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Abstract

We prove that all p-adic period domains (and their non-minuscule analogues) are ge-
ometrically connected. This answers a question of Hartl and has consequences to the
geometry of Shimura and local Shimura varieties.

Contents

1 Introduction 1
2 Bounding dimensions of Newton strata. 4
3 GrbG,µ is connected 10
References 12

1. Introduction

In the study of Shimura varieties and p-adic Hodge theory, p-adic period domains and their
geometric properties are recurring themes. These period domains arise as p-adic analytic open
subsets of flag varieties attached to reductive groups. These open subsets arise as the open image
of the Grothendieck–Messing period morphism, which stems from the theory of p-divisible groups.
The first appearance of p-adic period domains in the literature is due to Drinfeld [Dri76], who
introduced the Drinfeld upper half-space Ωn. This was later complemented by Gross–Hopkins
[HG94], who treated the period morphism for the Lubin–Tate tower. However, the first rigorous
definition of p-adic period domains in terms of weakly admissible and admissible loci was given
in the seminal book of Rapoport–Zink [RZ96], which initiated their systematic study. Since then,
additional significant contributions to their study include the works of Hartl [Har08], Rapoport–
Viehmann [RV14], Scholze–Weinstein [SW13, SW20], Chen–Fargues–Shen [CFS21] among others.
We refer to the book of Dat–Orlik–Rapoport [DOR10] for a detailed introduction to the subject
replete with examples.

The purpose of this article is to prove that p-adic period domains are geometrically connected.
Our result confirms in complete generality a conjecture of Hartl, see [Har13, Conjecture 6.5]. It is
also a key ingredient in understanding p-adic uniformization of Newton strata on Shimura vari-
eties, compare also with the work of the first author and Lim–Xu [GLX22]. All of our work is done
within Scholze’s framework of diamonds [Sch17] which allows us to formulate and prove a more
general statement. Namely, we prove that the b-admissible loci of the B+

dR-affine Grassmannians
(not to be confused with the µ-admissible loci in Witt flag varieties!) are geometrically connected.
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1.1 The main theorem
Let us formulate precisely our main result. We consider a p-adic shtuka datum (G, b, µ) in
the sense of Rapoport–Viehmann [RV14, Definition 5.1] but dropping the minuscule assump-
tion on µ, compare with [SW20, Definition 23.1.1]. This consists of a reductive group G over
Qp, an element b of the Kottwitz set B(G) = G(Q̆p)/adφ(G(Q̆p)) in the sense of Kottwitz
[Kot85, Kot97], and a geometric conjugacy class of (not necessarily minuscule) cocharacters
µ ∈ Hom(Gm, GQ̄p

)/ad(G(Q̄p)), such that b ∈ B(G,µ) as in [Kot97, §6]. Let E over Qp be
the reflex field of µ, i.e., the finite field extension over which the conjugacy class of µ is de-
fined. We let Cp be a completed algebraic closure of Qp, Ĕ ⊂ Cp the completion of the maximal
unramified extension of E, and Γ denote the absolute Galois group of Qp.

Given b ∈ B(G) and a characteristic p perfectoid space S, one can construct a G-bundle Eb
over the relative Fargues–Fontaine curve XFF,S functorially in S. Attached to (G,µ), we have
the spatial diamond GrG,µ over Spd Ĕ that parametrizes B+

dR-lattices with G-structure that are
bounded by µ in the Bruhat order [SW20, §§19-22]. Moreover, using Beauville–Laszlo glueing one
can identify GrG,µ with the moduli space of G-bundle modifications of Eb

GrG,µ(S) = {(E , f) | f : E 99K Eb, rel(f) ⩽ µ}/ ∼=

whose relative position is bounded by µ (see [FS21, §III.3] for the case b = 1). This gives a
Beauville–Laszlo uniformization map:

BLb : GrG,µ → BunG, (E , f) 7→ E ,

that is analogous to that of [FS21, Proposition III.3.1]. Here, BunG denotes the small v-stack
of G-bundles on the Fargues–Fontaine curve as in the book of Fargues–Scholze [FS21, §III]. Let
Bun1G denote the sub-v-stack of BunG of those G-bundles that are fiberwise trivial [FS21, §III.2.3].
By [SW20, Corollary 22.5.1, Proposition 24.1.2], the b-admissible locus,1 GrbG,µ := BL−1

b (Bun1G),
is non-empty and open in GrG,µ. Our main theorem is the following:

Theorem 1.1. The map GrbG,µ → Spd Ĕ has connected geometric fibers. Moreover, GrbG,µ ⊂
GrG,µ remains a dense open after base change along geometric points Spd(C,C+) → Spd Ĕ.

