S is a locally closed |T | = |S| ×|Fred| |Gred|. The rest is a standard diagram chase. □

Proposition 4.21. Let F be a prekimberlite and let S ⊆ |F red| a locally closed subset, then F̂/S is a

prekimberlite and (F̂/S)
red = S.

Proof. The formula (F̂/S)
red = S follows from observing that by Proposition 4.20 a map Spec(A)⋄ → F

factors through F̂/S if and only if the adjunction map Spec(A)→ F red factors through S. Since F̂/S is a
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subsheaf of a separated v-sheaf it is separated as well. The map S⋄ → F̂/S is injective, so F̂/S is formally

separated. Take a map Spa(R,R+) → F̂/S ⊆ F . After replacing Spa(R,R+) by a v-cover we get a

formalization Spd(R+) → F . By Proposition 4.20 this factors through F̂/S since Spec(R+
red) → F red

factors through S. We have proved F̂/S is specializing, we prove S⋄ → F̂/S is a closed immersion.

Consider G = F̂/S ×F (F red)⋄. Now, G → F̂/S is a closed immersion, and by Proposition 4.20 G is

̂((F red)⋄)/S . If S is a closed subscheme of F red, then S⋄ → (F red)⋄ is proper, so S⋄ → ̂((F red)⋄)/S is a

closed immersion. If S is an open in F red, then ̂((F red)⋄)/S = S⋄. By definition a locally closed subset

S ⊆ |F red| can regarded as a composition S → U → F red where U → F is an open immersion and

S → U is a closed immersion. In this case (̂F̂/U )/S = F̂/S , applying the argument once to U ⊆ |F red|
and once to S ⊆ U we get the result. □

Proposition 4.22. Let F be a prekimberlite, S ⊆ |F red| a locally closed constructible subset, then the

map F̂/S → F is an open immersion.

Proof. The question is Zariski local in F red. Indeed, an open cover
∐

i∈I Ui → F red induces an open

cover
∐

i∈I F̂/Ui
→ F . We may assume that F red = Spec(A) and that S is closed and constructible in

Spec(A). Write S = Spec(A/I) for I ⊆ A an ideal, by constructibility we may assume that I is finitely
generated. Pick {i1, . . . , in} a list of generators for I, (R,R+) ∈ Perf and a map Spd(R+) → F . Let

X := Spd(R+) ×F F̂/S , and let ϖ ∈ R+ be a pseudo-uniformizer. Let {j1, . . . , jn} be a list of lifts

of {i1, . . . in} to R+. Then X is the open subsheaf of Spd(R+) defined by
⋂n

k=1 Njk≪1. Indeed, this
follows from Proposition 4.20, Proposition 4.19 and Lemma 2.24. Since F is v-formalizing every map
Spa(R,R+)→ F factors through Spd(R+) after replacing Spa(R,R+) by a v-cover. By [18, Proposition

10.11] F̂/S → F is open. □

4.4. Heuer’s specialization map and étale formal neighborhoods. In [10], Heuer considers certain
specialization maps. These are maps of v-sheaves rather than a map of topological spaces. We discuss
his construction and use it to enhance our theory.

Definition 4.23. ([10, Definition 5.1]) Let X be a scheme over Fp. We attach a presheaf X⋄/◦ defined
by the (analytic sheafification of the) formula (R,R+) 7→ X(Spec(R+

red)), where R+
red = R+/R◦◦.

In [10, Lemma 5.2], Heuer proves that X⋄/◦ is a v-sheaf and that when X is affine the sheafification
is not necessary. There is an evident map X⋄ → X⋄/◦.

Proposition 4.24. If X is a perfect scheme over Fp, then X = (X⋄/◦)red. Moreover, if Spa(R,R+) is

a totally disconnected perfectoid space then X⋄/◦(Spa(R,R+)) = X⋄/◦(Spd(R+)).

Proof. Let X = Spec(A). The inclusion X ⊆ (X⋄/◦)red of scheme-theoretic v-sheaves is easy to verify.

Now, X⋄/◦(Spec(R)⋄) ⊆ X⋄/◦(Spd(R((t
1

p∞ )), R[[t
1

p∞ ]]) and this latter is by [10, Lemma 5.2] the set of
maps A → R. So (X⋄/◦)red = X. Moreover, let Spa(R,R+) ∈ Perf, with pseudo-uniformizer ϖ.

Consider U = (Spd(R+[[t
1

p∞ ]]))an with its cover Spa(R1, R
+
1 ) = U(ϖt ) and Spa(R2, R

+
2 ) = U( t

ϖ ). Let

Spa(R3, R
+
3 ) = U( t

ϖ )∩U(ϖt ). One computes explicitly that X⋄/◦(Spa(Ri, R
+
i )) = X⋄/◦(Spa(R,R+)) for

i ∈ {1, 2, 3}, so X⋄/◦(U) = X⋄/◦(Spa(R,R+)). This proves X⋄/◦(Spd(R+)) = X⋄/◦(Spa(R,R+)) when
X is affine. Using the techniques of Theorem 2.32 we can glue and prove the general case. Indeed, open
subschemes f : U ⊆ X induce open subsheaves f⋄/◦ : U⋄/◦ ⊆ X⋄/◦ and the delicate part of the glueing
happens on |Spec(R)⋄| for test objects R, which is easily reduced to R = V a valuation ring. Following
the proof loc. cit. we get to a similar diagram:

Spa(Vb[
1
b ], Vb) Spd(V [ 1b ], V )

Spec(B3)
⋄/◦ Spec(B2)

⋄/◦

Spd(Vb, Vb) Spec(B1)
⋄/◦ X♢
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Now, Spec(B1)
⋄/◦(Spa(Vb[

1
b ], Vb) = Spec(B1)

⋄/◦(Spa(Vb, Vb)) proves Spd(Vb) factors through Spec(B3)
⋄/◦

and Spec(V )⋄ factors through Spec(B2)
⋄/◦. This proves (X⋄/◦)red = X. It also proves that for perfec-

toid fields (K,K+) and a map Spd(K+) → X⋄/◦ if Spa(K,K+) → X⋄/◦ factors through an affine
then Spd(K+) also does. Since totally disconnected perfectoid spaces split open covers we can conclude
X⋄/◦(Spa(R,R+)) = X⋄/◦(Spd(R+)). □

Suppose X is a prekimberlite and Spa(R,R+) ∈ Perf. Let f : Spa(R,R+) → X be a formalizable
map, applying reduction to the formalization we obtain a map Spec(R+

red) → Xred, or in other words

a map Spa(R,R+) → (Xred)⋄/◦. Overall, we obtain a natural transformation SPX : X → (Xred)⋄/◦.
This is the type of specialization map that Heuer considers. With this switch of perspective we can
reinterpret formal neighborhoods: if S ⊆ |Xred| is a locally closed subset we get a map S⋄/◦ → (Xred)⋄/◦

and F̂/S = X×(Xred)⋄/◦ S
⋄/◦. Under this light, Proposition 4.22 is simply proving that S⋄/◦ → (Xred)⋄/◦

is an open immersion when S is constructible. Moreover, this leads to a good notion of “étale formal
neighborhoods” of a prekimberlite.

Lemma 4.25. If V → X is a quasicompact, separated étale map of perfect schemes over Fp, then

V ⋄/◦ → X⋄/◦ is separated, quasicompact, formally adic and étale.

Proof. The formation of X⋄/◦ commutes with finite limits and preserves open immersions. If V → X is
separated then V → V ×XV is open and closed, the same holds for V ⋄/◦ → V ⋄/◦×X⋄/◦V ⋄/◦ which proves
separatedness. We prove formal adicness. Let Y = V ⋄/◦×X⋄/◦ X⋄, we get a map V ⋄ → Y . We prove this
map is an isomorphism after basechange by any map Spa(R,R+)→ X⋄. Let YR := Y ×X⋄Spa(R,R+), we
may assume m factors through Spec(R+)⋄ → X⋄ since this happens v-locally. Now, before sheafification
YR(S, S

+) parametrizes lifts of Spec(S+
red)→ Spec(R+

red)→ X to V . By invariance of the étale site under
perfection (respectively nilpotent thickenings), this is the same as parametrizing lifts of Spec(S+/ϖ)→ X
to V (respectively of Spf(S+)→ X to V ). In other words, YR fits in the following Cartesian diagram:

YR Spa(R,R+)

Spec(R+)⋄ ×X⋄ V ⋄ Spec(R+)⋄

But this is precisely V ⋄ ×X⋄ Spa(R,R+). For quasicompactness and étaleness we can argue locally
and assume X = Spec(A) and V = Spec(B). Indeed, this follows from the quasicompactness of the
specialization map for Tate Huber pairs. Arguing as above, for a map Spa(R,R+)→ X⋄/◦ the basechange
is represented by Spa(S, S+) where S+ is the unique étale R+-algebra lifting R+

red ⊗A B. □

Definition 4.26. Suppose X is a prekimberlite, we let (X)qc,for-ét be the category that has as objects
maps f : T → X where T is a prekimberlite and f is formally adic, étale and quasicompact. Morphisms
are maps of v-sheaves commuting with the structure map. We call objects in this category the étale
formal neighborhoods of X.

