
MEROMORPHIC VECTOR BUNDLES ON THE FARGUES–FONTAINE CURVE

IAN GLEASON, ALEXANDER B. IVANOV, FELIX ZILLINGER

ABSTRACT. We introduce and study the stack of meromorphic 𝐺-bundles on the Fargues–Fontaine curve.
This object defines a correspondence between the Kottwitz stack 𝔅(𝐺) and Bun𝐺 . We expect it to play
a crucial role in defining and studying an analytification functor that compares the schematic and analytic
versions of the geometric local Langlands categories. Our first main result is the identification of the generic
Newton strata of Bunmer

𝐺 with the Fargues–Scholze charts . Our second main result is a generalization of
Fargues’ theorem in families. We call this the meromorphic comparison theorem. We expect it to play a key
role in proving that the analytification functor is fully-faithful. Along the way, we give new proofs to what we
call the topological and schematic comparison theorems. These say that the topologies of Bun𝐺 and 𝔅(𝐺)
are reversed and that the two stacks take the same values when evaluated on schemes.
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1. INTRODUCTION

Let 𝑝 be a prime number, let 𝐸 be a non-Archimedean local field with residue field of characteristic 𝑝.
Let 𝓁 be a prime with 𝓁 ≠ 𝑝, and Λ = ℚ𝓁 . Let 𝐺 be a connected reductive group over 𝐸. Let 𝑊𝐸 be the
Weil group and let 𝐿𝐺 = �̂� ⋊𝑊𝐸 be the 𝐿-group. For this introduction, we will further assume that 𝐺
is quasi-split, but we drop this assumption in the body of the text.

1.1. Motivation and context. Let Π𝐺 be the set of isomorphism classes of smooth irreducible represen-
tations of the locally profinite group 𝐺(𝐸) with values in Λ and let Φ𝐺 be the set of �̂�-conjugacy classes
of 𝐿-parameters. The basic form of the local Langlands correspondence gives a map

LLC𝐺 ∶ Π𝐺 → Φ𝐺

satisfying various desiderata [Kal16, Conjecture A], [SZ18]. ForGL𝑛, the mapLLCGL𝑛 is bijective [HT01,
Hen00], but this does not hold more generally. Nevertheless, LLC𝐺 has finite fibers that are called 𝐿-
packets and understanding them is the subject of the refined local Langlands correspondence.

For quasi-split groups, one can fix a Whittaker datum 𝔴 to put the elements of an𝐿-packet in canonical
bijection with the set of isomorphisms classes of irreducible representations of a certain finite group, which
is constructed in terms of the 𝐿-parameter [Kal16, Conjecture B]. When 𝐺 is not quasi-split, Whittaker
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data do not exist. Vogan realized that to work with general 𝐺, it is advantageous to consider its quasi-
split inner form 𝐺∗ and parametrize simultaneously the representations of all the pure inner twists of 𝐺∗

[ABV92, Vog93].
Motivated by the study of special fibers of Shimura varieties, Kottwitz introduced the set 𝐵(𝐺) of

isocrystals with 𝐺-structure [Kot85, Kot97]. The set of basic elements 𝐵(𝐺)bas ⊆ 𝐵(𝐺) gives rise to the
so-called extended pure inner forms𝐺𝑏 of𝐺. Kottwitz formulated a refined version of the local Langlands
correspondence for non-Archimedean local fields using the inner forms that arise from 𝐵(𝐺)bas [Kal16,
Conjecture F], [SZ18].

The set 𝐵(𝐺) can be realized as the underlying topological space of two geometric objects. One object
is of analytic nature, Bun𝐺 (the stack of 𝐺-bundles on the Fargues–Fontaine curve), and a second object
is of schematic nature, 𝔅(𝐺) (the Kottwitz stack parametrizing isocrystals with 𝐺-structure). For every
element 𝑏 ∈ 𝐵(𝐺) one can define locally closed strata 𝑖𝑏 ∶ 𝔅(𝐺)𝑏 → 𝔅(𝐺) and 𝑗𝑏 ∶ Bun𝑏𝐺 → Bun𝐺.
Both 𝔅(𝐺)𝑏 and Bun𝑏𝐺 are classifying stacks for a group, and sheaves on these classifying stacks can be
described in terms of smooth representations of 𝐺𝑏(𝐸), where 𝐺𝑏 is an inner form of a Levi subgroup of
𝐺. This leads to the hope that the refined local Langlands correspondence of Kottwitz has a categorical
refinement that one can access by studying the geometry of the stacks Bun𝐺 and/or 𝔅(𝐺).

Recent breakthroughs in 𝑝-adic and perfect geometry [SW20, FS24, Zhu17, XZ17, BS17, Zhu20] to-
gether with the introduction and study of the stack of 𝐿-parameters [DHKM20, Zhu20, FS24] have led
experts to formulate precise conjectures that capture this hope. These efforts promote the refined local
Langlands correspondence mentioned above to a categorical statement [FS24, Zhu20, Hel23, BZCHN22]
in a precise way.

There is widespread agreement on what to consider on the Galois side, namely a version of the derived
category of coherent sheaves𝑏,qc

coh (�̂�,Λ) of the stack�̂�,Λ parametrizing𝐿-parameters overΛ (see [FS24,
Conjecture I.10.2], [AG15]). On the automorphic side there are at least two reasonable constructions of
the local Langlands category. The essential difference between them arises from the fact that 𝐵(𝐺) has
two geometric incarnations.

Let 𝐺 be quasi-split and let 𝑊𝔴 be the Whittaker representation associated to 𝔴. On the analytic
side, Fargues–Scholze construct the category of lisse sheaves 𝐷lis(Bun𝐺,Λ) [FS24, § VII.7] and prove it
is compactly generated. In what follows, we use the superscript (−)𝜔 to denote the full subcategory of
compact objects. Moreover, they endow this category with the so-called spectral action by the category
of perfect complexes Perf(�̂�,Λ). They conjecture that there is a unique Perf(�̂�,Λ)-linear equivalence of
∞-categories

𝕃an𝐺 ∶ lis(Bun𝐺,Λ)𝜔
≃

⟶ 𝑏,qc
coh (�̂�,Λ)

which, by taking ind-completions, induces an equivalence lis(Bun𝐺,Λ)
≃

⟶ Ind(𝑏,qc
coh (�̂�,Λ)) that sends

the analytic Whittaker sheaf an
𝔴 = 𝑗1,!𝑊𝔴 to the structure sheaf �̂�,Λ

.
On the schematic side, Xiao–Zhu consider the moduli stack of local shtukas Shtloc𝑘 in the context of

characteristic 𝑝 perfect geometry. They attach their own candidates for the local Langlands category,
namely they construct a triangulated category of cohomological correspondences PCorr(Shtloc𝑘 ), cf. [XZ17,
§ 5.4] and [Zhu20]. This approach is pushed further in the forthcoming work of Hemo–Zhu [HZ], where
they construct an ∞-category Shv(𝔅(𝐺),Λ) whose homotopy category agrees with PCorr(Shtloc𝑘 ). Zhu
conjectures that there is an equivalence

𝕃sch𝐺 ∶ Shv(𝔅(𝐺),Λ)
≃

⟶ Ind(𝑏,qc
coh (�̂�,Λ)) ,

sending �̂�,Λ
to the schematic Whittaker sheaf sch

𝔴 = 𝑖1,∗𝑊𝔴, see [Zhu20, Conjecture 4.6.4]. More-
over, Hemo–Zhu have announced a proof of the unipotent part of the categorical local Langlands cor-
respondence, cf. [Zhu20, Theorem 4.6.11]. Let us clarify. When Λ is of characteristic 0, the stack of
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𝐿-parameters has an open and closed substack unip
�̂�,Λ

⊆ �̂�,Λ defining a full subcategory

Ind(𝑏,qc
coh (

unip
�̂�,Λ

)) ⊆ Ind(𝑏,qc
coh (�̂�,Λ)) .

One can also define a full subcategory Shvunip(𝔅(𝐺),Λ) ⊆ Shv(𝔅(𝐺),Λ) defined by the property that
for all 𝑏 ∈ 𝐵(𝐺), the restriction to 𝔅(𝐺)𝑏 is given by a complex of 𝐺𝑏-representations that are unipotent
in the sense of Lusztig [Lus95]. Using Bezrukavnikov’s equivalence [Bez16], Hemo and Zhu prove that
there is an equivalence of ∞-categories

𝕃sch𝐺 ∶ Shvunip(𝔅(𝐺),Λ)
≃

⟶ Ind(𝑏,qc
coh (

unip
�̂�,Λ

)) .

It is natural to expect that there exists an equivalence

Ψ∶ Shv(𝔅(𝐺),Λ) → lis(Bun𝐺,Λ) ,

satisfying Ψ(sch
𝔴 ) = an

𝔴 . Indeed, the two local Langlands categories are conjectured to be equivalent
to Ind(𝑏,qc

coh (�̂�,Λ)), and if the two conjectures are true one can simply define Ψ = 𝕃an,−1𝐺 ◦𝕃sch𝐺 .
A reasonable question the reader can ask is: why do we need two local Langlands categories? We

believe that it is profitable to construct Ψ directly in order to better understand 𝕃sch𝐺 and 𝕃an𝐺 . At a technical
level, a direct construction of Ψ allows one to transfer Hemo–Zhu’s results on unipotent categorical local
Langlands correspondence to the Fargues–Scholze setup and conversely, endow Shv(𝔅(𝐺),Λ) with a
spectral action. It would also allow us to formulate rigorously the eigensheaf property for the Deligne–
Lusztig sheaves considered in [CI23, Conjecture 9.6]. More philosophically, the schematic perspective
and the analytic perspective understand different phenomena. For example, the schematic perspective
cannot witness the spectral action because "the paw" is fixed. On the other hand, Shv(𝔅(𝐺),Λ) is directly
related to Bezrukavnikov’s equivalence and its Frobenius-twisted categorical trace [Zhu18, §3] since, in
contrast with Bun𝐺, both 𝔅(𝐺) and the Hecke stack are constructed in terms of Witt vector loop groups.

At the heart of the equivalence Ψ there should be a geometric explanation. Namely, that the stacks
𝔅(𝐺) and Bun𝐺 are incarnations of the same geometric object. In this paper, we reveal these geometric
relations which we formulate in terms of three comparison theorems (see §7).