Remark 1.2. When µ is minuscule and G is quasi-split we have an identification GrG,µ =
(G/Pµ)

♢, where Pµ is the parabolic subgroup of G defined as the Gm-attractor of −µ. In this case,
GrG,µ is (the diamond attached to) a classical flag variety (see [AGLR22, §2.2] for a discussion
of the diamond functor). Moreover, we also have a formula:

GrbG,µ = πGM(M♢
(G,b,µ))

where M(G,b,µ) is the local Shimura variety attached to (G, b, µ) and πGM is the Grothendieck–
Messing period morphism, compare with [RV14, Section 5.2] and [SW20, Definition 24.1.3]. By
[Sch17, Lemma 15.6], GrbG,µ is the diamond associated with a unique open subset F(G, b, µ)a of
the rigid-analytic space attached to G/Pµ. This open subset is the p-adic period domain associated
to (G, b, µ), and GrbG,µ = F(G, b, µ)a,♢. In particular, Theorem 1.1 shows that F(G, b, µ)a has
connected geometric fibers.

Let us put Theorem 1.1 in context. In [Kis17], Kisin uses in an essential way the connected
components of affine Deligne–Lusztig varieties (ADLVs) to study the Langlands–Rapoport con-
jecture for integral models of Shimura varieties, see [LR87]. On the other hand, Chen [Che14]

1We warn the reader that in the literature GrbG,µ often stands for BL−1
1 (Bunb

G) instead.
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uses the connected components of ADLVs to derive her main results on connected components of
local Shimura varieties (LSVs). These two works motivated Chen–Kisin–Viehmann [CKV15] to
compute the connected components of ADLVs at hyperspecial parahoric level building on previous
work of Viehmann [Vie08]. Since then, several authors have pushed the strategy of [CKV15] to
compute connected components of ADLVs deriving as corollaries results on the geometry of inte-
gral models of Shimura varieties (see the following results of Nie [Nie18, Theorem 1.1], He–Zhou
[HZ20, Theorem 0.1], Hamacher [Ham20, Theorem 1.1(3)], Nie [Nie23, Theorem 0.2]).

Our result is an essential stepping stone in finishing the computation of connected components
of mixed characteristic closed ADLVs in full generality, i.e., for all (I, µ, b) with I being an Iwahori
group Zp-model of G in the sense of Bruhat–Tits [BT84]. For this reason, it carries decisive
implications to the geometry of integral models of Shimura varieties and local Shimura varieties.
In order to explain this, we still need to fix some notation. Let φ denote the canonical lift of
arithmetic Frobenius to Z̆p. Let Adm(µ) ⊂ I(Z̆p)\G(Q̆p)/I(Z̆p) denote the µ-admissible set of
Kottwitz–Rapoport [KR00] (again, this bears no relation to b-admissibility). We consider the
closed affine Deligne–Lusztig variety attached to (I, b, µ), given by the formula

XI,µ(b) = {gI(Z̆p) | g−1bφ(g) ∈ I(Z̆p)Adm(µ)I(Z̆p)}. (1.1)

It admits the structure of a perfect scheme locally perfectly of finite presentation by the repre-
sentability result of Bhatt–Scholze [BS17] on the Witt flag varieties defined by Zhu [Zhu17]. Let
κG : G(Q̆p) → π1(G)I denote the Kottwitz map in the sense of [Kot97, 7.4]. The map κG induces a
map ωG : π0(XI,µ(b)) → π1(G)I that factors through a unique coset cb,µπ1(G)φI ∈ π1(G)I/π1(G)φI .
The following is a consequence of our main theorem.

Corollary 1.3. The Kottwitz map induces a bijection

ωG : π0(XI,µ(b))
≃−→ cb,µπ1(G)φI , (1.2)

whenever (b, µ) is Hodge–Newton irreducible.

Indeed, in work of the first author with Lim–Xu [GLX22], it is explained how to deduce
Corollary 1.3 from Theorem 1.1. This work, together with [GLX22], finishes the problem of
computing the connected components of closed ADLVs in mixed characteristic.

1.2 Sketch of the proof
Let us briefly explain the proof of Theorem 1.1 in the case where G is quasi-split. Fix a Borel
B ⊆ G. When b is basic, Theorem 1.1 can be proved directly, and it is an unpublished result
of Hansen–Weinstein. Suppose that b is not basic and let P ⊆ G be the parabolic subgroup
generated by B and the centralizer of νb.

To prove connectedness, we may and do replace GrG,µ by its dense open subset L+P · ξµ.
Now, by Beauville–Laszlo gluing, L+P · ξµ gets identified with the space of modifications of Ep,
where Ep is the Harder–Narasimhan P -reduction of Eb. Moreover, on this open subset we have a
factorization:

BLb : L
+P · ξµ → BunP

p−→ BunG (1.3)
with the first map being the analogous Beauville-Laszlo map BLp for the P -torsor Ep. Recall the
following general fact. Let X be a connected locally spatial diamond that is smooth and partially
proper over SpaCp. Suppose that we have an open immersion j : U → X and a complementary
closed immersion i : Z → X. For U to be connected, it suffices that dim(Z) < dim(X) by [Han21,
Corollary 4.11]. In our case, roughly X = L+P · ξµ and U = L+P · ξµ ∩GrbG,µ and we have left to

3



Ian Gleason and João Lourenço

show that the dimension of X \U drops, i.e., dim(X \U) < dim(X). An important observation is
that the non-empty fibers of BLp are torsors under the group of unipotent filtered automorphisms
of Eb, see Lemma 3.3 for a precise statement. In particular, they all have the same dimension.
Also, BLp factors through one connected component BunκP ⊆ BunP determined by µ− νb.