Morphisms in Xfor-ét are automatically quasicompact, formally adic, étale and separated. Given a
perfect scheme S we let (S)ét,qc,sep denote the category of schemes étale, quasicompact and separated
over S.

Theorem 4.27. For X a prekimberlite, reduction (−)red : (X)qc,for-ét ∼= (Xred)qc,ét,sep is an equivalence.

Step 1: If a morphism f : Y → W in (X)qc,for-ét induces an isomorphism f red : Y red → W red then f is
an isomorphism.

Proof. The sheaf-theoretic image of Y in W is an open subsheaf of W containing W red so it must
be W . This proves surjectivity. Since the map is qcqs we may prove injectivity on geometric
points. We reduce to the case where W = Spd(C+, C+), and the geometric point is given by
the inclusion Spa(C,C+) ⊆ Spd(C+). In this case, Y an has the form

∐n
i=1 Spa(C,C

′+) with
C+ ⊆ C ′+ ⊆ OC . To count connected components we may restrict to W = Spd(OC , OC) so that
Y an =

∐n
i=1 Spa(C,OC) and Y red = Spec(OC/C

◦◦) = W red. Replacing C by a v-cover we may
assume that Spa(C,OC) → Y is formalizable. The map Spd(OC , OC) → Y is étale, and since
its image is open n = 1. □

Step 2: (−)red : (X)qc,for-ét → (Xred)qc,ét,sep is fully-faithful.
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Proof. Maps from Z to Y over X are in bijection with open and closed subsheaves W ⊆ Z×X Y
whose projection to Z is an isomorphism. Identically, maps Zred → Y red are in bijection with
open and closed subschemes of Zred×XredY red whose projection to Zred is an isomorphism. Since
we can check isomorphisms by passing to reduction we get a bijection W 7→ W red with inverse

V 7→ ̂(Z ×X Y )/V red . □

Step 3: (−)red : (X)qc,for-ét → (Xred)qc,ét,sep is essentially surjective.

Proof. If V ∈ (Xred)qc,ét,sep we let X̂/V := X ×(Xred)⋄/◦ V ⋄/◦, where the map X → (Xred)⋄/◦ is

SPX . By Lemma 4.25, X̂/V → X is quasicompact, formally adic, étale and separated. Since X is

formally separated X̂/V also is. Although they are not formally separated, by Proposition 4.24,

(Xred)⋄/◦ and V ⋄/◦ still formalize uniquely totally disconnected spaces, this proves X̂/V is also

v-formalizing and a specializing v-sheaf. It is a prekimberlite since (X̂/V )
red = V , and the map

V ⋄ → X̂/V is closed. □

If X is a prekimberlite and V → Xred is an étale map, Theorem 4.27 associates to V the étale formal

neighborhood X̂/V := X ×X⋄/◦ V ⋄/◦.

Corollary 4.28. Let X be a prekimberlite and let Y ∈ (X)qc,for-ét. If X = X♢ for a formal scheme X,
then there is a formal scheme Y with Y = Y♢.

Remark 4.29. If K = (F ,D) is a smelted kimberlite, by Theorem 4.27, we obtain a morphism of sites
Ψ′ : Dét → (F red)ét. This allows us to form a “naive nearby cycles functor” RΨ′. If j : D → F ←
(F red)⋄ : i denote the inclusions, Scholze’s 6-functor formalism give us already a nearby cycles functor
i∗Rj∗. It is an interesting question to understand the relation between these two functors. We have
partial progress in answering this question. We will report our findings on a future work.

Observe that SPX : X → (Xred)⋄/◦ is separated. This allows us to make the following definition.

Definition 4.30. A prekimberlite is valuative if SPX : X → (Xred)⋄/◦ is partially proper.

Proposition 4.31. If X is a separated formal scheme over Zp as in Convention 1, then X♢ is valuative.

Proof. By [18, Proposition 18.6], one can verify partial properness open locally on the target, this reduces

to the case X = Spd(B). The valuative criterion asks if given a map B → R♯,◦ such that Bred → R♯,◦
red

factors through R♯,+
red then B → R♯,◦ factors through R♯,+. This follows from R♯,+ = R♯,◦×R♯,◦

red
R♯,+

red . □

Proposition 4.32. Let f : X → Y be a map of prekimberlites. If f is partially proper and Y is valuative
then X is valuative.

Proof. It follows from two facts: X → (Y red)⋄/◦ is partially proper and X → (Xred)⋄/◦ is separated. □

Proposition 4.33. If F is a valuative prekimberlite then spF : |F| → |F red| is specialising as a map of
topological spaces.

Proof. Let r ∈ |F|, x = spF (r) and y ∈ |F red| specializing from x. We construct q specializing from
r that maps to y. Pick a formalizable representative fr : Spa(C,C+) → F . Let K = OC/C

◦◦ and
K+ = C+/C◦◦, then x is the image of closed point under fx : Spec(K+) → F red. Let R be the local
ring obtained by intersecting the closure of x and the localization at y. Let k = K+/mK+ , so that
R ⊆ k. By [21, Tag 00IA], we have a valuation subring R ⊆ V ⊆ k such that Frac(V ) = k and V
dominates R. This induces a valuation subring K ′+ ⊆ K+ and a map fy : Spec(K ′+) → F red whose
closed point maps to y. In turn, this induces a valuation subring C ′+ ⊆ C+ with C ′+/C◦◦ = K ′+. Now,
fy induces a map Spa(C,C ′+)→ (F red)⋄/◦ extending SPF ◦ fr. By partial properness this lifts to a map
fq : Spa(C,C ′+)→ F and clearly spF (q) = y. □

Proposition 4.34. Formal neighborhoods and étale formal neighborhoods of valuative prekimberlites are
valuative prekimberlites.

Proof. This is immediate from their expression as a basechange. □
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4.5. Kimberlites and smelted kimberlites.

Definition 4.35. Let F be a valuative prekimberlite.

(1) A smelted kimberlite K is a pair K := (F ,D), where D ⊆ Fan is an open subsheaf such that D
is a quasiseparated locally spatial diamond, and such that the map D → F is partially proper.

(2) We define the specialization map spK : |D | → |F red| as the composition |D | → |F| spF−−→ |F red|.
If the context is clear, we write spD instead of spK.

(3) We say G is a kimberlite if KG := (G,Gan) is a smelted-kimberlite and spKG
is quasicompact.

Remark 4.36. Given a valuative prekimberlite F one is mostly interested in smelted kimberlites (F ,D)
where D = Fan or where D = F×Spd(OK)Spd(K,OK) when F comes with a map F → Spd(OK) for OK

a complete rank 1 valuation ring. Notice that Fan → F is always partially proper if F is a prekimberlite.

Remark 4.37. Let F be a kimberlite. The quasicompactness hypothesis of spFan is equivalent to asking
that sp−1

Fan(U) is a spatial diamond for all U ⊆ F red with U affine.

Definition 4.38. Let K = (F ,D) be a smelted kimberlite. Given a constructible locally closed subset

S ⊆ F red we let D⊚
/S = F̂/S ×F D . We call this subsheaf the tubular neighborhood of D around S. If G

is a kimberlite we write G⊚/S for Ĝ/S ×G Gan.

Proposition 4.39. If K = (F ,D) is a smelted kimberlite, then (F̂/S ,D
⊚
/S) is a smelted kimberlite.

Moreover, D⊚
/S is the open subdiamond corresponding to the interior of sp−1

K (S) in |D |.

Proof. By Proposition 4.34 F̂/S is a valuative prekimberlite, and by basechange D⊚
/S → F̂/S is partially

proper open. Moreover, Proposition 4.22 D⊚
/S → D is an open immersion, so D⊚

/S is a quasiseparated

locally spatial diamond. For the second claim, let T ⊆ sp−1
K (S) be the largest subset stable under

generization. It suffices to prove T ⊆ D⊚
/S since by Proposition 4.22 we already have D⊚

/S ⊆ (sp−1
K (S))int ⊆

T . Take x ∈ T and a formalizable geometric point ιx : Spa(Cx, C
+
x )→ F over x. Since every generization

of x is in sp−1
K (S) the map Spec((C+

x )red)→ F red factors through S, so ιx factors through D⊚
/S = F̂/S∩D

by Proposition 4.20. □

Theorem 4.40. Let K = (F ,D) be a smelted kimberlite and G be a kimberlite, the following hold:

(1) spD : |D | → |F red| is a specializing, spectral map of locally spectral spaces.
(2) spGan : |Gan| → |Gred| is a closed map.