One of the achievements of this article is the construction of a third incarnation Bunmer
𝐺 that mediates

between 𝔅(𝐺) and Bun𝐺. Roughly speaking, Bunmer
𝐺 is given by the same moduli problem as Bun𝐺, but

we require a meromorphicity condition on the action of Frobenius (see Definition 4.19, Definition 6.5).
This object defines a correspondence

Bunmer
𝐺 Bun𝐺

𝔅(𝐺)◊

𝜎

𝛾

in the category of 𝑣-stacks on perfectoid spaces in characteristic 𝑝, where (−)◊ denotes a suitable analyti-
fication of 𝔅(𝐺), cf. Definition 2.5. We call the map 𝛾 the generic polygon map and 𝜎 the special polygon
map inspired by [KL13, Definition 7.4.1]. Morally, Ψ should be given by 𝜎!◦𝛾∗◦𝑐∗, where

𝑐∗ ∶ Shv(𝔅(𝐺),Λ) → (𝔅(𝐺)◊,Λ)

is an analytification functor [Sch17, §27], but we will not pursue the construction of this functor here.

1.2. Main results. For 𝑏 ∈ 𝐵(𝐺) we let 𝔅(𝐺)𝑏 ⊆ 𝔅(𝐺) denote the locally closed substack determined
by 𝑏. Then 𝔅(𝐺)◊𝑏 ⊆ 𝔅(𝐺)◊ is also a locally closed substack and we have an identification

𝔅(𝐺)◊𝑏 = [∗∕𝐺𝑏(𝐸)] .
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Recall the moduli stack  of Fargues–Scholze [FS24, Definition V.3.2] that is used to define the smooth
charts of Bun𝐺. It comes endowed with a map

𝑞∶  →
∐

𝑏∈𝐵(𝐺)
[∗∕𝐺𝑏(𝐸)] ≅

∐

𝑏∈𝐵(𝐺)
𝔅(𝐺)◊𝑏 .

The following Theorem 1.1 is a relative and Tannakian version of Kedlaya’s work on the slope filtration
[Ked05, Section 5.4], and our first main result.

Theorem 1.1 (Theorem 6.13). We have a commutative diagram with Cartesian square

 Bunmer
𝐺 Bun𝐺 .

∐

𝑏∈𝐵(𝐺)𝔅(𝐺)◊𝑏 𝔅(𝐺)◊

𝑞

𝜋

𝛾

𝜎

In other words, the restriction of 𝜎 ∶ Bunmer
𝐺 → Bun𝐺 to 𝛾−1([∗∕𝐺𝑏(𝐸)]) coincides with the Fargues–

Scholze chart 𝜋𝑏 ∶ 𝑏 → Bun𝐺 [FS24, V.3].

Remark 1.2. The proof of Theorem 1.1 is done by discussing the vector bundle case in length and appeal-
ing to Tannakian formalism to prove the statement for general groups 𝐺. To apply Tannakian formalism
one has to take subtle care of the exact structure. We do this by justifying that a sequence of meromorphic
vector bundles is exact if and only if it is exact at every geometric point (see Proposition 4.21).

Remark 1.3. Z. Wu also proved a version of Theorem 6.13 independently (see Remark 6.14).

Theorem 6.13 should be closely related to the essential surjectivity of Ψ. Our second main result,
which we now explain, should be related to fully-faithfulness. Recall the analytification functor𝑋 ↦ 𝑋†,
obtained from sheafifying the formula

(𝑅,𝑅+) ↦ 𝑋(Spec𝑅◦) ,

see Definition 2.5. For any small v-stack 𝑋 we have fully-faithful maps

�́�𝑡(𝑋, 𝔽𝓁)
𝑐∗𝑋
←←←←←←←←←←←→ �́�𝑡(𝑋◊, 𝔽𝓁)

𝑏∗𝑋
←←←←←←←←←←←←→ �́�𝑡(𝑋†, 𝔽𝓁) .

When 𝑋 is an affine scheme, fully-faithfulness of these functors is shown in [GL22, Lemma 4.1]. The
passage to small v-stacks follows formally from this case.

Theorem 1.4 (Theorem 7.12). We have the following identification of small v-stacks

Bunmer
𝐺 ≅ 𝔅(𝐺)†

and an identification of maps 𝑏∗𝔅(𝐺) = 𝛾∗. A similar statement holds for the stack of local -shtukas for 
a parahoric model of 𝐺.

Remark 1.5. This statement can be regarded as a version of Fargues’ theorem in families (see Re-
mark 7.13).

Corollary 1.6. We have a fully-faithful comparison map

𝛾∗◦𝑐∗ ∶ �́�𝑡(𝔅(𝐺), 𝔽𝓁) → �́�𝑡(Bunmer
𝐺 , 𝔽𝓁) .

Theorem 1.4 provides an approach to prove that Ψ is fully-faithful. Indeed, it suffices to prove that 𝜎!
is fully-faithful when restricted to those objects in the essential image of 𝛾∗◦𝑐∗. The advantage being that
the geometry of Bunmer

𝐺 is much closer to that of Bun𝐺 than that of 𝔅(𝐺).
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Remark 1.7. We warn the reader that it is unknown to the authors whether �́�𝑡(𝔅(𝐺), 𝔽𝓁) agrees with
Shv(𝔅(𝐺), 𝔽𝓁) or not. There is a fully-faithful version of 𝛾∗◦𝑐∗ for Shv(𝔅(𝐺), 𝔽𝓁), but its target category is
not �́�𝑡(Bunmer

𝐺 , 𝔽𝓁). This, among other cohomological subtleties, will be addressed in subsequent work.

One of the main ingredient in our proof of Theorem 1.4 is the following statement.

Proposition 1.8 (Corollary 7.11). Every -bundle on the Fargues–Fontaine curve extends v-locally at ∞.

This together with the main theorem of [Ans22] (which is itself an ingredient in the proof of Propo-
sition 1.8) has as a consequence the classification of Corollary 1.9 below. We fix some notation. Let
𝑆 = Spa(𝑅,𝑅+) be a product of points with 𝑅◦ =

∏

𝑖∈𝐼𝑂𝐶𝑖 and a family of pseudo-uniformizers
𝜛∞ = (𝜛𝑖)𝑖∈𝐼 such that 𝜛∞ defines the topology on 𝑅◦. We moreover fix an untilt 𝑆♯ given by a
non-zero divisor 𝜉∞ = (𝜉𝑖)𝑖∈𝐼 . This induces for all 𝑖 ∈ 𝐼 an untilt 𝐶♯𝑖 .

Corollary 1.9. The following categories are equivalent:
(1) The category of local shtukas over 𝑆 with paw at 𝑆♯.
(2) The category of Breuil–Kisin–Fargues modules over 𝔸inf (𝑅◦,♯).
(3) The category of 𝐼-indexed families {(𝑀𝑖,Φ𝑖)}𝑖∈𝐼 of Breuil–Kisin–Fargues modules over𝔸inf (𝑂𝐶♯𝑖

)
with uniformly bounded poles and zeroes at 𝜉∞.

Furthermore, a similar statement with -structure holds.

Remark 1.10. That vector bundles extend v-locally at ∞ was also shown independently by Zhang in her
proof of Scholze’s fiber product conjecture [Zha23, Proof of Proposition 8.14]. The previous version of this
article discussed a proof of Proposition 1.8 that was substantially more complicated and had restrictions
on the characteristic of𝐸. It used the 𝑏-charts of Fargues–Scholze to uniformize Bun𝐺 and extend at ∞.
The current approach uses the Beauville–Laszlo uniformization of Bun𝐺 to extend at ∞. The argument
provided in the current version of the article is quite close to the one of Zhang. We are very grateful to
her for several conversations related to this.

1.3. New proofs of two established results. As a consequence of our considerations we found new ap-
proaches to previously proven theorems relating the geometry of 𝔅(𝐺) and Bun𝐺.

1.3.1. The schematic comparison. Recall the reduction functor introduced by the first author in [Gle24,
§3]. Roughly, it is an analogue in the context of 𝑣-sheaves of the functor that takes a formal scheme to its
reduced special fiber; the reduction𝑋red of a 𝑣-stack𝑋 on perfectoid spaces over 𝔽𝑝 is a 𝑣-stack on perfect
schemes over 𝔽𝑝 (see also §2). The following theorem is a reformulation of a result of Pappas–Rapoport
[PR24, Theorem 2.3.8], which in turn genealizes a result of Anschütz [Ans23, Theorem 1.1]. We take a
new approach.

Theorem 1.11 (Theorem 7.14). We have an identification of scheme-theoretic v-stacks

(Bun𝐺)red ≅ 𝔅(𝐺) .

If  is a parahoric model of 𝐺, then a similar statement holds for the stack of -shtukas.

Remark 1.12. We regard Theorem 1.11 as a classicality statement. Anschütz proves the equivalence
of categories (Bun𝐺)red(𝑘) ≅ 𝔅(𝐺)(𝑘) for an algebraically closed field 𝑘∕𝔽𝑝 using the classification of
vector bundles over the Fargues–Fontaine curve [Ans23, Theorem 3.4]. Pappas–Rapoport prove this more
generally using the result of Anschütz and in particular rely on the 𝜑-structure [PR24, Theorem 2.3.8].
We give a uniform proof and work directly with the category of v-vector bundles over 𝑌(0,∞) showing
that classicality is unrelated to the 𝜑-structure. Güthge also realized this independently [Güt23] (see
Remark 3.22).
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1.3.2. The topological comparison. Recall that 𝐵(𝐺) comes endowed with a topology induced by its
partial order. We can also consider 𝐵(𝐺)op endowed with the topology induced by the opposite partial
order. For either a schematic or an analytic 𝑣-stack 𝑋, let |𝑋| denote its underlying topological space.
Viehmann [Vie23, Theorem 1.1] proves that |Bun𝐺|op ≅ 𝐵(𝐺). Rapoport–Richartz [RR96] and He [He16,
Theorem 2.12] prove |𝔅(𝐺)| ≅ 𝐵(𝐺).

We give an alternative proof of the following theorem.

Theorem 1.13 (Theorem 7.18). The natural maps are homeomorphisms

|Bun𝐺|op ≅ |𝔅(𝐺)| ≅ |𝔅(𝐺)◊| .