Let Y = BunκP \ p−1(Bun1G), with p as in 1.3. The second key point is that dim(Y ) <
dim(BunκP ). To prove this, we study the following diagram,

BunmP BunP BunG

BunmM BunM

(1.4)

where M is the Levi quotient of P , m ∈ B(M) and the square is Cartesian. When m is basic and
νm is anti-dominant as a coweight of G, BunmP → BunG is smooth of a dimension that can be
made explicit. In our situation of interest, the assumption b ∈ B(G,µ) yields the nonpositivity
condition µ⋄ − νb ∈ Q⩾0Φ

+
G and the relevant basic element m ∈ B(M) satisfies that νm (which

is related to νb − µ⋄) is in Q⩽0Φ
+
G. Therefore, we perform an inductive argument reducing the

non-positive to the anti-dominant case via a sequence of carefully chosen parabolics and their
Levis.

1.3 Organization of the paper
We now explain the organization of this article. We start § with some cohomological considerations
to formally deal with dimension. Then, we make some preparations explaining the combinatorics
involving the induction process that reduces the non-positive case to the anti-dominant case.
Afterwards, we bound dimensions of Newton strata that arise from the diagram 1.4. Finally, § is
dedicated to proving Theorem 1.1.

2. Bounding dimensions of Newton strata.

2.1 Dimension for stacky maps
In the following sections we bound the dimensions of certain Artin v-stacks. Since we do not
intend to develop foundations, we will work with an ad-hoc notion of dimension. Let f : X → Y
be a fine morphism of Artin v-stacks in the sense of [GHW22, Definition 1.3] and let n ∈ N. Let
S → Y be a map with S a spatial diamond, let fS : XS → S denote the base change, and let
F ∈ D⩽0

ét (XS ,Fℓ).

Definition 2.1. We say that the ℓ-cohomological dimension of f is bounded by n, which we
abbreviate as dimℓ(f) ⩽ n if, for all S → Y and F as above,

fS,!F ∈ D⩽2n
ét (S,Fℓ), (2.1)

and we write dimℓ(X) ⩽ n when Y = ∗.
Convention 2.2. From now on we will only consider maps of Artin v-stacks that are fine and
we will not include this adjective in our statements.

Actually, the stacky morphisms used in this article are all obtained as compositions of smooth
maps and locally closed immersions which are all fine morphisms.

Lemma 2.3. Let f : X → Y and g : Y → Z be map of Artin v-stacks such that dimℓ(f) ⩽ n and
dimℓ(g) ⩽ m. Then dimℓ(g ◦ f) ⩽ m+ n.
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Proof. Let S → Z be a map and denote by XS and YS the base changes. Let F ∈ D⩽0
ét (XS ,Fℓ).

Observe that fS,!F [2n] ∈ D⩽0
ét (YS ,Fℓ), which implies that g!,SfS,!F [2n] ∈ D⩽2m

ét (S,Fℓ). It follows
that dimℓ(g ◦ f) ⩽ n+m.

Lemma 2.4. Let f : X → Y be a map of Artin v-stacks. Suppose that for any s : Spa(C,C+) → Y
the fibers satisfy dimℓ(Xs) ⩽ n. Then dimℓ(f) ⩽ n.

Proof. This follows from [Sch17, Theorem 1.9.(2)], [GHW22, Theorem 1.4.(4)], since F ∈ D⩽2n
ét (S,Fℓ)

can be checked on geometric point.

The next lemma carries some weight in our paper and gives a cancelation property for ℓ-
dimension in the presence of a smooth cover.

Lemma 2.5. Let f : X → Y be a surjective ℓ-cohomologically smooth map of Artin v-stacks with
constant ℓ-dimension d. Let g : Y → Z be a map of Artin v-stacks. Then dimℓ(g) ⩽ n if and only
if dimℓ(g ◦ f) ⩽ n+ d.

Proof. Assume first that dimℓ(g) ⩽ n. In order to bound dimℓ(g ◦ f), it suffices by Lemma 2.3
to prove dimℓ(f) ⩽ d. It suffices to prove that RHom(fS,!F ,G) = 0 for every map S → Y ,
every object G ∈ D⩾2d+1

ét (S,Fℓ) and every object F ∈ D⩽0
ét (X,Fℓ). By adjunction, we may prove

RHom(F , f !
SG) = 0 instead. Now, by ℓ-cohomological smoothness f !G = f∗G ⊗ f !Fℓ and f !Fℓ is

an invertible object in Dét(X,Fℓ) concentrated in degree −2d. In particular, f !
SG ∈ D⩾1

ét (XS ,Fℓ)
while F ∈ D⩽0

ét (XS ,Fℓ), so the required vanishing follows by the corresponding property for the
natural t-structure.