Proof. Being specializing follows from Proposition 4.33 and the hypothesis that D → F is partially
proper. The second claim follows easily from Corollary 1.15, from the first claim and from quasicom-
pactness of spGan . We need to prove that spD is continuous for the constructible topology. We can argue
on an open cover of |D |, so we may assume that D is spatial. Find a formalizable cover X → D with
X = Spa(A,A+) ∈ Perf, and consider the diagram:

| Spa(A,A+) |cons | D |cons

| Spec(A+
red) |cons | F red |cons

g

spX spD

gred

Since F red is represented by a scheme, by Proposition 3.16 gred is continuous for the patch topology.
Similarly, spX is continuous and since D is spatial by Proposition 1.18 g is also continuous. Moreover,
g is a surjective map of compact Hausdorff spaces and consequently a quotient map. Since the diagram
commutes, spK is continuous for the patch topology. □

Proposition 4.41. Let f : G → F be a formally closed immersion. The following hold:

(1) If F is a specializing v-sheaf, then G is a specializing v-sheaf.
(2) If F is a prekimberlite, then G is a prekimberlite.
(3) If (F ,D) forms a smelted kimberlite then (G,G ∩D) forms a smelted kimberlite.
(4) If F is a kimberlite, then G is a kimberlite.

Proof. Suppose F is specializing, since G is a subsheaf of F it is separated, and by formal adicness
(Gred)⋄ → G is injective. Pick Spa(R,R+) ∈ Perf and a map Spd(R+) → F , the basechange X :=
G ×F Spd(R+) is a formally closed subsheaf of Spd(R+). Reasoning as in Proposition 4.9 we conclude
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X = Spd(R+) when Spa(R,R+) → F factors through G. This proves that G is v-formalizing and a
specializing sheaf. Suppose F is a prekimberlite. By formal adicness (Gred)⋄ → G is a closed immersion.
Now, (Gred)⋄ → (F red)⋄ is also a formally closed immersion and by Lemma 3.31 Gred is represented by
a closed subscheme of F . This proves that G is a prekimberlite. Since closed immersions are partially
proper the map F → (Gred)⋄/◦ is partially proper. Consequently, the same holds for F → (F red)⋄/◦.
That (G,G ∩ D) is a smelted kimberlite follows from [18, Proposition 11.20]. If F is a kimberlite, then
Gan = Fan ×F G so (G,Gan) is a smelted kimberlite. The quasicompactness hypothesis on spGan follows
from that of spFan and that closed immersions are quasicompact. □

Proposition 4.42. Let F be a prekimberlite and V → F red a quasicompact, separated and étale map.
The following hold:

(1) If (F ,D) is a smelted kimberlite, then (F̂/V ,D ×F F̂/V ) is a smelted kimberlite.

(2) If F is a kimberlite F̂/V is a kimberlite.

Proof. This follows from Lemma 4.25, form Proposition 4.34, and [18, Corollary 11.28]. □

4.6. Finiteness and normality. In this section, we discuss a finiteness and a normality hypothesis
imposed on kimberlites to tame them. These notions are ad hoc, but they turned out to be useful for
applications.

Let us give some motivation. Suppose X is a formal scheme topologically of finite type over Zp, let
Xη denote the generic fiber considered as an adic space and let Xred denote the reduced special fiber. In
this situation, we have a specialization map spXη

: |Xη| → |Xred|, and for a fixed closed point x ∈ |Xred|
we have the following chain of inclusions |X⊚

/x| ⊆ sp−1
Xη

(x) ⊆ |Xη|. These inclusions satisfy:

(1) sp−1
Xη

(x) is a closed subset.

(2) |X⊚
/x| is the interior of sp−1

Xη
(x) in |Xη|.

(3) |X⊚
/x| is dense in sp−1

Xη
(x)

The first two conditions generalize, by Proposition 4.39, to the case of kimberlites whose closed points
are constructible. Our finiteness condition is sufficient to make a kimberlite have the third property as
well. As the next example shows finiteness hypothesis are necessary for this third property to hold.

Example 4.43. Let C be a nonarchimedean field and C+ ⊆ C an open and bounded valuation sub-
ring whose rank is strictly larger than 1. Then spC is a homeomorphism between Spa(C,C+) and
Spec(C+/C◦◦). If x denotes the closed point of Spec(C+/C◦◦) then y = sp−1

C (x) is the closed point in
Spa(C,C+). The interior of {y} is empty.

Definition 4.44. We say that a locally spatial diamond X is constructibly Jacobson if the subset of
rank 1 points are dense for the constructible topology of |X|. We refer to them as cJ-diamonds.

Proposition 4.45. Suppose that K = (F ,D) is a smelted kimberlite with D a cJ-diamond, let S ⊆ |F|
a constructible subset. Then |D ∩ F̂/S | is dense in sp−1

K (S).

Proof. By the proof of Proposition 4.22, |D ∩F̂/S | is the largest subset of sp−1
K (S) stable under generiza-

tion. Now, sp−1
K (S) is open in the patch topology of |D | and by assumption rank 1 points are dense in it.

Since rank 1 points are stable under generization, they belong to |D ∩ F̂/S |. This proves that |D ∩ F̂/S |
is dense in sp−1

K (S). □

Proposition 4.46. Let f : X → Y be a morphism of locally spatial diamonds the following hold:

(1) If |f | is surjective and X is a cJ-diamond, then Y is a cJ-diamond.
(2) If f is an open immersion and Y is a cJ-diamond, then X is a cJ-diamond.
(3) If f realizes X as a quasi-pro-étale J-torsor over Y for a profinite group J and X is a cJ-diamond,

then Y is a cJ-diamond.
(4) If f is étale and Y is a cJ-diamond, then X is a cJ-diamond.

Proof. Maps of locally spatial diamonds induce spectral and generalizing maps of locally spectral spaces.
The first claim follows easily from this. Suppose that Y is a cJ-diamond. If f is an open immersion, any
open in the patch topology of X is also open in the patch topology of Y . This proves the second claim.
Moreover, this allow us to argue locally, so we can assume X and Y are spatial. If f is étale, by [18,
Lemma 11.31], locally we can write f as the composition of an open immersion and a finite étale map.
Spaces that are finite étale over a fixed spatial diamond form a Galois category and using the first claim
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we may reduce to the case in which f is Galois with finite Galois group G. In this way, the fourth claim
follows from the third. For the third claim, we prove that f is an open map for the patch topology. This
would finish the proof since the fibers of rank 1 points of a quasi-pro-étale map are also rank 1.

Let J = lim←−i
Ji with Ji a cofiltered family of finite groups and denote by fi : Xi → Y the induced Ji-

torsors. We get continuous action maps Ji×|Xi|cons → |Xi|cons. Moreover, if S ⊆ |Xi| then f−1
i (fi(S)) =

Ji ·S. Now, the formation of the patch topology on a spectral space commutes with limits along spectral
maps. This gives a continuous action map J × |X|cons → |X|cons. Let U ⊆ X be open in the patch
topology, then f−1(f(U)) = J · U which is also open. We can conclude since |f |cons : |X|cons → |Y |cons
is a quotient map. □

We recall a theorem of Huber. His statement is stronger, but we only need this weaker form.

Theorem 4.47. ([11, Theorem 4.1]) Let K be a complete nonarchimedean field, and let A be a topo-
logically of finite type K-algebra. Then, Max(A) ⊆ Spa(A,A◦) is dense for the patch topology.

Corollary 4.48. If X is an adic space topologically of finite type over Spa(K,OK), with K a complete
nonarchimedean field over Zp. Then X♢ is a cJ-diamond.

Example 4.49. The perfectoid unit ball Bn = Spa(C⟨T
1

p∞

1 . . . T
1

p∞
n ⟩, OC⟨T

1
p∞

1 . . . T
1

p∞
n ⟩) over a perfec-

toid field C over Fp, is a cJ-diamond. Indeed, we have an equality Spa(C⟨T1 · · ·Tn⟩, OC⟨T1 · · ·Tn⟩)♢ =
Bn.

Definition 4.50. Let C be a characteristic p perfectoid field and X a locally spatial diamond over
Spa(C,OC). We say thatX has enough facets over C if it admits a v-cover of the form

∐
i∈I Spd(Ai, A

◦
i )→

X where each Ai is an algebra topologically of finite type over C.

Proposition 4.51. Let X and Y be two locally spatial diamonds with enough facets over C, let C♯ be
an untilt of C, and C → C ′ a map of perfectoid fields. The following hold:

(1) The base change X ×Spa(C,OC) Spa(C
′, OC′) has enough facets over C ′.

(2) The fiber product X ×Spa(C,OC) Y has enough facets over C.
(3) X is a cJ-diamond.
(4) If X = Spd(A,A◦) for a smooth and topologically of finite type C♯-algebra A, then X has enough

facets.