Remark 1.14. The proof of Theorem 1.13 relies on Proposition 1.8. In a previous version of this article,
our approach to proving Proposition 1.8 implicitly relied on a version of Theorem 1.13 for GL𝑛. The
current approach avoids this circularity.
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2. NOTATION, TERMINOLOGY AND GENERALITIES

We fix the following notation throughout the text. Given a Huber pair (𝐴,𝐴+), we let Spa(𝐴,𝐴+) denote
the preadic space of [SW20, §3.4]. Whenever 𝐴+ = 𝐴◦ we simply write Spa𝐴. Analogously, given a
Huber pair over ℤ𝑝, we let Spd(𝐴,𝐴+) denote the small v-sheaf of [Sch17, Lemma 15.1]. Whenever
𝐴+ = 𝐴◦ we simply write Spd𝐴. We let Adic denote the category of analytic adic spaces over ℤ𝑝 [SW20,
Definition 3.2.1]. For an adic space 𝑋, by a geometric point of 𝑋, denoted by 𝑥→ 𝑋, we mean a map of
adic spaces 𝑥∶ Spa(𝐶,𝐶+) → 𝑋, where 𝐶 is a complete non-Archimedean algebraically closed field and
𝐶+ ⊆ 𝐶 is an open and bounded valuation subring. Whenever 𝐶+ = 𝑂𝐶 we say that 𝑥→ 𝑋 is geometric
rank 1 point. If 𝑥 is an isomorphism we will say that 𝑋 (the space itself) is a geometric point.

As in the introduction, 𝐸 denotes a non-Archimedean local field, we let 𝑂𝐸 ⊆ 𝐸 denote the ring of
integers, we let 𝜋 ∈ 𝑂𝐸 denote a choice of uniformizer, we assume that 𝔽𝑞 = 𝑂𝐸∕𝜋, we denote by ℂ a
fixed completed algebraic closure of 𝐸.

We let PSchaff denote the category of perfect affine schemes over 𝔽𝑞 . If  = Spec (𝐴) ∈ PSchaff with
associated v-sheaf ⋄ = Spd(𝐴,𝐴), we denote by 𝕎𝐴 the topological ring of 𝑂𝐸-Witt vectors. More
precisely, if 𝐸 is of characteristic 0 then 𝕎𝐴 ∶= (𝐴)⊗ℤ𝑝 𝑂𝐸 , where (𝐴) denotes the 𝑝-typical Witt
vectors, and if 𝐸 is of characteristic 𝑝 then 𝕎𝐴 = 𝐴⊗̂𝔽𝑞𝑂𝐸 ≅ 𝐴[[𝜋]]. We let 𝑌⋄ ∶= Spa𝕎𝐴[ 1𝜋 ], this
is an analytic sous-perfectoid adic space (see Lemma 3.13). Note that 𝐴 ↦ 𝕎𝐴 is a functor, and hence
 ↦ 𝑌⋄ also is. In particular, we have the functorial lift 𝜑∶ 𝑌⋄ → 𝑌⋄ of the absolute Frobenius on  .
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We let Perf aff denote the category of affinoid perfectoid spaces over 𝔽𝑞 . Fix 𝑆 ∈ Perf aff . If 𝑆 =
Spa(𝑅,𝑅+), we let 𝔸inf (𝑅+) denote 𝕎(𝑅+) endowed with the (𝜋, [𝜛])-adic topology, where 𝜛 denotes
a(ny) uniformizer of 𝑅+. We let 𝑆 be the locus in Spa𝔸inf (𝑅+) where [𝜛] ≠ 0 for some pseudo-
uniformizer 𝜛 ∈ 𝑅+, and 𝑌𝑆 be the locus in Spa𝔸inf (𝑅+) where 𝜋 ⋅ [𝜛] ≠ 0. These are sous-perfectoid
adic spaces [FS24, Proposition II.1.1]. Recall [SW20, §12.2] that after fixing a pseudo-uniformizer 𝜛 ∈
𝑅+ we have a continuous function

𝜅𝜛 ∶ |𝑆 | → [0,∞] .
For every interval 𝐼 ⊆ [0,∞] we let 𝑆,𝐼 ⊆ 𝑆 denote the interior of 𝜅−1𝜛 (𝐼). We use the notation 𝐵𝑆,𝐼
to denote H0(𝑆,𝐼 ,) and 𝐵+

𝑆,𝐼 to denote H0(𝑆,𝐼 ,+). If 𝑆 is understood from the context we may drop
it from the notation.

Remark 2.1. We want to point out that in this article we cite several references that discuss the geometry
and the vector bundle theory of  and related geometric objects. Occasionally, these sources have the
working assumption that 𝐸 = ℚ𝑝 or that 𝐸 is a characteristic 0 field. Nevertheless, the proofs often
generalize to all non-Archimedean local fields 𝐸. For convenience of the reader, we have compiled a list
of statements that we cite which although stated under restrictions on 𝐸 hold more generally. [Ked20,
Theorem 3.8], [PR24, Proposition 2.1.3], [RR96, Theorem 3.6 (ii)] and [Zha23, Proposition 11.16].

2.1. Grothendieck topologies. We endow Adic with the analytic topology. We endow Perf aff with the
v-topology [Sch17, Definition 8.1]. We will consider several topologies on PSchaff , mainly the scheme-
theoretic v-topology [BS17, Definition 3.2], the arc-topology [BM21] and the proétale topology [BS15].

For the convenience of the reader we recall how these topologies are defined. Since we will work with
sheaves of categories, we prefer to use the language of covering sieves [Lur09, §6.2.2]. All the topologies
that we consider below are finitary. This means that if 𝑋 ∈ Perfaff (or 𝑋 ∈ PSchaff ) and  ⊆ Perf aff∕𝑋
is a covering sieve, then there is a finite set of objects {𝑌𝑖 → 𝑋}𝑛𝑖=1 ⊆  such that the sieve generated
by the 𝑌𝑖 is a covering sieve of 𝑋 which refines  . Since both Perf aff and PSchaff admit finite disjoint
unions, every covering can be refined by the covering sieve generated by one map 𝑌 → 𝑋. Therefore,
it suffices to specify which maps of affinoid perfectoid spaces Spa(𝐴,𝐴+) → Spa(𝐵,𝐵+) (or of affine
schemes Spec𝐴 → Spec𝐵) are covers.

The v-topology on Perf aff declares every map Spa(𝐴,𝐴+) → Spa(𝐵,𝐵+) to be a cover as long as
|Spa(𝐴,𝐴+)| → |Spa(𝐵,𝐵+)| is surjective.

A map of affine schemes Spec𝐴→ Spec𝐵 is:
(1) A proétale cover if it is weakly étale in the sense of [BS15, Definition 1.2].
(2) A v-cover if for every map𝐵 → 𝑉 with 𝑉 a valuation ring there is an extension of valuation rings

𝑉 ⊆ 𝑊 and a commutative diagram
Spec𝑊 Spec𝐴

Spec𝑉 Spec𝐵 .
(3) An arc-cover if for every map 𝐵 → 𝑉 with 𝑉 a rank 1 valuation ring there is an extension of rank

1 valuation rings 𝑉 ⊆ 𝑊 and a commutative diagram as above.
We let Sets denote the category of sets, we letGrps denote the (2, 0)-category of groupoids. We letCat1

be the (2, 1)-category of small categories. We letCat⊗1 (resp.Cat⊗1,𝑂𝐸 , Cat⊗1,𝐸) denote the (2, 1)-category of
rigid symmetric monoidal small additive categories (resp. 𝑂𝐸-linear, 𝐸-linear symmetric monoidal small
additive categories). Moreover, we let Cat⊗,ex1 , Cat⊗,ex1,𝑂𝐸

, Cat⊗,ex1,𝐸 denote the versions of Cat⊗1 , Cat⊗1,𝑂𝐸 ,
Cat⊗1,𝐸 equipped with exact structure. We clarify in Appendix A the precise meaning of these categories,
and we show that they are presentable and compactly generated. The main purpose Appendix A is to jus-
tify that sheafification of presheaves with values in the above categories behaves as expected. The reader
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is encouraged to ignore the appendix and follow their intuition of what sheafification does and means.

In the body of the text we will be interested in extending the domain of definition of functors that
originally are only defined over Perf aff (or PSchaff ). This is the case because many interesting spaces (like
diamonds) are not members of Perf aff , but can be regarded as functors over Perf aff . For the convenience
of the reader we recall how this can be done. We will need the following additional notation. We let Ani
denote the (∞, 0)-category of anima and Ĉat∞ the (∞, 1)-category of large categories. We identify the
category of (2, 1)-categories with the full subcategory of 2-truncated objects of Ĉat∞, thus regardingCat⊗1
and all of its versions above as objects in Ĉat∞. In the following discussion category means ∞-category.
Fix  ∈ {Perfaff,PSchaff}.

Definition 2.2. Given a complete category  and a functor  ∶  op → , we will say that  is a -valued
v-sheaf (analogously -valued proétale sheaf, schematic v-sheaf, and arc-sheaf) if for any 𝑋 ∈ Perfaff

and any covering sieve  ⊆ Perf aff∕𝑋 the limit map

 (𝑋) → lim
←←←←←←←←←←←

{𝑌→𝑋}∈
 (𝑌 )

is an equivalence in .

For a category , we let ( ,) denote the category of -valued presheaves, and if  is complete, we
let ( ,) ⊆ (Perf aff,) be the full subcategory of -valued v-sheaves as in Definition 2.2. If  = Ani,
we simply write ( ) and ( ). If  = Grps, we write P̃erf (resp. P̃Sch) instead of (Perf aff,Grps)
(resp. (PSchaff,Grps)). Every geometric object we consider lies either in P̃erf or in P̃Sch, and we refer
to them as small v-stacks or small scheme-theoretic v-stacks.

Remark 2.3. Recall that the Yoneda embedding 𝑦∶  → ( ) realizes ( ) as the (∞, 1)-category
freely generated by  under small colimits. In particular, if  is a cocomplete (∞, 1)-category, then any
functor  ∶  →  can uniquely be extended to a cocontinuous functor ∶ ( ) → . By abuse of
notation, we will still denote  by  .

Remark 2.4. In the context of Remark 2.3, if  is presentable [Lur09, §5.5.1], the inclusion ( ,) ⊆
( ,) admits a left-adjoint [HM24, Lemma A.4.15.]

(−)sh ∶ ( ,) → ( ,)

which we can call sheafification. Furthermore, if  ∈ ( ,) the natural cocontinuous map

 ∶ ( ) → 

described above factors as a composition ( )
sh
←←←←←←←←←→ ( ) → .