For the converse, we have to show that dimℓ(g) ⩽ n. Let S → Z a map with S a spatial
diamond, let F ∈ D⩽0

ét (YS ,Fℓ) and let G ∈ D⩾2n+1
ét (S,Fℓ). As above, it suffices to prove:

RHom(F , g!SG) = 0 (2.2)

In other words, we wish to prove that g!SG ∈ D⩾1
ét (YS ,Fℓ), for all G ∈ D⩾2n+1

ét (S,Fℓ). This can be
verified on geometric points so we may show

f∗
Sg

!
SG ∈ D⩾1

ét (XS ,Fℓ) (2.3)

instead, since fS is surjective. By smoothness, f !
SFℓ ∈ D−2d

ét (XS ,Fℓ) is an invertible object and
f∗
Sg

!
SG = f !

Sg
!
SG ⊗ (f !

SFℓ)
−1. On the other hand, it follows from the bound dimℓ(g ◦ f) ⩽ n + d

that f !
Sg

!
SG ∈ D⩾1−2d

ét (XS ,Fℓ) by testing RHom against the natural t-structure and passing to
adjoints. In particular, we can verify that (2.3) holds.

Lemma 2.6. Let f : X → Y be a map of Artin v-stacks. Let i : Z → X be a closed immersion
and let j : U → X denote the complementary open immersion. Suppose that dimℓ(i ◦ f) ⩽ n
and that dimℓ(j ◦ f) ⩽ n, then dimℓ(f) ⩽ n. Conversely if dimℓ(f) ⩽ n then dimℓ(i ◦ f) ⩽ n and
dimℓ(j ◦ f) ⩽ n.

Proof. Notice that the fibers of j and i are 0-dimensional. By Lemma 2.3, the second claim
follows. For the first claim, let F ∈ D⩽0

ét (X,Fℓ), and consider the following distinguished triangle

f!j!j
∗F → f!F → f!i∗i

∗F (2.4)

in the derived category. We may pass to geometric fibers, where one of the terms vanish.
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2.2 Averages of coweights
Let G be a quasi-split reductive group over Qp and let T ⊂ B ⊂ G be a pair consisting of
a maximal torus that is maximally Qp-split and a Borel both defined over Qp. Let ΦG be the
absolute root system of G with respect to T and ∆G the basis of positive simple absolute roots
with respect to B. We let X∗(T ) denote the set of geometric cocharacters and denote by X∗(T )Q
the resulting rational vector space. We use the symbol M to denote a standard Levi of G defined
over Qp, and by ∆M the induced base of positive simple roots.

Definition 2.7. We say that ν ∈ X∗(T )Q is M -dominant (resp. M -central) if ⟨α, ν⟩ ⩾ 0 (resp.
⟨α, ν⟩ = 0) for all α ∈ ∆M and denote by X∗(T )

+M
Q the convex set of M -dominant vectors in

X∗(T )Q.

Following Schremmer [Sch22], we now define the so called M -average of ν:

avM (ν) =
1

|WM |
∑

w∈WM

wν (2.5)

where WM denotes the absolute Weyl group of M .

Lemma 2.8. The M -average avM (ν) is the unique M -central µ ∈ X∗(T )Q whose difference µ− ν
lies in the Q-vector space spanned by the M -coroots ∆∨

M .

Proof. Notice that avM (ν) is WM -invariant by definition. Also, a vector is WM -invariant if and
only if it is M -central. To see that the diference is spanned by ∆∨

M , it is enough to check that
the M -coroots evaluate to 0 under avM . This is clear by summing left {1, sα}-cosets in WM first,
since sα(α

∨) = −α∨.

Thinking in terms of fundamental weights reveals that 2ρG − 2ρM pairs to 0 with every
α∨ ∈ ∆∨

M . Thus, it follows that ⟨2ρG− 2ρM , ν⟩ = ⟨2ρG− 2ρM , avM (ν)⟩. We study how averaging
interacts with the notion of non-positivity presented below.

Definition 2.9. We say that ν ∈ X∗(T )Q is non-positive (resp. non-negative) if it belongs to
the convex hull of X∗(ZG)Q and Q⩽0α

∨ (resp. Q⩾0α
∨), where ZG is the center of G and α runs

over ∆G. The convex set of non-positive vectors is denoted by X∗(T )
⩽0
Q .

In our definition above, ν is non-positive if and only if the inequality νad ⩽ 0 holds in the
rational Bruhat order of X∗(Tad)Q. Here Tad denotes the image of T in the adjoint group Gad of
G. An anti-dominant vector is necessarily non-positive, but for most groups the converse doesn’t
hold. In the following, we note that averaging preserves non-negativity, compare with [Sch22,
Lemma 3.1].

Proposition 2.10. The function avM preserves X∗(T )
⩽0
Q .

Proof. It suffices to see that it preserves X∗(ZG)Q and Q⩽0α
∨. This is clear for X∗(ZG)Q. If

α∨ ∈ ∆M then we already know that avM (α∨) = 0, so it suffices to consider avM (α∨) for
α ∈ ∆G \ ∆M . In this case wα∨ is a positive coroot for all w ∈ WM , being a coroot of the
unipotent radical of the associated standard parabolic P , and thereby finishing the proof.