Proof. Since being topologically of finite type is stable under products and change of the ground field the
first two claims follows. The third claim follows from Theorem 4.47 and Proposition 4.46. For the last

claim, let Tn
C♯ denote Spa(C♯⟨T±

1 , . . . T±
n ⟩, OC♯⟨T±

1 , . . . T±
n ⟩), and let T̃n

C♯ = lim←−Ti 7→Tp
i

Tn
C♯ analogously

for Tn
C and T̃n

C . For x ∈ Spa(A,A◦) there is U a neighborhood of x and an étale map η : U → Tn
C♯ . Let

Ũ be the pullback of η along T̃n
C♯ → Tn

C♯ , we get an étale map Ũ ♭ → T̃n
C . By the invariance of the étale

site under perfection ([18, Lemma 15.6]) Ũ ♭ = U ′♢ for an adic space U ′ étale over Tn
C . Now, U ′ admits

an open cover of the form
∐

i∈I Spa(Ai, A
◦
i )→ U ′ with each Ai topologically of finite type over C. This

gives a cover,
∐

i∈I Spd(Ai, A
◦
i )→ Ũ ♭ → U♢. □

Definition 4.52. Let G be a kimberlite and K = (F ,D) a smelted kimberlite.

(1) We say that K is rich if: F is valuative, D is a cJ-diamond, |F red| is locally Noetherian and
spD : |D | → |F red| is surjective.

(2) We say that G is rich if: (G,Gan) is rich.
(3) If K is rich we say it is topologically normal if for every closed point x ∈ |F red| the tubular

neighborhood D⊚
/x is connected.7

Lemma 4.53. If K = (F ,D) is a rich smelted kimberlite, then spD is a quotient map.

Proof. We can argue locally on |F red|, so we may assume F red = Spec(A)⋄. We first prove the case that
|F red| is irreducible. Let g be the generic point of |F red|, let r ∈ |D | with spD(r) = g represented by
formalizable map fr : Spa(C,OC) → D . Let Cmin

g be the minimal ring of integral elements of C such

that Cmin
g /C◦◦ contains A. This defines a map Spa(C,Cmin

g ) → Spec(A)⋄/◦. By valuativity, we get a

lift Spa(C,Cmin
g )→ D . The map fmin : |Spa(C,Cmin)| → |F red| is specializing, surjective and a spectral

map of spectral spaces. By Corollary 1.15, fmin is a closed map and consequently a quotient map of

7This definition is motivated by [1, Proposition 2.38], where the authors observed that normality “could be captured”
in terms of tubular neighborhoods.
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topological spaces. The case in which |F red| has a finite number of irreducible components is analogous.
Since we are allowed to work locally and we assumed |F red| is locally Noetherian, every point has an
affine neighborhood with finitely many irreducible components. □

Proposition 4.54. Constructible formal neighborhoods and étale formal neighborhoods preserve rich
smelted kimberlites.

Proof. This follows from Proposition 4.46, Proposition 4.22 and Proposition 4.24. □

The following lemma was the starting point of our theory of specialization and a key input for our
work on connected components of moduli spaces of p-adic shtukas [9].

Lemma 4.55. Let K = (F ,D) be a topologically normal rich smelted kimberlite. Then π0(spD) :
π0(|D |)→ π0(|F red|) is bijective.

Proof. Let U, V ⊆ |D | be two non-empty closed-open subsets with V ∪ U = |D |. Clearly, π0(spD) is
surjective. Suppose that ∅ ≠ spF (U)∩spF (V ), it suffices to show that U∩V ̸= 0. Since spD is specializing
we can assume there is a closed point x ∈ spD(U) ∩ spD(V ). Since |F red| is locally Noetherian, closed
points are open in the constructible topology. By Proposition 4.45, D⊚

/x is dense in sp−1
D (x), which implies

that sp−1
D (x) is connected. Connectedness gives that (sp−1

D (x)∩U)∩ (sp−1
D (x)∩V ) ̸= ∅ and in particular

U ∩ V ̸= ∅ which is what we wanted to show. □

5. The specialization map for unramified p-adic Beilinson–Drinfeld Grassmannians

So far our discussion has been purely theoretical. In this section, we apply the theory to construct and
study the specialization map for some p-adic Beilinson–Drinfeld Grassmannians [20, Definition 20.3.1].
For the rest of the section G denotes a reductive over Zp and we let T ⊆ B ⊆ G denote integrally
defined maximal torus and Borel subgroups respectively. Let µ ∈ X+

∗ (TQp
) be a dominant cocharacter

with reflex field E ⊆ Qp. Let OE denote the ring of integers of E and let kE denote the residue field.

Let GrG,≤µ
OE

denote the v-sheaf parametrizing B+
dR-lattices with G-structure whose relative position is

bounded by µ as in [20, Defintion 20.5.3] and let GrG,≤µ
W,kE

denote the Witt vector affine Grassmannian.
Let F be a nonarchimedean field extension of E. Let OF denote the ring of integers of F and the residue

field kF , assume that F is complete for the p-adic topology and that kF is perfect. Let GrG,≤µ
OF

:=

GrG,≤µ
OE

×Spd(OE) Spd(OF ) and let GrG,≤µ
W,kF

= GrG,≤µ
W,kE

×Spec(kE) Spec(kF ). Here is our result:

Theorem 5.1. GrG,≤µ
OF

is a topologically normal rich p-adic kimberlite with (GrG,≤µ
OF

)red = GrG,≤µ
W,kF

.

Remark 5.2. This result has partially been generalized in our collaboration [1]. There, we prove
that the local models for parahoric groups are rich p-adic kimberlites. Nevertheless, we only improve
the “normality” part of the result if we assume that µ is minuscule and outside certain cases in small
characteristic.

5.1. Twisted loop sheaves. Fix a perfect field k in characteristic p. Let X = Spec(A) be a scheme
of finite type over W (k). In [18], Scholze associates to X two v-sheaves over Spd(W (k)), which we
denote X♢ and X⋄ following [1, Definition 2.10]. Here X♢ : Perfk → Sets assigns to Spa(R,R+) triples
(R♯, ι, f) with (R♯, ι) an untilt and f ∈ HomW (k)(A,R♯) is a W (k)-algebra homomorphism. On the other

hand, X assigns triples (R♯, ι, f) with f ∈ HomW (k)(A,R♯,+). Now, X⋄ ⊆ X♢ is open. Both of these
functors glue to a construction defined for schemes X locally of finite type over Spec(W (k)). Visibly,

these constructions are related to ♢ : PreAdW (k) → P̃erf. Let us elaborate.
Let Xp denote the p-adic completion of X. Now, Xp is a p-adic Noetherian formal scheme that we

may regard as an adic space. We have an identification X♢
p = X⋄. If X = Spec(A) and Xf → X is the

open Xf = Spec(A[ 1f ]) with f ∈ A, then (Xf )p → Xp is the locus in Xp where 1 ≤ |f |.
The construction of X♢ is more elaborate. Given an adic space S (thought of as a triple (|S|,OS , {vs :

s ∈ |S|}) in Huber’s category V see [12]), we let SH denote the topologically ringed space (|S|,OS) that
is obtained from S by forgetting the last entry of data. Suppose we are given a morphism of schemes
f : X → Y that is locally of finite type and a morphism g : SH → Y of locally ringed spaces where S
is an adic space for which every point s ∈ S has an affinoid open neighborhood with Noetherian ring of
definition. In [12, Proposition 3.8]), Huber constructs an adic space ”S ×Y X” together with a map of
adic spaces p1 : ”S ×Y X” → S and a map of locally ringed spaces p2 : (”S ×Y X”)H → X with the
following universal property. If T is an adic space, π1 : T → S is a map of adic spaces and π2 : TH → X
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is a map of locally ringed spaces such that f ◦π1 = g ◦πH
2 , then there is a unique map π : T → ”S×Y X”

such that p1 ◦ π = π1 and p2 ◦ πH = π2. Letting Y = Spec(W (k)) and S = Spa(W (k)) we define Xad as
(”S ×Y X”). Then, X♢ = (Xad)♢. Moreover, if X = Spec(A) and Xf = Spec(A[ 1f ]) for f ∈ A we can

see from the universal property that Xad
f is the open locus of Xad where f ̸= 0.

Proposition 5.3. If X → Spec(W (k)) is a proper map of schemes, then the natural map X⋄ → X♢ is
an isomorphism.

Proof. It follows directly from [12, Remark 4.6.(iv).d]. □

Proposition 5.4. If X and Y are qcqs finite type schemes over Spec(W (k)) and that X → Y is
universally subtrusive as in Definition 3.4, then X♢ → Y ♢ and X⋄ → Y ⋄ are surjective.

Proof. Replacing Y by an open cover we may assume Y = Spec(A). By [16, Theorem 3.12] we may
assume that X → Y factors as X → Y ′ → Y with Y ′ → Y a proper surjection and X → Y ′ a
quasicompact open cover. Open covers give surjective maps so we can reduce to the proper case. By
Chow’s lemma [21, Tag 0200], we may assume Y ′ → Y is projective. Now, Y ′♢ → Y ♢ and Y ′⋄ →
Y ⋄ are quasicompact. Indeed, they are the composition of a closed immersion and projection from
(Pn

W (k))
♢ ×Spd(W (k)) Y

♢ (respectively (Pn
W (k))

♢ ×Spd(W (k)) Y
⋄). By [18, Lemma 12.11], we may check

surjectivity at a topological level. Take geometric points r : Spa(C,C+)→ Y ♢ and s : Spa(C,C+)→ Y ⋄

given by ring maps r∗ : A→ C and s∗ : A→ C+. Since Y ′ → Y is proper and surjective Spec(C)×Y Y ′ →
Spec(C) admits a section inducing a lift to Y ′♢. Analogously, Spec(C+) ×Y Y ′ → Spec(C+) admits a
section (by the valuative criterion of properness). □

Proposition 5.5. Let X be locally of finite type over W (k) with special fiber Xs. Then (X♢)red =
Xperf

s = (X⋄)red.