Since P̃erf ⊆ (Perf aff ) is a full subcategory, given any functor  ∶ Perf aff →  with  a cocomplete
category, one can contemplate the value  (𝑋) ∈  for any 𝑋 ∈ P̃erf by Remark 2.3. An analogous
statement holds for 𝑋 ∈ P̃Sch. This allows us to make several interesting constructions.

Definition 2.5. Let  ∈ (PSchaff,). We define

⋄pre ,†pre ,◊pre ∈ (Perf aff,)

with formula
(1) ⋄pre (𝑅,𝑅+) ∶=  (Spec𝑅+).
(2) †pre (𝑅,𝑅+) ∶=  (Spec𝑅◦).
(3) ◊pre (𝑅,𝑅+) ∶=  (Spec𝑅).
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If  is presentable, we define
⋄,†,◊ ∈ (Perf aff,)

by applying sheafification to the functors above. We call these constructions the small diamond, the dagger
and the big diamond constructions, respectively.
Remark 2.6. Since for every Spa(𝑅,𝑅+) we have ring inclusions 𝑅+ ⊆ 𝑅◦ ⊆ 𝑅, we obtain morphisms
in (Perf aff,)

⋄ → † → ◊ .

Example 2.7. Given = Spec (𝐴) ∈ PSchaff , one can think of via the Yoneda embedding as ∈ P̃Sch.
Then one can verify that

⋄pre (𝑅,𝑅+) = {𝐴→ 𝑅+ ∣ ring maps} ,

†pre (𝑅,𝑅+) = {𝐴→ 𝑅◦ ∣ ring maps} ,

◊pre (𝑅,𝑅+) = {𝐴→ 𝑅 ∣ ring maps} .

Moreover, by [Sch17, Theorem 8.7] these functors satisfy v-descent. Thus for all ? ∈ {⋄, †,◊} one has
𝑆? = 𝑆?pre . Furthermore, one can see concretely that ⋄ is represented by Spd𝐴when𝐴 is endowed with
the discrete topology, and that ◊ is represented by Spd(𝐴, 𝔽min

𝑞 ), where 𝔽min
𝑞 ⊆ 𝐴 is the integral closure

of 𝔽𝑞 in 𝐴. On the other hand, † is not representable, but it can be identified with a closed subsheaf of
◊ (the bounded locus, see [Gle24, Proposition 2.25, Definition 2.2]).
Definition 2.8. Let  be a complete category and let  ∈ (Perf aff,). We define

 (redpre) ∈ (PSchaff,)
by setting  (redpre)(Spec𝑅) ∶=  (Spec𝑅⋄). Here we use Remark 2.3 to make sense of the right-side term.
If  is presentable, we define

 red ∈ (PSchaff,) ,
as the v-sheafification of  (redpre).
Remark 2.9. As it turns out, the functor

⋄∶ PSchaff → P̃erf aff

turns schematic v-covers into surjective maps of v-sheaves by [Gle24, Proposition 3.7]. For this reason,
if  ∈ (Perf aff,) then  (redpre) ∈ (PSchaff,), and  red(Spec𝐴) =  (Spec𝐴⋄). This shows that
(−)red ∶ P̃erf → P̃Sch is a right-adjoint to ⋄∶ P̃Sch → P̃erf .

We consider a final family of constructions. Given a topological ring 𝑅 we let 𝑅disc denote the ring 𝑅
endowed with the discrete topology.
Definition 2.10. Let  be a complete category and let  ∈ (Perf aff,). We define, using Remark 2.3,

 (merpre), (Anpre) ∈ (Perf aff,)
with formulas

(1)  (merpre)(𝑅,𝑅+) ∶=  (Spd(𝑅disc, 𝑅+
disc)) ,

(2)  (Anpre)(𝑅,𝑅+) ∶=  (Spd(𝑅disc, 𝑅disc)) .
If  is presentable we define

mer ,An ∈ (Perf aff,)
as the v-sheafification of the functors defined above. When  = Grps we call

mer ,An ∶ P̃erf → P̃erf
the meromorphic and the unbounded locus functors of  .
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Remark 2.11. For any affinoid perfectoid Spa(𝑅,𝑅+) ∈ Perfaff we have maps (𝑅,𝑅+) ← (𝑅disc, 𝑅+
disc) →

(𝑅disc, 𝑅disc) of Huber pairs. Thus, if  is presentable, we obtain maps  ← mer → An. One can easily
show that An coincides with ( red)◊.

One of the main goals of this article is to better understand the correspondence
(Bun𝐺)mer Bun𝐺

(Bun𝐺)An

that one obtains from applying the considerations of Remark 2.11 to Bun𝐺 ∈ P̃erf .

2.2. Combs and product of points. The big advantage of working with the v-topology and the schematic
v-topology is that plenty of questions can be reduced to studying valuation rings and their ultra-products.

Definition 2.12. (1) We say that an affine scheme  = Spec𝐴 is a comb if for all 𝑥 ∈ 𝜋0() the
closed subscheme attached to 𝑥 is of the form Spec𝑉𝑥, where 𝑉𝑥 is a valuation ring with alge-
braically closed fraction field.

(2) We say that a comb is an extremally disconnected comb if 𝜋0() is an extremally disconnected
Hausdorff space.

(3) If 𝐴 =
∏

𝑖∈𝐼𝑉𝑖, where each 𝑉𝑖 is a valuation ring with algebraically closed fraction field, then we
say that  is a product comb.

Remark 2.13. Observe that product combs are extremally disconnected combs. By [BS17, Lemma
6.2] any qcqs scheme admits a v-cover by a product comb, and extremally disconnected combs are 𝑤-
contractible in the pro-étale topology, that is any pro-étale covering splits (this follows from the proof
of [BS17, Lemma 6.2] and [BS15, Lemma 2.4.8]). The situation is similar to v-covers over Perf aff , see
Remark 2.15.

Definition 2.14. Suppose that  = Spec𝐴 ∈ PSchaff is a product comb and𝜛 ∈ 𝐴 is a non-zero divisor.
Let 𝑅+ = 𝐴𝜛 be the 𝜛-adic completion of 𝐴 and let 𝑅 = 𝑅+[ 1

𝜛 ]. Then Spa(𝑅,𝑅+) is a strictly totally
disconnected space, and we call any space obtained this way a product of points.

Remark 2.15. It follows from [Gle24, Example 1.1] that products of points form a basis for the v-topology
on Perf aff . Moreover, any product of points is also𝑤-contractible as a perfectoid space. Indeed, if (𝐴,𝐴+)
is a product of points, there is an open embedding Spa(𝐴,𝐴+) ⊆ Spec (𝐴) which induces a bijection on
closed points, since every maximal ideal in𝐴 is supported by a continuous valuation. Moreover, it induces
a continuous bijection on path-components, which is hence a homeomorphism.

Lemma 2.16. Let 𝑆 be a product of points and 𝑋 → 𝑆 a pro-étale cover. Then, this morphism has a
section 𝑆 → 𝑋.

Proof. By Remark 2.15, 𝑆 is 𝑤-contractible. Then the result follows from [MW23, Lemma 1.2]. □

Proposition 2.17. Let  = Spec𝐴 be a product comb with 𝐴 =
∏

𝑖∈𝐼𝑉𝑖 and 𝜛 ∈ 𝐴 a non-zero divisor.
Let 𝑅+ = 𝐴𝜛 be the 𝜛-adic completion. Let 𝜛𝑖 be the image of 𝜛 in 𝑉𝑖 which is also a non-zero divisor.
Let 𝐾+

𝑖 = 𝑉𝑖,𝜛𝑖
be the 𝜛𝑖-adic completion. Then, the family of projection maps 𝑅+ → 𝐾+

𝑖 induces a ring
isomorphism 𝑅+=

∏

𝑖∈𝐼𝐾
+
𝑖 .

Proof. Let 𝐼 ×ℕ be the partial order with (𝑖1, 𝑛1) ≤ (𝑖2, 𝑛2) if 𝑖1 = 𝑖2 and 𝑛1 ≤ 𝑛2. We have a functor from
𝐼 ×ℕ to the category of rings sending (𝑖, 𝑛) to 𝑉𝑖∕𝜛𝑛

𝑖 . The constructions of 𝑅+ and
∏

𝑖∈𝐼𝐾
+
𝑖 correspond

to two different ways of computing the limit of this diagram. □
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Proposition 2.18. If Spa(𝑅,𝑅+) is a product of points, then Spec𝑅 is a comb.

Proof. By Proposition 2.17, 𝑅+ =
∏

𝑖∈𝐼𝐶
+
𝑖 , where 𝐶+

𝑖 are valuation rings with algebraically closed
fraction fields. Since ultraproducts of valuation rings with algebraically closed fraction field are again
valuation rings with algebraically closed fraction fields, Spec𝑅+ is a comb. Now, since affine Zariski
localizations of combs are combs again, Spec𝑅 is a comb. □

We will use the following proposition implicitly throughout the article.

Proposition 2.19. Let 𝐻 be a locally profinite group. Then

[∗∕𝐻]◊ = [∗∕𝐻]⋄ = [∗∕𝐻] ,

where 𝐻(𝑆) = 𝐶0(|𝑆|,𝐻) parametrizes continuous maps from |𝑆| to 𝐻 .

Proof. Let Spa(𝑅,𝑅+) ∈ Perf aff . Observe that 𝐻⋄ = 𝐻◊ = 𝐻 . Since ◊ (resp. ⋄) commutes with
limits, it suffices to prove that the map ∗→ [∗ ∕𝐻]◊ (resp. ∗→ [∗ ∕𝐻]⋄) is surjective. This amounts to
showing that if  is a𝐻-torsor for the schematic v-topology over Spec𝑅 (resp. Spec𝑅+), then there is an
analytic v-cover of Spa(𝑅′, 𝑅′+) → Spa(𝑅,𝑅+) such that  restricted to Spec𝑅′ is trivial. We can take
Spa(𝑅′, 𝑅′+) to be a product of points. It follows from a theorem of Gabber [HS21, Theorem 1.5] that
every 𝐻-torsor is pro-étale locally trivial. Since Spec𝑅′ (resp. Spec𝑅′+) are extremally disconnected
combs by Proposition 2.18, every pro-étale cover over them splits, see Remark 2.13. □

3. CATEGORIES OF VECTOR BUNDLES

Our starting point is the functor
 ∶ (Adic)op → Cat⊗,ex1

which takes an analytic adic space to its category of vector bundles (i.e. locally free 𝑋-modules). This
is well-behaved, satisfies analytic descent, and satisfies that (Spa(𝑅,𝑅+)) ≃ Proj(𝑅), where the latter
denotes the symmetric monoidal additive category of finite dimensional projective 𝑅-modules [SW20,
Theorem 5.2.8], [KL13, Theorem 2.7.7]. At this point we note that for a geometric point Spa(𝐶,𝐶+) with
canonical inclusion Spa(𝐶,𝑂𝐶 ) ⊆ Spa(𝐶,𝐶+) we obtain equivalences in Cat⊗,ex1

(Spa(𝐶,𝐶+)) ≃ (Spa(𝐶,𝑂𝐶 )) ≃ Proj(𝐶) .