Remark 2.11. If G = GLn, we may interpret ν as a polygon and its non-positivity as meaning
the polygon lies below the straight line connecting its extremities and never crosses it. The vector
avM (ν) corresponds to connecting vertices according to a partition of n. In this case, it is visually
clear that this partial average polygon lies below the total average polygon, since we started with
a non-positive one.
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As a corollary, we get the following technical result that is relevant in the next subsection:

Lemma 2.12. Let ν ∈ X∗(T )
⩽0
Q be invariant under Γ and M -central. There is a sequence of

standard Levi subgroups M = M0 ⊂ · · · ⊂ Mi ⊂ · · · ⊂ Mk = G defined over Qp and also of
Γ-invariant vectors ν = ν0, . . . , νi, . . . νk = avG(ν) in X∗(T )

⩽0
Q such that the following properties

hold

(i) νj = avMj (νi) for j ⩾ i.
(ii) νi is Mi+1-anti-dominant.

Proof. Suppose ⟨α, ν⟩ ⩾ 0 for all α ∈ ∆G \∆M . Since ⟨α, ν⟩ = 0 for α ∈ ∆M by hypothesis, we
also get ⟨ρG, ν⟩ ⩾ 0. On the other hand, the convex hull of X∗(ZG)Q and Q⩽0α

∨ for all α ∈ ∆G

pairs non-positively with the strictly dominant weight ρG, and it vanishes exactly on G-central
elements. Therefore, the only possibility would be M = G, in which case k = 0 and ν is G-central.

Otherwise, there exists some α ∈ ∆G\∆M such that ⟨α, ν⟩ < 0. By Γ-invariance, this holds for
its entire Γ-orbit. Now let L be the standard Levi defined over Qp with ∆L = ∆M ∪ Γα. Clearly
ν is L-anti-dominant. Moreover, by Proposition 2.10 avL(ν) is non-positive and L-central, which
finishes the proof of the lemma by induction on the cardinality of ∆G \∆M .

2.3 Parabolic Newton strata
In this subsection, we continue to work under the same assumptions and use similar notations.
Pick b ∈ B(M) and write νb ∈ X∗(T )

Γ
Q for the M -dominant Newton point of b. We warn the

reader that we follow the opposite sign convention to [FS21, pages 59 and 90], so that the slope 1
isocrystal (Q̆p, πφ) is sent to the line bundle O(1) on the Fargues–Fontaine curve: this will lead to
sign changes everywhere compared to many of our sources below. We have notions of dominance
and positivity for elements of B(M).

Definition 2.13. We say that b ∈ B(M) is dominant (respectively anti-dominant) if the M -
dominant Newton point νb is G-dominant (respectively G-anti-dominant). We say that it is non-
positive if the M -dominant Newton point νb is G-non-positive.

From now on, we assume that ν := νb is non-positive. Consider a sequence M = M0 ⊂ · · · ⊂
Mi ⊂ · · · ⊂ Mk = G of standard Levi subgroups defined over Qp and of Γ-invariant vectors νi as
in Lemma 2.12. We inductively choose basic elements bi ∈ B(Mi) sharing the same image under
the Kottwitz map, i.e., with κMi(bi) = κMi(b). It follows immediately by construction that the
Newton point of bi coincides with νi. For i ⩽ j, we still write bi for its image in B(Mj) under
the natural map B(Mi) → B(Mj). In particular, bi is non-positive in Mj for all j ⩾ i and even
anti-dominant if j = i+1. For simplicity, we also use the shorthand ρi := ρMi and ρij := ρj − ρi.
Note that ⟨2ρij ,−νi⟩ = ⟨2ρij ,−νj⟩ for all i ⩽ j.

For any j ⩾ i, let Pij ⊂ Mi+1 be the standard parabolic whose standard Levi is Mj . We
now define the locally closed stratum BunbiPij

by demanding that the square in the following
commutative diagram

BunbiPij
BunPij BunMj

BunbiMi
BunMi

(2.6)

is Cartesian. The following theorem was shown in [AB21] and further refined in [Ham22].
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Theorem 2.14. The map of Artin v-stacks BunPij → BunMi is ℓ-cohomologically smooth and
has connected geometric fibers. Over the bi-stratum, it is of relative ℓ-dimension ⟨2ρij ,−νi⟩.

Proof. This follows from [Ham22, Proposition 3.16, Proposition 4.7].

In the example below, we see concrete examples of these parabolic strata in the case of GL2

and taking our sign convention into account.

Example 2.15. Let G = GL2, let T ⊆ G denote the diagonal torus and let B ⊆ G denote the
upper diagonal matrices. In our sign convention, we consider O(1) to have slope 1. Consider the
polygons b1 = (2, 1) and b2 = (1, 2). For our sign convention, b1 is G-dominant and corresponds
to O(2)⊕O(1) as a T -torsor. On the other hand, b2 is G-anti-dominant and corresponds to the
T -torsor O(1)⊕O(2). In this example, Bunb1B classifies extensions of the form

0 → O(2) → E → O(1) → 0. (2.7)

These extensions are trivial and the automorphism group is 1-dimensional. Overall, dim(Bunb1B ) =
−1 which agrees with the formula ⟨ρG,−νb1⟩.