Proof. Both identifications follow from Proposition 3.18. By the construction ofXp as a p-adic completion
in the case of X⋄, and by the universal property of Xad in the case of X♢. □

For the rest of the section let C be an algebraically closed nonarchimedean field over k with ring of
integers OC and residue field kC . Fix a characteristic 0 untilt C♯ and fix ξ ∈W (OC) a generator for the
kernel of W (OC)→ OC♯ . The choice of untilt determines a unique map Spd(OC)→ Spd(Zp).

Definition 5.6. We denote ring sheaves W+(O), B+
dR(O♯),W (O), BdR(O♯) : PerfSpd(OC) → Sets

(1) Where W+(O) assigns to Spa(R,R+)→ Spd(OC) the ring W (R+).
(2) Where B+

dR(O♯) assigns to Spa(R,R+)→ Spd(OC) the ring B+
dR(R

♯).
(3) Where W (O) assigns to Spa(R,R+)→ Spd(OC) the ring W (R+)[ 1ξ ].

(4) Where BdR(O♯) assigns to Spa(R,R+)→ Spd(OC) the ring BdR(R
♯) := B+

dR(R
♯)[ 1ξ ].

Note that we have reduction maps red : W+(O)→ O♯,+ and red : B+
dR(O♯)→ O♯.

Definition 5.7. Let H be a finite type affine scheme over Gm,W (k), and (H, ρ) a finite type affine scheme

over A1
W (k) with an isomorphism ρ : H×A1

W (k)
Gm → H. We associate v-sheaves over Spd(OC).

(1) W+H assigns to Spa(R,R+) the set of sections to HW (R+) → Spec(W (R+)).

(2) WH assigns to Spa(R,R+) the set of sections to HW (R+)[ 1ξ ]
→ Spec(W (R+)[ 1ξ ]).

(3) L+H assigns to Spa(R,R+) the set of sections to HB+
dR(R♯) → Spec(B+

dR(R
♯)).

(4) LH assigns to Spa(R,R+) the set of sections to HBdR(R♯) → Spec(BdR(R
♯)).

Here the base change of H and H are given by maps to A1
W (k) and Gm,W (k) defined by t 7→ ξ.

ρ induces maps L+H ρ−→ LH and W+H ρ−→WH. We get the following diagrams of inclusions:

W (O) WH

W+(O) BdR(O♯) W+H LH

B+
dR(O♯) L+H

ρ

ρ
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Moreover, if H denotes the basechange H×A1
W (k)

Spec(W (k)) at t = 0 we get reduction maps W+H →
(H)⋄Spd(OC) and L+H → (H)♢Spd(OC).

Proposition 5.8. If H is smooth over Spec(W (k)[t]) the reduction maps are surjective.

Proof. We claim that the map is surjective even at the level of presheaves. The (R,R+)-valued points
of (H)♢ and (H)⋄ can be seen as maps Spec(R♯) → HB+

dR(R♯) and Spec(R♯,+) → HW (R+) whose com-

position with the projections to Spec(B+
dR(R

♯)) and Spec(W (R+)) are the usual closed embeddings. By

smoothness of H, for any n ∈ N the maps can be lifted to maps Spec(B+
dR(R

♯)/ξn) → HB+
dR(R♯) and

Spec(W (R+)/ξn) → HW (R+) respectively. Since H is an affine scheme and since both B+
dR(R

♯) and

W (R+) are (ξ)-adically complete we may pass to the inverse limit by choosing compatible lifts. □

Definition 5.9. We define scheme-theoretic v-sheaves W+
red(O),W

+
redH : PCAlgopkC

→ Sets.

(1) Let W+
red(O) attach to Spec(R) the ring W (R).

(2) Let W+
redH attach to Spec(R) the sections to H×W (k)[t] W (R)→ Spec(W (R)).

Here the base change of H is given by the map to A1
W (k) defined by t 7→ p.

Remark 5.10. These v-sheaves are Zhu’s p-adic jet spaces in [22, §1.1.1].

Proposition 5.11. With the notation as above, W+H is a p-adic kimberlite and (W+H)red = (W+
redH).

Proof. W+(O) is represented by Spd(OC⟨Tn⟩n∈N), by Proposition 4.17, Proposition 3.23 and Propo-
sition 3.18 W+(O) is a p-adic kimberlite with W+(O)red = Spec(kC [Tn]n∈N) which is W+

red(O). If
H = Spec(A) is presented as A = W (k)[t][x]/I with I = (f1(t, x), . . . , fm(t, x)). Then W+H fits in the
commutative diagram with Cartesian square:

W+H Spd(OC)

W+(O)n W+(O)m Spd(OC)

0
id

F

Here F (r) = (f1(ξ, r), . . . , fm(ξ, r)). All of these maps are formally adic, and Spd(OC)
0−→ W+(O)m

is formally closed. By Proposition 4.41 W+H is a p-adic kimberlite. Finally, we can basechange by
Spec(kC)

⋄ → Spd(OC) to compute reductions. □

5.2. Demazure resolution. We assume the reader has some familiarity with Bruhat–Tits theory and
parahoric group schemes [6]. We use twisted loop sheaves to consider integrally defined Demazure
resolutions. Our main observation is that the Demazure resolution can be constructed using either
parahoric loop groups or what we call below “formal parahoric loop” groups. The difference is whether
one uses BdR or Ainf coefficients. We keep the notation as above.

(1) LetH be a splitW (k)-reductive group, and T ⊆ B ⊆ H maximal split torus and Borel subgroups.
(2) Let (X∗,Φ, X∗,Φ

∨) be the root datum associated to (H,T ).
(3) We let ⟨·, ·⟩ : X∗ ×X∗ → Z denote the perfect pairing between roots and coroots.
(4) Let Φ+ be the set of positive roots associated to B.
(5) Let N be the normalizer of T in H.
(6) Let W = N/T be the Weyl group of H.
(7) We let A = A(H,T ) denote X∗(T )⊗Z R.
(8) We let Ψ = {α+ n | α ∈ Φ, n ∈ Z} denote the set of affine roots on A.
(9) Given a point q ∈ A we let Φq = {α ∈ Φ | α(q) ∈ Z} this is a closed sub-root system.

(10) Let Mq be the Levi subgroup containing T with root datum given by (X∗,Φq, X∗,Φ
∨
q ).

(11) If q ∈ A we associate Fq ⊆ A containing q and bounded by the hyperplanes defined by Ψ.
(12) We let o ∈ A be the origin and o ∈ C be the alcove contained in the Bruhat chamber of B.
(13) Let S be the reflections along the walls of C, we let W aff the affine Weyl group generated by S.
(14) For facets F ⊆ C let SF be elements of S fixing F and let WF be the subgroup generated by SF .
(15) Let W̃ be the Iwahori–Weyl. Recall that if ΩH = π1(H

der) then W̃ = W aff ⋊ ΩH .

Fix a point q ∈ A. Using Bruhat–Tits theory and dilatation techniques ([14, §3]), one can construct
smooth affine algebraic groupsHq over Spec(W (k)[t]) and isomorphism ρ : Hq×W (k)[t]Spec(W (k)[t, t−1]) ∼=
H ×W (k) Spec(W (k)[t, t−1]) satisfying the following:
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a) For a DVR V with uniformizer π ∈ V the basechange Hq ×A1
W (k)

Spec(V ) along t 7→ π is the

parahoric group scheme of q ∈ A(H,V [ 1π ]) = A.
b) For α ∈ Φ there are closed subgroups Uq

α ⊆ Hq and T ⊆ Hq with Ga
∼= Uq

α and Gn
m
∼= T . These

extend the root groups Uα ⊆ H and the torus T ⊆ H.
c) There is an open cell decomposition: Vq :=

∏
α∈Φ− Uq

α × T ×
∏

α∈Φ+ Uq
α ⊆ Hq. It is an open

immersion surjecting onto a fiberwise Zariski-dense neighborhood of the identity section.

d) The group multiplication map Vq × Vq
µ−→ Hq is smooth and surjective.

e) The basechange Hq := Hq ×A1
W (k)

Spec(W (k)) along t = 0 supports a split reductive quotient

(H)Red
q over W (k) with root datum identified with (X∗,Φq, X∗,Φ

∨
q ) so that Mq = (H)Red

q .

f) If α ∈ Φq, then U
q

α,t=0 → (H)Red
q identifies with the root group of (H)Red

q corresponding to α.

g) If α ∈ Φ \ Φq then the composition Uq

α,t=0 → (H)Red
q factors through the identity section.

h) We have a commutative diagram of open cell decompositions:∏
α∈Φ\Φq

Uα

∏
α∈Φ− Uα × T ×

∏
α∈Φ+ Uα

∏
α∈Φ−

q
Uα × T ×

∏
α∈Φ+

q
Uα

Ker(m) Hq HRed

q

∼=

π

µ µ

m

Also, given q1, q2 ∈ A with Fq1 ⊆ Fq2 we get a map groups f : Hq2 → Hq1 satisfying:

i) ρ1 ◦ f = ρ2 over Spec(W (k)[t, t−1]).
j) Hq2 → (Hq1)

Red surjects onto the parabolic subgroup associated to the sub-root system Φq1.q2 :=
{α ∈ Φq1 | ⌊α(q2)⌋ = α(q1)}.

k) The kernel of Hq2 → (Hq1)
Red is fiberwise a vector group.