In particular, for most of the statements that we discuss below one can replace the usage of geometric
point by that of rank 1 geometric point.

Lemma 3.1. Let 𝑋 be a stably uniform analytic adic space and let Σ ∶= [1 → 2 → 3] be a sequence
of vector bundles over 𝑋. The sequence Σ is exact if and only if for every geometric point 𝑥 → 𝑋 the
restricted sequence 𝑥∗Σ is exact.

Proof. Since  is a sheaf, one can verify exactness locally and we may assume that 𝑋 = Spa(𝑅,𝑅+) and
that each 𝑖 is free. Since Spa(𝑅,𝑅+) is uniform, it is reduced and we may verify that Σ is a complex on
geometric points by [SW20, Theorem 5.2.1]. Injectivity on the left can be done similarly. It suffices to
prove surjectivity, since exactness in the middle follows from this. We can reinterpret Σ as a sequence over
Spec𝑅. Passing to determinant bundles, we may assume that 3 = 𝑅 and that the image of 2 generates
an ideal 𝐼 ⊆ 𝑅. If 𝐼 is proper, then it is contained in a maximal ideal 𝐼 ⊆ 𝔪 ⊆ 𝑅. This shows that

2 ⊗𝑅 𝐶(𝔪) → 𝐼 ⊗𝑅 𝐶(𝔪) → 0 → 𝐶(𝔪)

is not surjective and constructs a geometric point of Spa(𝑅,𝑅+) for which 𝑥∗Σ is not exact. □
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When we restrict the functor  to Perf aff one has stronger descent results. Indeed, by [SW20, Lemma
17.1.8],  ∶ (Perfaff )op → Cat⊗,ex1 is a v-sheaf. Moreover, by [SW20, Proposition 6.3.4] it makes sense
to consider vector bundles on sous-perfectoid adic spaces. We consider functors

 ∶ (Perf aff )op → Cat⊗,ex1,𝑂𝐸
and 𝑌 ∶ (Perf aff )op → Cat⊗,ex1,𝐸

with
 (𝑆) ∶= {Vector bundles over 𝑆} and 𝑌 (𝑆) ∶= {Vector bundles over 𝑌𝑆} .

It follows from [SW20, Proposition 19.5.3] that both  and 𝑌 are v-sheaves. In this case, the exact
structures on  (𝑆) and 𝑌 (𝑆) can be tested on geometric points of 𝑆 by Lemma 3.1, so v-descent of the
exact structure is immediate to verify.

The category of vector bundles on the Fargues–Fontaine curve [FS24, §II.2] can be defined by the
pull-back square

BunFF 𝑌

𝑌 𝑌 × 𝑌 .

Δ
(id,𝜑∗)

In order to understand the functors (BunFF)mer and (BunFF)An giving rise to the correspondence

(BunFF)mer BunFF

(BunFF)An

we will have to study the outcome of evaluating𝑌 on v-sheaves of the form Spd(𝑅disc, 𝑅disc) and Spd(𝑅disc, 𝑅+
disc).

3.1. 𝐸∞-sous-perfectoid spaces. We letOpenSch ⊆ P̃erf denote the full subcategory of v-sheaves which
open locally admit an open immersion into a space of the form ⋄ for  ∈ PSchaff . We note that by
Remark 3.14, this full subcategory contains Perf aff . The purpose of this section is, for  ∈ OpenSch, to
construct the space 𝑌 and to prove Theorem 3.15 below, which characterizes 𝑌 ( ).

The main observation is that the proof of [SW20, Proposition 19.5.3] can be generalized to a broad
class of analytic adic spaces.

Definition 3.2. A Huber ring 𝑅 over 𝐸 is called 𝐸∞-sousperfectoid if the completed tensor product
𝑅⊗̂𝐸𝐸∞ is perfectoid. If we have an adic space 𝑋 = Spa(𝐴,𝐴+) over Spa(𝐸) such that 𝐴 is 𝐸∞-
sousperfectoid, we call 𝑋 affinoid 𝐸∞-sousperfectoid.

Remark 3.3. Note that 𝐸∞ is topologically countably generated over 𝐸 and hence topologically free
by [BGR84, §2.7, Theorem 4]. This shows that being 𝐸∞-sousperfectoid implies being sousperfectoid
[SW20, Definition 6.3.1]. Moreover, the proof of [SW20, Proposition 6.3.3.(1)] shows that being 𝐸∞-
sousperfectoid is stable under rational localization.

Definition 3.4. We define the category 𝐸∞-SPerfd as the category of analytic adic spaces𝑋 over Spa(𝐸)
such that 𝑋 can be covered by affinoid 𝐸∞-sousperfectoid spaces.

Definition 3.5. A collection of morphisms {𝑓𝑖 ∶ 𝑌𝑖 → 𝑋}𝑖∈𝐼 between 𝐸∞-sousperfectoid spaces is a
v-cover if for each quasicompact open subset 𝑈 ⊆ 𝑋, there exists a finite subset 𝐽 ⊆ 𝐼 and quasicompact
open subsets 𝑉𝑖 ⊆ 𝑌𝑖 for 𝑖 ∈ 𝐽 , such that 𝑈 =

⋃

𝑖∈𝐽 𝑓𝑖(𝑉𝑖).

Proposition 3.6. The category 𝐸∞-SPerfd together with v-covers is a site.
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Proof. It suffices to show that fibre products exist, so let 𝑌 → 𝑋 ← 𝑍 be a map of 𝐸∞-sousperfectoid
spaces. We can assume that 𝑋 = Spa(𝐴,𝐴+), 𝑌 = Spa(𝐵,𝐵+), 𝑍 = Spa(𝐶,𝐶+), where 𝐴,𝐵, 𝐶 are Tate
and their completed tensor product with 𝐸∞ over 𝐸 is perfectoid. But then

(𝐵⊗̂𝐴𝐶)⊗̂𝐸𝐸∞ ≅ (𝐵⊗̂𝐸𝐸∞)⊗̂𝐴⊗̂𝐸𝐸∞
(𝐶⊗̂𝐸𝐸∞)

and we know that the term on the right hand side is perfectoid since completed tensor products of perfectoid
Tate Huber rings are perfectoid. This shows in particular that 𝐵⊗̂𝐴𝐶 is again 𝐸∞-sousperfectoid and
hence sheafy. □

Example 3.7. As it turns out, Spa(𝐸∞) together with its natural map to Spa(𝐸) is not an example of an𝐸∞-
sousperfectoid space. Indeed, when char(𝐸) = 𝑝, this is evident since 𝔽𝑞((𝑡1∕𝑝

∞ ))⊗̂𝔽𝑞((𝑡))𝔽𝑞((𝑡
1∕𝑝∞ )) is not

perfect. When char(𝐸) = 0, we let 𝐶 ∶= ̂̄𝐸 and 𝐵 ∶= 𝐶⊗̂𝐸𝐶 with ring of definition 𝐵0 ∶= 𝐶⊗̂𝐸𝐶 .
Using that completed tensor products of perfectoid rings are again perfectoid twice, it suffices to show
that 𝐵 is not perfectoid by contradiction. For 𝑛 ∈ ℕ, we fix a primitive 𝑝𝑛-th root of unity 𝜁𝑝𝑛 ∈ 𝐶 . We
now construct the elements

𝑎𝑛 ∶=
𝑝𝑛−1
∑

𝑖=0
𝜁 𝑖𝑝𝑛 ⊗ 𝜁−𝑖𝑝𝑛 ∈ 𝐵.

We can now define elements 𝑏𝑛 ∶=
𝑎𝑛
𝑝𝑛∕2 ∈ 𝐵 which are idempotent and hence power-bounded. However,

𝑝(𝑛−1)∕2 ⋅ 𝑏𝑛 ∉ 𝐵0 for all 𝑛 such that 𝜁𝑝𝑛 ∉ 𝐸 and hence for 𝑛 ≫ 0. This shows that 𝐵 is not uniform, and
consequently it is not perfectoid. The same proof shows that ℂ𝑝 is not 𝐸∞-sousperfectoid.

We can generalize [SW20, Proposition 19.5.3] to perfect complexes. For an analytic adic space 𝑋, we
denote by 𝔓erf(𝑋) the ∞-category of perfect complexes on 𝑋 and by 𝔓erf [𝑎,𝑏](𝑋) its subcategory of
complexes of tor-amplitude [𝑎, 𝑏]. We note that the presheaves

𝔓erf ∶ Adic → Cat∞
𝑋 ↦ 𝔓erf(𝑋)

and

𝔓erf [𝑎,𝑏] ∶ Adic → Cat∞
𝑋 ↦ 𝔓erf [𝑎,𝑏](𝑋)

satisfy analytic descent by [And21, Theorem 1.4].

Theorem 3.8. The presheaves

𝔓erf ∶ 𝐸∞-SPerfd → Cat∞
𝑋 ↦ 𝔓erf(𝑋)

and

𝔓erf [𝑎,𝑏] ∶ 𝐸∞-SPerfd → Cat∞
𝑋 ↦ 𝔓erf [𝑎,𝑏](𝑋)

are sheaves for the v-topology.

Proof. The same proof method as in [AB21, Proposition 2.4] applies to this context. □

The category of vector bundles identifies with the full subcategory of perfect complexes which have
tor-amplitude [0, 0]. Moreover, exactness, an 𝐸-linear structure and a ⊗-structure can be checked after
passing to a v-cover so we get the following:
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Corollary 3.9. The association

𝐸∞-SPerfd → Cat⊗,ex1,𝐸
𝑋 ↦ (𝑋)

is a sheaf for the v-topology.

Corollary 3.10. The association

𝐸∞-SPerfd → Grps
𝑋 ↦ {𝐺-torsors over X}

valued in Groupoids is a sheaf for the v-topology.

Corollary 3.11. The site of 𝐸∞-sousperfectoid spaces with the v-topology is subcanonical.