Remark 2.16. Suppose ν := ν0 is already anti-dominant, then we may take k = 1 and Mk = G.
Then, the b-stratum of BunP identifies with the Fargues–Scholze chart Mb attached to b ∈ B(G),
see [FS21, Example V.3.4] (note the change of sign convention here). If, on the other hand, we
worked with dominant coweights, the b-stratum of BunP would identify with that of BunG by
the Harder–Narasimhan filtration.

We want to study the geometry of the natural map BunbP → BunG for non-positive basic
b ∈ B(M). We will proceed by induction with the help of our sequence of standard Levis in order
to bootstrap a (somewhat weaker) statement from the anti-dominant case. We get the following
commutative diagram with Cartesian square

BunPik
BunPjk

BunMk

BunPij BunMj

BunMi

(2.8)

with Pij denoting the standard parabolic of Mj with standard Levi equal to Mi. In particular,
we get a natural map ∆ijk : BunPik

→ BunMi × BunMj , and we define the (bi, cj)-strata as the
pullback

Bun
(bi,cj)
Pik

:= ∆−1
ijk(Bun

bi
Mi

× Bun
cj
Mj

) ⊂ BunPik
(2.9)

for some bi ∈ B(Mi) and cj ∈ B(Mj).

Proposition 2.17. Let bi ∈ B(Mi) be a sequence of non-positive basic elements with anti-
dominant steps. For every j ⩾ i, the bi-stratum of BunPij contains an open subspace Tij such
that the induced map fbi : Tij → BunMj satisfies the following:

(i) fbi factors through the bj-stratum of BunMj and it is ℓ-cohomologically smooth of relative
dimension ⟨2ρj − 2ρi,−νi⟩.

(ii) The dimension of the closed complement drops, i.e., dimℓ(Bun
bi
Pij

\ Tij) < ⟨2ρj − 2ρi,−νi⟩.
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Proof. We proceed to construct the open subspace Tij recursively and show inductively that the
natural map towards BunMj is ℓ-cohomologically smooth. We do this by induction on j − i. If
it equals 1, then bi is Mj-anti-dominant, so the natural map BunPij → BunMj restricts to an
ℓ-cohomologically smooth map over the bi-stratum by [FS21, Theorem V.3.7]. If we set Ti as
the (bi, bj)-stratum of BunPij following (2.9) (here we put j = k), then we immediately get the
desired properties.

In the general case, we consider i < j < k. By the inductive hypothesis, we may and do
assume that the result is known for the intermediate pairs (i, j) and (j, k). In fact, we may even
assume that bi is Mj-anti-dominant by passing to the immediate step j = i + 1 if necessary.
Pulling back the diagram along the bi- and bj-strata yields the following commutative diagram
with Cartesian squares:

Bun
(bi,bj)
Pik

BunbiPik
BunbiPij

Bun
bj
Pjk

BunPjk
BunMj .

(2.10)

By induction, we obtain a map Tjk → BunPjk
factoring over the bj-stratum, i.e., the lower left

corner in the above diagram. We now define Tik → BunPik
as the pullback of this new arrow along

the left vertical one in the diagram above, thereby completing it with a new Cartesian square.

Tik Bun
(bi,bj)
Pik

BunbiPik
BunbiPij

Tjk Bun
bj
Pjk

BunPjk
BunMj .

(2.11)

By induction, the map Tjk → BunMk
is ℓ-cohomologically smooth and since bi is Mj-anti-

dominant so is also Tik → Tjk, implying ℓ-cohomological smoothness of the composition. The di-
mension claim follows since BunMk

→ ∗ is ℓ-smooth of dimension 0 by [FS21, Theorem I.4.1.(vii)],
while BunbiPik

→ ∗ is ℓ-cohomologically smooth of dimension ⟨2ρik,−νi⟩ by Theorem 2.14.

Next, we handle the second claim for the above definition of Tik. Pick cj ∈ B(Mj) in the image
of BunbiPij

→ BunMj and let µj be its Mj-dominant Newton point. We get an ℓ-cohomologically

smooth map Bun
(bi,cj)
Pik

→ Bun
cj
Pjk

of dimension ⟨2ρij ,−νi⟩. By Theorem 2.14, the map Bun
cj
Pjk

→
BunMj is ℓ-cohomologically smooth of dimension ⟨2ρik,−µj⟩. Since the bi- and the cj-strata
belong to the same connected component of BunMj , we see that νi−µj lies in the Q-span of ∆∨

Mj

and so it is orthogonal to ρjk. We conclude that the composition

Bun
(bi,cj)
Pik

→ Bun
cj
Pjk

→ Bun
cj
Mj

(2.12)

is ℓ-cohomologically smooth of relative dimension ⟨2ρik,−νi⟩. The term on the right has strictly
negative dimension as soon as cj ̸= bj , so by Lemma 2.3 and Lemma 2.6, it follows that the
dimension of the complement of the (bi, bj)-stratum of BunPik

drops. On the other hand, we have

9
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a Cartesian diagram by definition:

Bun
(bi,bj)
Pik

\ Tik Bun
(bi,bj)
Pik

BunbiPik

Bun
bj
Pjk

\ Tjk Bun
bj
Pjk

BunPjk

(2.13)

and we know by induction that the dimension drops along the left bottom horizontal arrow.
Since the vertical maps are ℓ-cohomologically smooth of dimension ⟨2ρij ,−νi⟩, we conclude that
dimension also drops along the left upper horizontal arrow. By Lemma 2.6, we may now combine
these two dimension drops to reach our desired conclusion.