Definition 5.12. Let q ∈ A. Since Hq and H are defined over Spec(W (k)[t]) and Spec(W (k)[t, t−1])
we can use the construction of Definition 5.7. We call LH the loop group, we call L+Hq the parahoric
loop group and we call W+Hq the “formal parahoric loop group”.

Notice that we have injective maps of v-sheaves W+Hq ⊆ L+Hq

ρ

⊆ LH.

Proposition 5.13. With the notation as above, for any point q ∈ A we have surjective morphisms of
v-sheaves in groups: L+Hq → [(H)Red

q ]♢ = M♢
q and W+Hq → [(Hq)

Red]⋄ = M⋄
q .

Proof. This is a direct consequence of Proposition 5.8 and Proposition 5.4 sinceH → HRed
is smooth. □

We let LuHq and WuHq denote respectively the kernels of the morphisms of Proposition 5.13 above.

Proposition 5.14. If q1, q2 ∈ A are such that Fq1 ⊆ Fq2 , then we get inclusions of v-sheaves in groups:
LuHq1 ⊆ LuHq2 ⊆ L+Hq2 ⊆ L+Hq1 and WuHq1 ⊆ WuHq2 ⊆ W+Hq2 ⊆ W+Hq1 Moreover, the map

from L+Hq2 to M♢
q1 surjects onto P♢

Φq1,q2
⊆M♢

q1 . Analogously, W+Hq2 surjects onto P ⋄
Φq1,q2

⊆M⋄
q1 .

Proof. We deal with the parahoric loop group case, the other is analogous. Recall that f : Hq2 → Hq1

satisfies ρ1 ◦ f = ρ2. Functoriality of L+, gives L+Hq2 → L+Hq1 → LH. Since L+Hq2 → LH is

injective, then L+Hq2 → L+Hq1 also is. The map of affine schemes Hq2 → PΦq1,q2
is faithfully flat

of finite presentation. By Proposition 5.8 and Proposition 5.4, the map L+Hq2 → (Hq2)
♢ → P♢

Φq1,q2

is surjective. Finally, any map g : Spec(B+
dR(R

♯)) → Hq1,B
+
dR(R♯) whose induced map Spec(R♯) → Mq

factors through the identity lifts to a map Spec(B+
dR(R

♯))→ Hq2,B
+
dR(R♯). Indeed, Spec(R

♯)→ Hq1 is in

the open cell Vq1 , so g has the form g = (
∏

α∈Φ− uα(g)) ·t(g) ·(
∏

α∈Φ+ uα(g)) with t(g) and {uα(g)}α∈Φq1

reducing to the identity modulo ξ. By inspection, each of this elements lifts uniquely to Vq2 . For T and
Uα with α ∈ (Φ \ Φq1) ∪ Φq1,q2 , f is an isomorphism. For α ∈ Φq1 \ Φq1,q2 we may, after making some
choices, write Uq1

α as Spec(W (k)[t, u]) and Uq2
α as Spec(W (k)[t, u

t ]) such that f is the natural map. Now,

uα(g)
∗ : W (k)[t, u]→ B+

dR(R
♯) with t 7→ ξ extends (uniquely) to W (k)[t, u

t ]→ B+
dR(R

♯) if ξ divides the
image of u, but this happens whenever uα(g) reduces to identity. □

Proposition 5.15. Let q1, q2 ∈ A such that Fq1 ⊆ Fq2 , then we have identifications L+Hq1/L
+Hq2 =

W+Hq1/W
+Hq2 = (Flq1,q2,OC

)♢, where Flq1,q2 denotes the flag variety.
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Proof. We compute: L+Hp1
/L+Hp2

= (L+Hp1
/LuHp1

)/(L+Hp2
/LuHp1

) = M♢
p1
/P♢

Φp1,p2
= Fl♢p1,p2

and

W+Hp1
/W+Hp2

= (W+Hp1
/WuHp1

)/(W+Hp2
/WuHp1

) = M⋄
p1
/P ⋄

Φp1,p2
= Fl⋄p1,p2

. Finally, Proposi-

tion 5.3 gives Fl♢p1,p2
= Fl⋄p1,p2

. □

Lemma 5.16. Fix q1, q2 ∈ A with Fq1 ⊆ Fq2 . Let F be a locally spatial diamond with a map F →
Spd(OC) and let Spa(R,R+) be an affinoid perfectoid with a map Spa(R,R+)→ Fl♢q1,q2 .

(1) The map L+Hq1 ×Spd(OC) F → Fl♢q1,q2 ×Spd(OC) F admits pro-étale locally a section.

(2) The map L+Hq1 ×Fl♦q1,q2
Spa(R,R+)→ Spa(R,R+) admits analytic locally a section.

Proof. We may reduce the first claim to the second one by [18, Proposition 11.24]. Indeed, by Proposi-
tion 5.15 the map is a L+Hq2 -torsor. Let us prove the second claim. Let obs ∈ H1

v (Spa(R,R+), L+Hq2)
be the obstruction to triviality. We prove obs = e after analytic localization. Consider the sequences of
maps: (L+Hq1) → M♢

q1 → Fl♢q1,q2 and e → LuHq1 → L+Hq2 → P♢
Φq1,q2

→ e. Now, M♢
q1 → Fl♢q1,q2 is a

(P♢
Φq1,q2

)-torsor with obstruction lying in H1
v (Fl

♢
q1,q2 , P

♢
Φq1,q2

). Since Mq1 → Flq1,q2 admits Zariski locally

a section, replacing Spa(R,R+) by an analytic cover, we may assume obs = e in H1
v (Spa(R,R+), P♢

Φq1,q2
).

We claim H1
v (Spa(R,R+), LuHq1) = {e}. Recall the exact sequence e → Ker

(
L+Hq1 → (Hq1)

♢) →
LuHq1 → Ker

(
H♢

q1 → [(Hq1)
Red]♢

)
→ e, we prove vanishing of H1(Spa(R,R+),−) on the other two

groups.

For the left group consider the family of groups {Lu,n}∞n=1 filtering Lu,1 := Ker
(
L+Hq1 → H

♢
q1

)
.

Define them as: Lu,n(R,R+) := Ker
(
Hq1,B

+
dR(R♯)(B

+
dR(R

♯))→ Hq1,B
+
dR(R♯)(B

+
dR(R

♯)/ξn)
)
. Now, af-

ter sheafification Lu,n/Lu,n+1 = Ker
(
Hq1,B

+
dR(R♯)(B

+
dR(R

♯)/ξn+1)→ Hq1,B
+
dR(R♯)(B

+
dR(R

♯)/ξn)
)
. Since

Spec(B+
dR(R

♯)/ξn)→ Spec(B+
dR(R

♯)/ξn+1) is a first order nilpotent thickening, deformation theory gives:

Lu,n/Lu,n+1 = Hom(e∗Ω1
Hq1
⊗W (k)[t] B

+
dR(R

♯), (ξn ·B+
dR(R

♯)/ξn+1)) = Hom(e∗Ω1
Hq1
⊗R♯, R♯).

Now, e∗Ω1
Hq1

/W (k)[t] is a finite free W (k)[t]-module so Lu,n/Lu,n+1 ∼= (O♯)k for some k. By [18, Propo-

sition 8.8], H1
v (Spa(R,R+),O♯) = 0. This shows that H1

v (Spa(R,R+), Lu,1/Lu,n) = {e} for all n. Since
Lu,1 = lim←−Lu,1/Lu,n and the transition maps are surjective at the level of presheaves we conclude that

H1
v

(
Spa(R,R+), Lu,1

)
= {e}.

For the right group, we may use [18, Proposition 8.8]again since Ker(Hq1 → (H)Red
q1 ) is a vector group

over W (k). □

We can now consider families of Demazure varieties, see [8, Definition VI.5.6].