Proof. We can use Theorem 3.8 and proceed analogously as in the second part of [Sch17, Corollary
8.6]. □

The main observation about 𝐸∞-sousperfectoid spaces is that we can check a lot of properties of mor-
phisms after base-changing to 𝐸∞:

Proposition 3.12. The functor

𝐸∞-SPerfd → Perfd∕Spa(𝐸∞)
𝑋 ↦ 𝑋 ×Spa(𝐸) Spa(𝐸∞)

is conservative and faithful.

Proof. It suffices to show that the composition

𝐸∞-SPerfd → Perfd∕Spa(𝐸∞)
(−)♭
←←←←←←←←←←←←←←←←→ Perf∕Spa(𝐸∞)♭

reflects isomorphisms. Let 𝑓 ∶ 𝑌 → 𝑋 be a morphism in 𝐸∞ − SPerfd such that

𝑓∞ ∶ (𝑌 ×Spa(𝐸) Spa(𝐸∞))♭ → (𝑋 ×Spa(𝐸) Spa(𝐸∞))♭

is an isomorphism. Then 𝑓◊ ∶ 𝑌 ◊ → 𝑋◊ is an isomorphism, as this can be checked on v-covers of v-
sheaves. Then, [Sch17, Lemma 15.6] tells us that 𝑓 ∶ 𝑌 → 𝑋 is a homeomorphism. Observing that there
are naturally split inclusions of sheaves 𝑋 ↪ 𝑔∗𝑋×Spa(𝐸)Spa(𝐸∞) (and analogously for 𝑌 ), 𝑓 is also an
isomorphism on structure sheaves, which concludes the proof. We can proceed analogously to show that
the functor is faithful. □

We now construct the spaces 𝑌 .

Lemma 3.13. There is, up to unique isomorphism, a pair (𝑌(−),≅), where 𝑌(−) is a functor

𝑌(−) ∶ OpenSch → 𝐸∞-SPerfd
 ↦ 𝑌

such that:
(1) 𝑌Spec (𝐴)⋄ ∶= Spa(𝕎(𝐴)[ 1𝜋 ],𝕎(𝐴)),
(2) 𝑌(−) preserves open immersions,
(3) and ≅ is a natural transformation of functors in Fun(OpenSch, P̃erf)

(𝑌(−))◊ ≅ (−) × Spd(𝐸) .

Furthermore, this construction commutes with products and more generally taking Čech nerves.
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Proof. Assume that  = Spec (𝐴) is an affine perfect scheme. We claim that

𝑌⋄ = Spa(𝕎(𝐴)[ 1
𝜋
],𝕎(𝐴))

is affinoid 𝐸∞-sousperfectoid, where 𝕎(𝐴) carries the 𝜋-adic topology. It suffices to show that

𝑅 = 𝕎(𝐴)[ 1
𝜋
]⊗̂𝐸𝐸∞ ≅ 𝕎(𝐴)[ 1

𝜋
]⊗̂𝑂𝐸𝑂𝐸∞

is perfectoid. Taking the open subring

𝑅0 = 𝕎(𝐴)⊗̂𝑂𝐸𝑂𝐸∞
,

we observe that 𝑅0∕𝜋1∕𝑝 ≅ 𝐴 ⊗𝔽𝑞 𝔽𝑞[𝑡
1∕𝑝∞ ]∕𝑡1∕𝑝 ≅ 𝐴[𝑡1∕𝑝∞ ]∕𝑡1∕𝑝 and 𝑅0∕𝜋 ≅ 𝐴 ⊗𝔽𝑞 𝔽𝑞[𝑡

1∕𝑝∞ ]∕𝑡 ≅
𝐴[𝑡1∕𝑝∞ ]∕𝑡. This implies that

Φ∶ 𝑅0∕𝜋1∕𝑝
≅
←←←←←←←→ 𝑅0∕𝜋

is an isomorphism. Using [BMS18, Lemma 3.10 (ii)], we see that 𝑅0 is integral perfectoid and [BMS18,
Lemma 3.21] shows that 𝑅0[1∕𝜋] ≅ 𝑅 is perfectoid.

We now want to show that (𝑌⋄ )◊ ≅ ⋄ × Spd(𝐸). Namely, we want to see that for any perfectoid
space 𝑇 over Spa(𝐸), giving a map 𝑇 → 𝑌⋄ is equivalent to giving a map 𝑇 ♭ → ⋄ = Spa(𝐴,𝐴). We can
assume that 𝑇 = Spa(𝐵,𝐵+) is affinoid. In this case, giving a map 𝑇 → 𝑌𝑆⋄ is the same as giving a map
𝕎(𝐴) → 𝐵+ (the image of 𝜋 in 𝐵 is always invertible since 𝐵 lives over 𝐸). By the universal property of
𝕎(𝐴), this is equivalent to giving a map 𝐴→ 𝐵+∕𝜋 since 𝐵+ is 𝜋-complete. Since 𝐴 is perfect, this is in
turn equivalent to giving a map 𝐴 → (𝐵+)♭, which is precisely a map 𝑇 ♭ → ⋄ = Spa(𝐴,𝐴).

We can now glue this to construct our desired space for general perfect schemes. Note that the small
diamond functor ⋄∶ P̃Schaff → P̃erf aff preserves open subsheaves, which allows us to glue by using
Proposition 3.12. For  ∈ Open with an open immersion  ⊆ ⋄, we get an open immersion of v-
sheaves  × Spd(𝐸) ⊆ (𝑌⋄ )◊. It follows from [Sch17, Lemma 15.6] that there is a unique (necessarily
𝐸∞-sousperfectoid) open subspace 𝑌 ⊆ 𝑌⋄ inducing the open immersion  × Spd𝐸 ⊆ (𝑌⋄ )◊. Com-
mutation with Čech nerves follows from Proposition 3.12. □

Remark 3.14. It is helpful to describe the spaces 𝑌 explicitly for different v-sheaves  . Suppose that
𝑋 = Spa(𝑅,𝑅+) ∈ Perfaff and that  = Spec𝑅+ ∈ PSchaff . Fix 𝜛 ∈ 𝑅+ a pseudo-uniformizer.

(1) If  = Spd(𝑅+, 𝑅+), where 𝑅+ carries the 𝜛-adic topology, then we have an open immersion
 ⊆ ⋄ corresponding to the locus where 𝜛 is topologically nilpotent (see [Gle24, Lemma
2.24]). Moreover, we get the 𝐸∞-sousperfectoid space

𝑌 = 𝑌𝑋,(0,∞] = Spa(𝔸inf (𝑅+),𝔸inf (𝑅+)) ⧵ 𝑉 (𝜋) .

In other words, 𝑌 is the curve with ∞ included.
(2) If = Spd(𝑅disc, 𝑅+

disc), where both rings carry the discrete topology, we have an open immersion
 ⊆ ⋄ corresponding to the locus where𝜛 ≠ 0. Moreover, we get the𝐸∞-sousperfectoid space

𝑌 = Spa(𝕎(𝑅+)[ 1
𝜋
],𝕎(𝑅+)) ⧵ 𝑉 ([𝜛]) .

(3) Finally, assume that  = 𝑋. Then we have an open immersion 𝑋 ⊆ ⋄ corresponding to the
intersection of the loci where 𝜛 ≠ 0 and where 𝜛 is topologically nilpotent. We get the 𝐸∞-
sousperfectoid space

𝑌𝑋 = Spa(𝔸inf (𝑅+),𝔸inf (𝑅+)) ⧵ 𝑉 (𝜋[𝜛])

from [FS24, Definition II.1.15], which satisfies that 𝑌 ◊
𝑋 ≅ 𝑋 × Spd(𝐸). Using Proposition 3.12,

we can construct the spaces 𝑌𝑋 for general perfectoid spaces 𝑋 (over 𝔽𝑞).
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Theorem 3.15. For any  ∈ OpenSch there is a functorial identification

𝑌 ( ) ≃ (𝑌 ) .

Proof. By definition, 𝑌 ( ) = lim
←←←←←←←←←←←

(𝑌𝑋) as 𝑋 varies in Perf aff∕ . By Lemma 3.13, we have a functor

𝑌(−) ∶ OpenSch → 𝐸∞-SPerfd

that preserves v-covers. By Corollary 3.9, (𝑌(−)) satisfies v-descent. Moreover, Perf aff ⊆ OpenSch is a
basis for the v-topology, so Perf aff∕ is a covering sieve. Thus we obtain

𝑌 ( ) = lim
←←←←←←←←←←←

(𝑌𝑋) ≅ (𝑌(lim
←←←←←←←

𝑋)) = (𝑌 ) .

□

Remark 3.16. The above proof has already found an application in [ABM24] in which a 6-functor for-
malism 𝐷(0,∞)(−) for solid quasi-coherent sheaves on the spaces 𝑌(−) is constructed. Adjusting the above
proof to this setting gives an analagous result 𝐷(0,∞)(Spd 𝔽𝑝) ≅ 𝐷□(AnSpecℚ𝑝), see [ABM24, Theorem
6.3.1].

Let 𝑋𝑆 ∶= 𝑌𝑆∕𝜑ℤ denote the relative Fargues–Fontaine curve with respect to a perfectoid space 𝑆
from [FS24, Definition II.1.15]. We define the presheaves of ∞-categories

𝔓erf𝑌 ∶ (Perf aff )op → Cat∞
𝑆 ↦ 𝔓erf(𝑌𝑆 )

and

𝔓erfFF ∶ (Perf aff )op → Cat∞
𝑆 ↦ 𝔓erf(𝑋𝑆 )

which are sheaves by Theorem 3.8. Now note that the proof of Theorem 3.15 generalizes to perfect
complexes.

Theorem 3.17. For any  ∈ OpenSch there is a functorial identification of ∞-categories

𝔓erf𝑌 ( ) ≃ 𝔓erf(𝑌 ) .

In particular, this positively answers [Ans23, Conjecture 1.2]. The third author wants to thank Johannes
Anschütz for related discussions.

Definition 3.18. Let  ∈ PSchaff . We define the category 𝔓erf𝔅() of perfect complexes of isocrystals
over  as the equalizer of ∞-categories

𝔓erf𝔅() 𝔓erf(𝑌⋄ ) 𝔓erf(𝑌⋄ ) .
id

𝜑∗

We call a pair (𝐾, 𝛼𝐾 ∶ 𝐾 ≅ 𝜑∗𝐾) in 𝔓erf𝔅() strictly perfect if it can be written as a finite limit of
objects ( , 𝛼 ∶  ≅ 𝜑∗), where  is a vector bundle on 𝑌⋄ . This is equivalent to (𝐾, 𝛼𝐾 ) representing
an honest bounded complex of isocrystals on 𝑌⋄ .