3. GrbG,µ is connected

In contrast with the previous section, we will momentarily not assume that G is quasi-split.
Fix C an arbitrary algebraically closed non-archimedean field extension of Ĕ and consider the
Beauville–Laszlo map defined over SpdC,

BLb : GrG,µ → BunG × SpdC → SpdC. (3.1)

We fix our sign convention for modifications when G = Gm, and extend the convention by
functoriality to all other groups. We consider the inclusion of the ideal sheaf O(−1) ⊆ O to be a
modification of O of type µ = 1 ∈ Z ≃ X∗(Gm). We observe that under our sign convention, BLb

factors through the unique connected component of BunG parametrized by κG(b)−µ♮ ∈ π1(G)Γ,
compare with [FS21, Corollary IV.1.23]. We formulate Theorem 1.1 as follows:

Theorem 3.1. If b ∈ B(G,µ), then GrbG,µ is connected and it is dense in GrG,µ.

Without loss of generality we may assume that G is adjoint (see the proof of [PR24, Proposition
3.1.1]). Moreover, when G is adjoint it follows that if G∗ denotes its quasi-split inner form, then
G∗ is a pure inner form of G. In particular, we have an identification BunG∗ ≃ BunG. This allow
us to assume that G is quasi-split, at the expense of proving the more general Theorem 3.2 below.

In order to do this, we will fix additional notation. From now on we assume again that G is
quasi-split and we fix T ⊂ B ⊂ G as in the previous section. We define an element µ⋄ ∈ X∗(T )

Γ
Q

given by the formula:

µ⋄ :=
1

[Γ : Γµ]

∑
γ∈Γ/Γµ

γ(µ), (3.2)

where Γµ denotes the stabilizer of µ for the Γ-action. Notice that ⟨2ρG, µ⋄⟩ = ⟨2ρG, µ⟩, because
ρG is Γ-invariant.

Let AZ(G,µ) ⊂ B(G) be the set of acceptable elements modulo center, i.e. for which µ⋄ − νb
is non-negative as in Definition 2.9. This is related to the notion of acceptable elements A(G,µ)
of [RV14, Definition 2.3], in the sense that AZ(G,µ) equals the pre-image of A(Gad, µad) along
B(G) → B(Gad). If m ∈ B(M), we let mµ denote the unique basic element in B(M) such that
κM (mµ) = κM (m) − µ♮. Let d = dimℓ(GrG,µ) = ⟨2ρG, µ⟩ and define the (c, b)-admissible locus
Gr

(c,b)
G,µ := BL−1

b (BuncG) ⊂ GrG,µ. If c = 1, this recovers our usual b-admissible locus.

Theorem 3.2. If b ∈ AZ(G,µ), then Gr
(bµ,b)
G,µ is dense in GrG,µ and connected.

10
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Proof. To prove that Gr
(bµ,b)
G,µ is dense and connected, it suffices to show that dimℓ(Gr

(c,b)
G,µ ) < d

for all c ∈ B(G) with c ̸= bµ. Since the dimension drops on the complement of the Schubert cell
Gr◦G,µ ⊂ GrG,µ, it suffices to compute the dimension of their intersection Gr

◦,(c,b)
G,µ .

If b is basic, BLb : [G(Qp)\Gr◦G,µ] → BunG is smooth of relative dimension d by [FS21,

Proposition IV.1.18, Theorem IV.1.19]. In particular, dimℓ(Gr
◦,(g,b)
G,µ ) = d+dimℓ(Bun

g
G). Now, bµ

is the unique basic element in the image of BLb and for non-basic elements dimℓ(Bun
g
G) < 0 by

[FS21, IV.1.22]. This finishes the proof in this case.
Suppose now that b is not basic. Let M denote the centralizer of νb, and m denote the

unique basic element in B(M) lifting b whose Newton point is G-dominant, i.e., νm = νb. Now,
BunmP ≃ BunbG by our choice of m, and we let Ep denote the unique P -reduction of Eb on this
strata. This is the so-called Harder–Narasimhan reduction of Eb.

The space of P -modifications of Ep gets identified with GrP ⊂ GrG. We consider Gr◦P,µ, defined
as the intersection of GrG,µ with the connected component of GrP attached to the G-dominant
representative of µ. We can also write this as Gr◦P,µ := L+P · ξµ ·L+P/L+P , where ξ ∈ B+

dR is a
uniformizer and L+P = P (B+

dR). By our choice of µ, we get an open immersion, Gr◦P,µ ⊂ Gr◦G,µ,
and a smooth map Gr◦P,µ → Gr◦M,µ of relative dimension ⟨2ρM,G, µ⟩, where we set ρM,G = ρG−ρM .
We can also describe Gr◦M,µ as the quotient L+M ·ξµ ·L+M/L+M compatibly with the parabolic
description and the smooth cover. Moreover, we have commutative diagrams

Gr
mµ

P,µ Gr◦P,µ Gr◦G,µ Gr◦P,µ Gr◦M,µ

Bun
mµ

P BunP BunG BunP BunM

Bun
mµ

M BunM .