Definition 5.17. Let σr := {ri}1≤i≤n and σq := {qi}1≤i≤n be a pair of sequences of points in A such
that Fri , Fri+1

⊆ Fqi , and let σ := (σr, σq). To such σ we associate a v-sheaf given by the contracted

group product: D(σ) = L+Hr1

L+Hq1

×Spd(OC) L
+Hr2

L+Hq2

×Spd(OC) . . .
L+Hqn−1

×Spd(OC) L
+Hrn/L

+Hqn .

Proposition 5.18. The map of v-sheaves D(σ)→ Spd(OC) is representable in spatial diamonds, proper
and ℓ-cohomologically smooth for any ℓ ̸= p.

Proof. Let σ be as above and let σ′ = ({ri}1≤i≤n−1, {qi}1≤i≤n−1) be the subsequence of the first n− 1
points of σ. We have a projection morphism of v-sheaves f : D(σ)→ D(σ′) given by forgetting the last
entry corresponding to rn. One can inductively show that this map satisfies all of the properties in the
hypothesis, given that it is a (Flrn,qn)

♢-fibration. □

Proposition 5.19. The map π : W+Hr1×Spd(OC) · · · ×Spd(OC)W
+Hrn → D(σ) coming from W+Hri ⊆

L+Hri is surjective, it induces an isomorphism ι : D(σ) ∼= W+Hr1

W+Hq1

×Spd(OC). . .
W+Hqn−1

×Spd(OC)W
+Hrn/W

+Hqn .
Consequently, D(σ) is v-formalizing.

Proof. Consider the following basechange diagram:

W+Hr1×Spd(OC) · · · ×Spd(OC) (L
+Hrn/L

+Hqn ) L+Hr1×Spd(OC) · · · ×Spd(OC) (L
+Hrn/L

+Hqn ) D(σ)

W+Hr1×Spd(OC) · · · ×Spd(OC) W
+Hrn−1 L+Hr1×Spd(OC) · · · ×Spd(OC) L

+Hrn−1 D(σ′)

(10)
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Proposition 5.15 gives W+Hrn/W
+Hqn = L+Hrn/L

+Hqn and the surjectivity by induction. Assume

that we have an identification: ι′ : D(σ′) ∼= W+Hr1

W+Hq1

×Spd(OC) . . .
W+Hqn−2

×Spd(OC) W
+Hrn−1

/W+Hqn−1
. Since

W+Hqk ⊆ L+Hqk , the map ι is defined and surjective, we prove that it is also injective. Let [g1]

and [g2] be two maps [g1], [g2] : Spa(R,R+) → W+Hr1

W+Hq1

×Spd(OC) . . .
W+Hqn−1

×Spd(OC) W
+Hrn/W

+Hqn with
ι([g1]) = ι([g2]). By inductive hypothesis, we may v-locally find representatives g1 and g2 of [g1] and [g2]

of the form gi = (g1i , . . . , g
n
i ) such that gj1 = gj2 for j ∈ {1, . . . , n − 1}. Since [g1] and [g2] get identified

in D(σ), v-locally g1 and g2 are on the same L+Hq1 ×Spd(OC) · · · ×Spd(OC) L
+Hqn -orbit. Since g1 and

g2 share all of their entries except possibly the last, gn1 and gn2 are in the same L+Hqn -orbit. Since
gn1 , g

n
2 ∈W+Hrn and W+Hqn = W+Hrn ∩ L+Hqn they are in the same W+Hqn -orbit, so [g1] = [g2].

Finally, by Proposition 5.11 each W+Hri is formalizing, Proposition 4.10 implies the same for the
product, and since D(σ) is the quotient of a v-formalizing sheaf it is also v-formalizing. □

Proposition 5.20. The map D(σ)→ Spd(OC) is formally adic. Moreover, D(σ)red is represented by a
qcqs scheme that is perfectly finitely presented and proper over Spec(kC) [5, Proposition 3.11, Definition
3.14].

Proof. In any Grothendieck topos, pullback commutes with finite limits and colimits. Proposition 5.11

gives: D(σ)×Spd(OC) Spec(kC)
⋄ = (W+

redHr1)
⋄
(W+

redHq1 )
⋄

×Spec(kC)⋄ . . .
(W+

redHqn−1
)⋄

×Spec(kC)⋄ (W+
redHrn)

⋄/(W+
redHqn)

⋄. Now,

this is

(
W+

redHp1

W+
redHq1

×kC
. . .

W+
redHqn−1

×kC
W+

redHpn/W+
redHqn

)⋄

since (·)⋄ is a left adjoint and commutes

with colimits. Lemma 3.32 proves thatD(σ)→ Spd(OC) is formally adic and thatD(σ)red = D(σ)×Spd(OC)

Spec(kC)
⋄. The structural properties of D(σ)red are well known, see [22], [5]. □

Proposition 5.21. D(σ)×Spd(OC) Spa(C,OC) has enough facets over C.

Proof. We prove this by induction. Let σ = ({ri}1≤i≤n, {qi}1≤i≤n) and σ′ = ({ri}1≤i≤n−1, {qi}1≤i≤n−1).
Suppose that D(σ′)C has enough facets, let S :=

∐
i∈I Spd(Bi, B

◦
i ) and let f : S → D(σ′)C be a cover

as in Definition 4.50. Let F = D(σ)C ×D(σ′)C S, we prove that F has a enough facets. By Lemma 5.16,

F → S is analytically locally a trivial (Flrn,qn,C♯)♢-fibration. We may conclude by Proposition 4.51. □

Proposition 5.22. For any σ as in Definition 5.17, D(σ) is a topologically normal rich p-adic kimberlite.

Proof. By Proposition 5.19, Proposition 3.29 and Proposition 5.20 it is a p-adic prekimberlite, and by
Proposition 5.18 together with Proposition 4.32 it is a valuative kimberlite whose analytic locus is qcqs.
Since D(σ)red is a proper perfectly finitely presented scheme over kC , |D(σ)red| is Noetherian. Also,
D(σ)an coincides with D(σ)×Spd(OC) Spa(C,OC) and by Proposition 5.21 and this is a qcqs cJ-diamond.
By Lemma 5.23, we may check surjectivity of spD(σ)an on closed points. At this point, it suffices to prove

that if x ∈ |D(σ)red| is a closed point, then D(σ)
⊚
/x is non-empty and connected. This follows inductively

from Lemma 5.24. Indeed, Item 2 holds by induction over the maps D(σ) → D(σ′) and Item 1 follows
from the diagram 10 since each of the W+Hri is formalizing and basechanges along maps that factor
through W+Hr1×Spd(OC) · · · ×Spd(OC) W

+Hrn−1 will give a trivial bundle. □

Lemma 5.23. Let C be a characteristic zero nonarchimedean algebraically closed field, and let k =
OC/mC . Let (F ,FC) be a smelted kimberlite over Spd(OC) with FC = F×Spd(OC)Spa(C,OC). Consider
FOC′ := F ×Spd(OC) Spd(OC′) ranging over algebraically closed nonarchimedean field extension C ′/C.

Suppose that for every C ′ and every closed point x ∈ |F red
OC′ | the tubular neighborhood (FC′)

⊚
/x is non-

empty. Then spFη
is a surjection.

Proof. Given a point in x ∈ |F red| we can find a field extension of perfect fields K/k for which F red ×k

Spec(K) has a section y : Spec(K) → F red ×k Spec(K) mapping to x under F red ×k Spec(K) → F red.
Since F is formally separated, F red×kSpec(K) is also separated and sections to the structure map define
closed points. We can construct a nonarchimedean field C ′ with C ⊆ C ′ and W (k)[ 1p ] ⊆W (K)[ 1p ] ⊆ C ′.

We get a map FOC′ → F , and in |F red
OC′ | there is a closed point y mapping to x. Any point r ∈ |FC′ |

with spFC′ (r) = y maps to a point whose image under the specialization map is x. □

Lemma 5.24. Let f : F → G be a proper, ℓ-cohomologically smooth map of p-adic kimberlites over
Spd(OC). Suppose Gred and F red are perfectly finitely presented over Spec(kC) [5, Definition 3.10]. Let
X → Spec(OC♯) be a smooth projective scheme and suppose that f is X⋄-bundle. Suppose that:
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(1) For any nonarchimedean field C ′ extension C and a map t : Spd(C ′, OC′) → G there is an
extension C ′′ of C ′ such that F ×G Spd(OC′′) is isomorphic to X⋄ ×Spd(OC) Spd(OC′′).

(2) For any closed point x ∈ |Gred| the tubular neighborhood G⊚/x is non-empty and connected.

Then, for any closed point y ∈ |F red| the tubular neighborhood F⊚
/y is also non-empty and connected.