Theorem 3.19. Let  ∈ PSchaff . The natural functor of ∞-categories

𝔓erf𝔅() → 𝔓erfFF(⋄)

is an equivalence. Moreover, the category 𝔓erf𝔅() is equivalent to the category of bounded complexes
of isocrystals.
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Proof. We note that for all 𝑆 ∈ Perfaff there is an equalizer diagram of ∞-categories

𝔓erfFF(𝑆) 𝔓erf(𝑌𝑆 ) 𝔓erf(𝑌𝑆 ) .
id

𝜑∗
(3.1)

The equivalence of categories then follows from Theorem 3.17 applied to  = ⋄. The second statement
follows from [AB21, Proposition 2.7] applied to the equalizer diagram of ∞-categories

𝔓erf𝔅() 𝔓erf(𝑌⋄ ) 𝔓erf(𝑌⋄ ) .
id

𝜑∗

□

As a consequence, we get:

Corollary 3.20. Let 𝜆 ∈ ℚ× with associated absolute Banach–Colmez spaces 𝜆,𝑖 ∶= ((𝜆)[𝑖]) for
𝑖 ∈ {0, 1}1. Then red

𝜆,𝑖 = 0, and the counit map (red
𝜆,𝑖 )

⋄ → 𝜆,𝑖 corresponds to the zero section.

Proof. Let  = Spec (𝐴) ∈ PSchaff . By Theorem 3.17,

𝜆,𝑖(𝑆⋄) = 𝐻 𝑖(𝑅Γ𝔓erf𝔅(Spec (𝐴))((𝜆))) = 0 ,

where (𝜆) denotes the simple standard isocrystal2 over Spec (𝐴) of slope 𝜆. A direct computation shows
that

𝑅Γ𝔓erf𝔅(Spec (𝐴))((𝜆)) = [(𝜆)
𝜑(𝜆)−Id
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ (𝜆)]

𝜆≠0
≃ 0 ,

where 𝜑(𝜆) ∶ (𝜆) → (𝜆) denotes the 𝜑-linear automorphism of (𝜆). □

3.2. On mer
𝑌 and An

𝑌 . In this subsection we analyze mer
𝑌 and An

𝑌 , the emphasis will be on clarify-
ing their structure as objects in (Perf aff,Cat⊗1,𝐸). The main point is that both of these objects can be
approximated by separated presheaves Definition A.3 and that these are easier to understand.

Definition 3.21. Consider the functors

𝕎 ∈ (Perf aff,Cat⊗,ex1,𝑂𝐸
) and sch

𝕎 ∈ (PSchaff,Cat⊗,ex1,𝑂𝐸
)

with
𝕎(Spa(𝑅,𝑅+)) ∶= {Finite projective modules over 𝕎𝑅} =∶ sch

𝕎 (Spec𝑅) .

From [SW20, Corollary 17.1.9] (applied to the case where 𝑛 = ∞ and 𝑅♯ = 𝑅) it follows that 𝕎 is a
v-sheaf. From [BS17, Theorem 4.1.(ii)] it follows that sch

𝕎 is a scheme-theoretic v-sheaf.

Remark 3.22. It is also clear that 𝕎 ≃ (sch
𝕎 )(◊pre) ≃ (sch

𝕎 )◊. We expect that the identity sch
𝕎 ≃

(𝕎)red also holds. When 𝐸 is of mixed-characteristic this latter identity is a result of Güthge [Güt23, §
3].

Definition 3.23. Consider functors

𝕎[ 1
𝜋
], [

1
𝜋
] ∈ (Perf aff,Cat⊗1,𝐸) and sch

𝕎 [ 1
𝜋
] ∈ (PSchaff,Cat⊗1,𝐸)

given by the formulas

𝕎[ 1
𝜋
] ∶= 𝕎 ⊗𝑂𝐸 𝐸,  [

1
𝜋
] ∶=  ⊗𝑂𝐸 𝐸 and sch

𝕎 [ 1
𝜋
] ∶= sch

𝕎 ⊗𝑂𝐸 𝐸 .

1Here, we use the notation from [FS24, Section II.2]
2Here, we use the notation from Definition 5.1
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Remark 3.24. At the moment, we do not endow 𝕎[ 1𝜋 ],  [
1
𝜋 ] or sch

𝕎 [ 1𝜋 ] with exact structure, but later
we will identify these categories with other categories that carry a natural exact structure.

Lemma 3.25. Let  ∈ {Perfaff,PSchaff}. Given  ∈ ( ,Cat⊗1,𝑂𝐸 ) be a v-sheaf of𝑂𝐸-linear categories,
let  ∶=  ⊗𝑂𝐸 𝐸. Then  ∈ ( ,Cat⊗1,𝐸) is a separated presheaf.

Proof. By Proposition A.4 and Lemma A.6, it suffices to show that for every v-cover [𝑈 → 𝑋] ∈ Perfaff
the map

(𝑋) → Desc.(, 𝑋∕𝑈 )
is fully faithful, or equivalently that for any two objects the presheaf of morphisms is a v-sheaf. By
construction, objects in (𝑋) agree with objects in (𝑋). Since objects in (𝑋) are dualizable, the
diagramatic characterization of dualizable objects implies that objects in (𝑋) are also dualizable. In
particular, we may compute morphisms in terms of the ⊗-unit and internal Hom-objects. Indeed, for
𝑉 ,𝑊 ∈ (𝑋) we have Hom(𝑉 ,𝑊 ) ≃ Hom(𝟙⊗ 𝑉 ,𝑊 ) ≃ Hom(𝟙, 𝑉 ∨ ⊗𝑊 ). It remains to show that
for all objects 𝑉 ∈ (𝑋) the presheaf of 𝐸-vector spaces

 ∶= Hom⊗𝑂𝐸𝐸
(𝟙, 𝑉 ) = Hom(𝟙, 𝑉 )⊗𝑂𝐸 𝐸

is a sheaf. Nevertheless,  can be written as a sequential colimit of the form

 = lim
←←←←←←←←←←→

[Hom(𝟙, 𝑉 )
⋅𝜋
←←←←←←←←←→ Hom(𝟙, 𝑉 )

⋅𝜋
←←←←←←←←←→ …] .

Since in the category of 𝑂𝐸-modules finite limits commute with filtered colimits, and Hom(𝟙, 𝑉 ) is a
sheaf of 𝑂𝐸-modules, we can conclude that  is also a sheaf of 𝐸-vector spaces. □

Corollary 3.26. 𝕎[ 1𝜋 ],  [
1
𝜋 ] and sch

𝕎 [ 1𝜋 ] are separated presheaves.

Definition 3.27. Consider the functor

sch
𝑌 ∈ (PSchaff,Cat⊗,ex1,𝐸 ) with

sch
𝑌 (Spec𝑅) ∶= {Finite projective modules over 𝕎𝑅[ 1

𝜋
]} .

Proposition 3.28. The following statements hold:
(1) sch

𝑌 ≃ (𝑌 )red.
(2) sch

𝑌 is an arc-sheaf.
(3) If 𝑆 = Spec𝑅 is a comb then sch

𝑌 (𝑆) ≃ sch
𝕎 [ 1𝜋 ](𝑆) in Cat⊗1,𝐸 .

(4) The v-sheafification of sch
𝕎 [ 1𝜋 ] is equivalent to sch

𝑌 in (PSchaff,Cat⊗1,𝐸) .

Proof. The first statement follows from Theorem 3.15 and the definitions. By [Iva23, Proposition 5.9]
sch
𝑌 is an arc-sheaf. By [Iva23, Theorem 6.1] the values of sch

𝕎 [ 1𝜋 ] and sch
𝑌 agree on combs. Since

combs form a basis for the schematic v-topology (see Remark 2.13), the fourth claim follows. □

We see that sch
𝕎 [ 1𝜋 ] has a natural immersion into sch

𝑌 and acquires the structure of a separated presheaf
with values in Cat⊗,ex1,𝐸 since it inherits an exact structure.

Proposition 3.29. We have the following identities:
(1) (sch

𝑌 )◊pre ≃ (𝑌 )
(Anpre) and sch

𝕎 [ 1𝜋 ]
◊pre ≃ 𝕎[ 1𝜋 ] in (Perf aff,Cat⊗,ex1,𝐸 ) .

(2) 𝕎[ 1𝜋 ]
sh ≃ sch

𝕎 [ 1𝜋 ]
◊ ≃ (sch

𝑌 )◊ ≃ An
𝑌 in (Perf aff,Cat⊗1,𝐸) .

Proof. The first claim follows directly from Theorem 3.15 and the definitions. The second claim follows
from Proposition 3.28 and Proposition 2.18. □
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Corollary 3.30. The presheaf 𝕎[ 1𝜋 ] (with the exact structure inherited from (sch
𝑌 )◊pre ) is separated and

sheafifies to An
𝑌 .

Proof. This follows from Lemma A.6. □

We now move on to rewrite (𝑌 )mer .

Proposition 3.31. We have a Cartesian square in (Perf aff,Cat⊗1,𝐸)

  [
1
𝜋 ]

𝕎 𝕎[ 1𝜋 ] .

Proof. The argument is a standard application of Beauville–Laszlo descent [SW20, Lemma 5.2.9]. We
provide the details for the convenience of the reader. Fix 𝑆 ∈ Perf aff . By analytic descent, there is a
Cartesian diagram

 (𝑆) (𝑌[1,∞),𝑆 )

(𝑌[0,1],𝑆 ) (𝑌[1,1],𝑆 ) .

These spaces correspond to the loci 𝑌[0,1],𝑆 = {|𝜋| ≤ |[𝜛]| ≠ 0} and 𝑌[1,∞),𝑆 = {|[𝜛]| ≤ |𝜋| ≠ 0}.
Moreover, (𝑌[0,1],𝑆 ) is the category of finite projective modules over𝐵[0,1],𝑆 . Since 𝜋 is already invertible
in 𝑌[1,∞),𝑆 and 𝑌[1,1],𝑆 , this formally leads to the following commutative diagram with Cartesian squares

  [
1
𝜋 ](𝑆) (𝑌[1,∞),𝑆 )

(Proj𝐵[0,1],𝑆 ) (Proj𝐵[0,1],𝑆 )⊗𝑂𝐸 𝐸 (𝑌[1,1],𝑆 ) .