BLp BLb BLp BLm

(3.3)

with the first row of vertical arrows being Beauville–Laszlo uniformization maps and the top
corner Gr

mµ

P,µ making the left upper square Cartesian. In particular, the map Gr
mµ

P,µ → Gr◦P,µ is a
non-empty open immersion, so the left side has dimension d. Moreover, the map Gr◦P,µ → BunM
is the composition of maps that are either ℓ-cohomologically smooth or pro-étale. Using this and
the fact that mµ ∈ B(M) is basic, it follows that the dimension drops on the complement of
Gr

mµ

P,µ → Gr◦P,µ. We are reduced to showing that for c ̸= bµ the following inequality holds

dimℓ(Gr
mµ

P,µ ∩Gr
(c,b)
G,µ ) < d. (3.4)

We claim that for our choice of m, the element mµ ∈ B(M) is non-positive. Recall that by our
sign conventions κM (mµ) = κM (m)− (µ⋄)♮ in π1(M)Γ. This corresponds to the unique connected
component in π0(BunM ) through which BLm factors. It follows that νmµ = avM (νb − µ⋄) since
M -central elements in X∗(T )

Γ
Q are determined by their image in π1(M)ΓQ ≃ π1(M)Q,Γ. Using our

assumption that b ∈ AZ(G,µ) and Proposition 2.10 it follows that νmµ is non-positive.
An application of Proposition 2.17 shows that

dimℓ(Bun
(mµ,c)
P ) < ⟨2ρM,G,−νmµ⟩ = ⟨2ρM,G, avM (µ⋄ − νb)⟩. (3.5)

By Lemma 3.3 below, the geometric fibers of

Gr
mµ

P,µ → Gr◦M,µ ×BunM Bun
mµ

P (3.6)

11
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have all dimension bounded by ⟨2ρM,G, νb⟩. Consequently, Lemma 2.4 shows that (3.4) holds.
Indeed, dimℓ(Gr

mµ

P,µ ∩ Gr
(c,b)
G,µ ) is bounded by the dimension of Gr◦M,µ ×BunM Bun

(mµ,c)
P plus the

dimension of the fibers. The former is strictly smaller than ⟨2ρM , µ⟩+ ⟨2ρM,G, avM (µ⋄− νb)⟩ and
the latter is bounded by ⟨2ρM,G, νb⟩. Moreover, we have equalities

⟨2ρM,G, avM (µ⋄ − νb)⟩ = ⟨2ρM,G, µ
⋄ − νb⟩ = ⟨2ρM,G, µ− νb⟩, (3.7)

from which the bound follows.

Lemma 3.3. The geometric fibers of (3.6) are either empty or torsors under the kernel of
Aut(Ep) → Aut(Em). In the former case, their dimension is ⟨2ρM,G, νb⟩.

Remark 3.4. The quasi-torsor assertion does not use any special properties of b ∈ B(G) or
of our chosen P -reduction Ep ∈ BunP (C). Nevertheless, the precise dimension of this group of
automorphisms only holds for the Harder–Narasimhan reduction Ep of b.

Proof. We begin by observing that the geometric fibers of the Beauville–Laszlo map

BLEp : GrP → BunP (3.8)

are torsors on the left for the group A−1P (Be)A where A ∈ P (BdR) is the Beauville–Laszlo
gluing data for the P -torsor Ep, see [SW20, Theorem 13.5.3.(2)]. Indeed, this is the group of
modifications of the form

f : Ep 99K Ep
and given a fixed modification α : E 99K Ep, every other modification having E as its source
and Ep as its target can be obtained by composing α with some f as above. Similarly, the
geometric fibers of GrM → BunM are A−1M(Be)A-torsors. We deduce that the geometric fibers
of GrP → BunP ×BunM GrM are torsors under the group A−1U(Be)A. In other words, the fibers
are torsors under the group of modifications Ep 99K Ep that induce the identity on Em.

Recall that every t ∈ P (BdR) has a unique expression t = ut · mt with u ∈ U(BdR) and
m ∈ M(BdR). We claim that if t ∈ P (B+

dR)ξ
µP (B+

dR) then ut ∈ U(B+
dR). This follows from the

normality of U(B+
dR) in P (B+

dR) and from the inclusion ξµU(B+
dR) ⊆ U(B+

dR)ξ
µ, given the fact

that µ is dominant. Consequently, if u ∈ U(BdR) and x ∈ Gr◦P,µ are such that u · x ∈ Gr◦P,µ, then
necessarily u ∈ U(B+

dR).
This implies that the non-empty geometric fibers of our map (3.6) form a torsor under the

group U(B+
dR) ∩ A−1U(Be)A, the unipotent part of the automorphism group of (Ep). By [FS21,

Proposition III.5.1], its ℓ-dimension equals ⟨2ρM,G, νb⟩, and we may conclude the same about the
non-empty fibers.
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