Proof. Take a closed point y ∈ |F red| with x = f(y) and consider the map f : F⊚
/y → G

⊚
/x. Assume

for now that for all maps Spa(C ′, OC′) → G⊚/x the base change F⊚
/y ×G⊚

/x
Spa(C ′, OC′) is non-empty

and connected, we finish the proof under this assumption. The map |F⊚
/y| → |G

⊚
/x| is specializing, and

by assumption surjective on rank 1 points. Let U and V non-empty open and closed subsets with
U ∪ V = |F⊚

/y|. Since f is open and closed [18, Proposition 23.11], f(U) ∪ f(V ) = |G⊚/x| and f(U) and

f(V ) meet at a rank 1 point.
Let us prove our assumption holds, take a map t : Spa(C ′, OC′)→ G⊚/x. After, replacing Spa(C ′, OC′)

by a v-cover we can assume G formalizes t and that t has the base change property of Item 1. We get a
pair of Cartesian diagrams, the right being obtained by taking the reduction of the left:

F̂/y ×G Spd(OC′ ) X⋄ ×Spd(OC) Spd(OC′ ) Spd(OC′ ) Z X × Spec(k′) Spec(k′)

F̂/y F G Spec(k(y)) Fred Gredy

Since F red → Gred is perfectly finitely presented and k is algebraically closed, k = k(y) = k(x) and the
composition y : Spec(k) → Gred is a closed immersion. Consequently Z → Spec(k′) is an isomorphism.

This gives F̂/y ×G Spd(OC′) = X⋄
OC′ ×F F̂/y = ̂(X⋄

OC′ )/Z
by Proposition 4.20. But Z → X × Spec(k′) is

a closed point, so (X⋄
OC′ )

⊚

/Z
is isomorphic to an open unit ball Bn

<1 over C ′♯, proving the assumption. □

We keep the notation from the beginning of the previous subsection and we restrict our attention to
parahoric loop groups associated to points contained in our chosen alcove C. Given sj ∈ S we denote by
L+Hsj the parahoric loop group associated to the wall Fsj in C corresponding to the reflection sj . For
a point r ∈ C we let Jr ⊆ S denote the set {sj | r ∈ Fsj}. We will denote by L+B the parahoric loop
group associated to C.

By functoriality of L(−) we have loop group versions of the Weyl and Iwahori–Weyl groups by the

formula LW := LN/LT and LW̃ := LN/L+T . They fit in an exact sequence: e → LT/L+T →
LW̃ → LW → e. A direct computation shows that LW = L(N/T ) = W × Spd(OC), that LT/L

+T =

X∗(T )× Spd(OC) and that LW̃ = W̃ × Spd(OC). Since H is a split reductive group over W (k)[t, t−1],

for any element w ∈ W we can find a section nw : Spec(W (k)[t, t−1]) → N whose projection to W is
w [7, Corollary 5.1.11]. This allow us to define a similar section nw : Spd(OC) → LN ⊆ LH. Also for
any µ ∈ X∗(T ) and any Spa(R,R+)→ Spd(OC) we can consider the element ξµ ∈ T (BdR(R

♯)). This is
functorial and defines a section Spd(OC) → LT mapping to µ ∈ X∗(T ) × Spd(OC). In particular, for

any element w̃ ∈ W̃ there is a section nw̃ : Spd(OC) → LN projecting to w̃ in LW̃ . We can use nw̃ to

construct an automorphism nw̃ : GrHOC
→ GrHOC

with nw̃(x · L+H) := nw̃ · x · L+H. We will use this
discussion in the proof of Theorem 5.1.

Lemma 5.25. Let σ = (σr, σq) with σ as in the previous subsection except that we require σr, σq ⊆ C.
Suppose that L+Hqn = L+Hrn = L+H then the multiplication map µ : D(σ) → GrHOC

= LH/L+H has
geometrically connected fibers.

Proof. The proof is combinatorial and follows the classical case. The key geometric inputs are as follows,
the basechange of D(σ) → Spd(OC) by geometric points are proper spatial diamonds, rank 1 points
are always dense for any spatial diamond and the group of rank 1 geometric points of a parahoric loop
group coincide with the “parabolic subgroups” of a Tits-systems (or BN -pair). These two observations
together with [18, Lemma 12.11] reduces the proof to the classical combinatorial case. We omit the
details. □

We can now prove Theorem 5.1.

Proof (of Theorem 5.1). Observe that GrG,≤µ
OF

→ Spd(OF ) is formally adic. Indeed, GrG,≤µ
OF

×Spd(OF )

Spec(kF )
⋄ is (GrG,≤µ

W,kF
)♢ and since GrG,≤µ

W,kF
is proper this is (GrG,≤µ

W,kF
)⋄ we may conclude by Lemma 3.32.
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This gives that (GrG,≤µ
OF

)red = GrG,≤µ
W,kF

, which is represented by a scheme [5, Theorem 8.3], that the

adjunction map ((GrG,≤µ
OF

)red)⋄ → GrG,≤µ
OF

is a closed immersion and that (GrG,≤µ
OF

)an = GrG,≤µ
OF

×Spd(OF )

Spd(F ), which is represented by a spatial diamond by [20, Proposition 20.4.5]. Also, GrG,≤µ
OF

is separated

by [20, Proposition 20.5.4], and by Proposition 3.29 it is formally separated. To prove that GrG,≤µ
OF

is
a p-adic kimberlite we need to prove it is v-formalizing. To prove that it is rich it suffices to prove

GrG,≤µ
OF

×Spd(OF ) Spd(F ) has enough facets and that the tubular neighborhoods at closed points are
non-empty. These can be checked after basechange to Spd(OC) for C/F a completed algebraic closure.

Suppose for now that F = C. In this caseG×Zp
W (kF ) is a split reductive group, and since GrG,≤µ

OC
only

depends on GW (kF ), we may assume G = H with H split reductive. Furthermore, using the discussion of
the beginning of the section one can reduce to the case in which H is semisimple and simply connected.
In this case W̃ = W aff . Recall that we have inclusions X+

∗ (T ) ⊆ X∗(T ) ⊆ W̃ so we may think of µ

as an element of the Iwahori–Weyl group. By definition, GrH,≤µ
OC

(R,R+) consists of those elements in

GrHOC
(R,R+) satisfying that for any geometric point q : Spa(C ′, C ′,+)→ Spa(R,R+) the type of q, µq, is

in the double coset H(B+
dR(C

′♯))\H(BdR(C
′♯))/H(B+

dR(C
′♯)) = X+

∗ (T ) = Wo\W aff/Wo satisfies µq ≤ µ

in the Bruhat order. Now, given w ∈ W̃ we can consider the subsheaf GrG,≤w
OC

⊆ GrGOC
with the similar

property on a geometric point using instead the double coset B(B+
dR(C

′♯))\H(BdR(C
′♯))/H(B+

dR(C
′♯)) =

W aff/Wo. The projection map π : W aff/Wo →Wo\W aff/Wo is order preserving and π−1(µ) has a unique
element [wµ] of largest length, it has the property that v ≤ wµ if and only if π(v) ≤ µ. In particular, we

have an equality of sheaves Gr
H,≤wµ

OC
= GrH,≤µ

OC
. We prove that for w ∈W aff the v-sheaf GrH,≤w

OC
satisfies

the conclusions of the theorem.

Find a reduced expression for w = sj1 . . . sjn and consider D(w) := L+Hsj1

L+B
×Spd(OC) . . .

L+B
×Spd(OC)

L+Hsjn
/L+H. The multiplication map m : D(w)→ GrHOC

factors through GrH,≤w
OC

and surjects onto it.

This implies GrHOC
is a kimberlite. Proposition 4.32, Proposition 4.46 and Theorem 4.40 imply it is rich.

Proposition 5.22 and Lemma 5.25 combined with Lemma 5.26 allow us to conclude in this case.
Finally, let us deal with the case F ̸= C. Let F ′ the completed maximal unramified subextension

of F in C. We have surjective maps of v-sheaves: GrG,≤µ
OC

→ GrG,≤µ
OF ′ → GrG,≤µ

OF
. We may argue as

above to prove GrG,≤µ
OF

and GrG,≤µ
OF ′ are rich kimberlites. By Proposition 4.20, GrG,≤µ

OF ′ has connected

tubular neighborhoods since (GrG,≤µ
OC

)red = (GrG,≤µ
OF ′ )red. On the other hand, GrG,≤µ

OF ′ → GrG,≤µ
OF

is a

πfét
1 (Spec(OF ))-torsor and for any closed point x ∈ |(GrG,≤µ

OF
)red| the action of πfét

1 (Spec(OF )) permutes

transitively the closed points y ∈ |(GrG,≤µ
OF ′ )red| over x. The action permutes transitively the tubular

neighborhoods associated to y which proves that the tubular neighborhood over x is also connected. □

Lemma 5.26. Let f : F → G be a surjective map of rich p-adic kimberlites over Spd(OF ), such that
Gred and F red are perfectly of finite type over Spec(kF ). Suppose f red has geometrically connected fibers
and that F is topologically normal. Then G is topologically normal.

Proof. Pick a closed point x ∈ |Gred|, by Proposition 4.20 G⊚/x ×G F = F⊚
/S with S = (f red)−1(x). By

Lemma 4.55 and Proposition 4.54, F⊚
/S is connected. Since f is surjective G⊚/x is also connected. □
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