Furthermore, 𝕎(𝑆) is equivalent to Proj(𝕎𝑅). Since we have the identity of rings 𝕎𝑅 = (̂𝐵[0,1])𝜋 ,
we have the following Cartesian diagram by [SW20, Lemma 5.2.9].

Proj𝐵[0,1],𝑆 𝕎(𝑆)

(Proj𝐵[0,1],𝑆 )⊗𝑂𝐸 𝐸 𝕎[ 1𝜋 ](𝑆) .

This implies that the commutative diagram below is also Cartesian

 (𝑆) Proj𝐵[0,1],𝑆 𝕎(𝑆)

 [
1
𝜋 ](𝑆) (Proj𝐵[0,1],𝑆 )⊗𝑂𝐸 𝐸 𝕎[ 1𝜋 ](𝑆) .

□

Proposition 3.32. The diagrams
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  [
1
𝜋 ] (𝑌 )

merpre

𝕎 𝕎[ 1𝜋 ] (𝑌 )
(Anpre)

are Cartesian in (Perf aff,Cat⊗1,𝑂𝐸 ). Moreover, the right square is Cartesian in (Perf aff,Cat⊗1,𝐸) and
the outer square is Cartesian in (Perf aff,Cat⊗,ex1,𝑂𝐸

).

Proof. Let 𝑆 = Spa(𝑅,𝑅+) ∈ Perfaff and let 𝑇 = Spd(𝑅disc, 𝑅+
disc). Pick a pseudo-uniformizer𝜛 ∈ 𝑅+.

As defined in Section 2, we denote the two different topologies on the ring of 𝑂𝐸-Witt vectors by 𝕎(𝑅+)
and 𝔸inf (𝑅+).

The category  (𝑆) is the category of vector bundles over Spa(𝔸inf (𝑅+)){[𝜛]≠0}. Arguing as in Propo-
sition 3.31, we get the following Cartesian diagram

 [
1
𝜋 ](𝑆) (Proj𝐵[0,1],𝑆 )⊗𝑂𝐸 𝐸

(𝑌[1,∞),𝑆 ) (𝑌[1,1],𝑆 ) .

On the other hand, (𝑌 )
(merpre)(𝑆) ≃ (𝑌𝑇 ). This is the category of vector bundles on Spa𝕎(𝑅+){𝜋⋅[𝜛]≠0}.

This space is the union of the loci {|[𝜛]| ≤ |𝜋| ≠ 0} and {|𝜋| ≤ |[𝜛]| ≠ 0}. The former agrees with
𝑌[1,∞),𝑆 while the latter is affinoid of the form Spa(𝐵disc

[0,1][
1
𝜋 ], 𝐵

disc,+
[0,1] [ 1𝜋 ]). By analytic descent, we have a

pullback diagram

(𝑌𝑇 ) (Proj𝐵disc
[0,1],𝑆 [

1
𝜋 ])

(𝑌[1,∞),𝑆 ) (𝑌[1,1],𝑆 ) .

Note that the natural map 𝐵disc
[0,1] → 𝐵[0,1] is a continuous isomorphism of rings (which is not a homeo-

morphism!), see [SW20, Lemma 14.3.1]. Hence, we have an identification (Proj𝐵disc
[0,1],𝑆 ) ≃ (Proj𝐵[0,1],𝑆 )

in Cat⊗1,𝑂𝐸 . Together with Proposition 3.31 and Beauville–Laszlo descent (see [SW20, Lemma 5.2.9]),
this leads to the following commutative diagram with Cartesian squares

 (𝑆)  [
1
𝜋 ](𝑆) (𝑌𝑇 ) (𝑌[1,∞),𝑆 )

(Proj𝐵[0,1],𝑆 ) (Proj𝐵[0,1],𝑆 )⊗𝑂𝐸 𝐸 (Proj𝐵disc
[0,1],𝑆 [

1
𝜋 ]) (𝑌[1,1],𝑆 )

(Proj𝕎(𝑅)) (Proj𝕎(𝑅))⊗𝑂𝐸 𝐸 (Proj𝕎(𝑅)[ 1𝜋 ]) .

It follows from the definitions that (Proj𝕎(𝑅)) ≃ 𝕎(𝑆), (Proj𝕎(𝑅)) ⊗𝑂𝐸 𝐸 ≃ 𝕎(𝑆)[ 1𝜋 ], and
(Proj𝕎(𝑅)[ 1𝜋 ]) ≃ (𝑌 )

(Anpre) which allow us to conclude. □

Corollary 3.33. The square
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 (𝑌 )mer

𝕎 (𝑌 )An

is Cartesian in (Perf aff,Cat⊗,ex1,𝑂𝐸
) .

Corollary 3.34. The following statements hold:
(1) The natural map  [

1
𝜋 ] → (𝑌 )

(merpre) is fully-faithful.
(2) The v-sheafification of  [

1
𝜋 ] is (𝑌 )mer .

Proof. The first statement follows from the proof of Proposition 3.32 and from the fact that

(Proj𝕎(𝑅))⊗𝑂𝐸 𝐸 → (Proj𝕎(𝑅)[ 1
𝜋
])

is fully-faithful.
To show  [

1
𝜋 ]

sh ≃ mer
𝑌 it suffices by Remark 2.15 to show that  [

1
𝜋 ](𝑆) ≃ (𝑌 )

(merpre)(𝑆) when
𝑆 is a product of points. If Spa(𝑅,𝑅+) is a product of points, (Proj𝕎(𝑅))⊗𝑂𝐸 𝐸 ≃ (Proj𝕎(𝑅)[ 1𝜋 ]) by
[Iva23, Theorem 6.1]. Using Proposition 3.32, we can conclude. □

Corollary 3.35. The presheaf  [
1
𝜋 ] (with the exact structure inherited from (𝑌 )

merpre ) is separated and
sheafifies to An

𝑌 .

Proof. This follows from Lemma A.6. □

Remark 3.36. Although for 𝑆 ∈ Perf aff the categories An
𝑌 (𝑆) ∈ Cat⊗,ex1,𝐸 and mer

𝑌 (𝑆) ∈ Cat⊗,ex1,𝐸
together with their exact structure are fairly abstract, one can still have some formal control over them by
applying Lemma A.7 to 𝕎[ 1𝜋 ] and  [

1
𝜋 ]. Indeed, these presheaves are separated by Corollary 3.35 and

Corollary 3.30.

4. MEROMORPHIC VECTOR BUNDLES ON THE FARGUES–FONTAINE CURVE

In this section we study Bunmer
FF and BunAnFF . We note that their structure as objects in (Perf aff,Cat⊗1,𝐸)

is easy to deduce from our study of mer
 and An

 simply by adding Frobenius structure. Neverthe-
less, as we will see, the Frobenius structure allows us to further understand their behavior as objects in
(Perf aff,Cat⊗,ex1,𝐸 ).

4.1. Dieudonné modules and Isocrystals. For this subsection we fix a test object = Spec𝐴 ∈ PSchaff .

Definition 4.1. A Dieudonné module over  is a pair ( ,Φ ), where  is a finite projective module over
𝕎(𝐴) and Φ is an isomorphism

Φ ∶ 𝜑∗𝑌⋄ → 𝑌⋄ .
An isocrystal over  is a pair ( ,Φ ), where  is a vector bundle over 𝑌⋄ and Φ is an isomorphism

Φ ∶ 𝜑∗ →  .
Morphisms of these data are 𝜑-equivariant maps. We declare a sequence of morphisms to be exact if
the underlying sequence of projective modules (resp. vector bundles) is exact. We denote these cat-
egories by Shtsch𝕎 () ∈ Cat⊗,ex1,𝑂𝐸

and 𝔅() ∈ Cat⊗,ex1,𝐸 . These rules organize into functors Shtsch𝕎 ∈

(PSchaff,Cat⊗,ex1,𝑂𝐸
) and 𝔅 ∈ (PSchaff,Cat⊗,ex1,𝐸 ).

Remark 4.2. Dieudonné modules are also considered by Pappas–Rapoport under the name meromorphic
Frobenius crystals [PR24, Definition 2.3.6].
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Proposition 4.3. We have Cartesian diagrams

Shtsch𝕎 sch
𝕎 [ 1𝜋 ] sch

𝑌 𝔅 sch
𝑌

sch
𝕎 sch

𝕎 [ 1𝜋 ] × sch
𝕎 [ 1𝜋 ] sch

𝑌 × sch
𝑌 sch

𝑌 sch
𝑌 × sch

𝑌 .

Δ Δ Δ

(id,𝜑∗) (id,𝜑∗)

Proof. These are formal reinterpretations of Definition 4.1. □

Definition 4.4. We define Shtsch𝕎 [ 1𝜋 ] ∈ (PSchaff,Cat⊗1,𝑂𝐸 ) by requiring that the following is a Cartesian
diagram

Shtsch𝕎 [ 1𝜋 ] sch
𝕎 [ 1𝜋 ]

sch
𝕎 [ 1𝜋 ] sch

𝕎 [ 1𝜋 ] × sch
𝕎 [ 1𝜋 ] .

Δ

(id,𝜑∗)

One can think of Shtsch𝕎 [ 1𝜋 ]() as the category of isocrystals over  that admit a lattice.

Proposition 4.5. The following statements hold.
(1) 𝔅 ∈ (PSchaff,Cat⊗,ex1,𝐸 ) and Shtsch𝕎 ∈ (PSchaff,Cat⊗,ex1,𝑂𝐸

).

(2) Shtsch𝕎 [ 1𝜋 ] ∈ (PSchaff,Cat⊗1,𝑂𝐸 ) is v-separated and Shtsch𝕎 [ 1𝜋 ]
sh ≃ 𝔅.

(3) The following diagram has Cartesian squares

Shtsch𝕎 Shtsch𝕎 [ 1𝜋 ] 𝔅

sch
𝕎 sch

𝕎 [ 1𝜋 ] sch
𝑌 .

Proof. We note that the property of being a separated presheaf (resp. a sheaf) is stable under finite limits of
presheaves by Proposition A.5. Then, by Proposition 3.28 the first two claims hold. The last claim follows
formally from Definition 4.4, Proposition 4.3 and the fact that sch

𝕎 [ 1𝜋 ] is separated with sch[ 1𝜋 ]
sh ≃

sch
𝑌 □

Proposition 4.6. Let Σ ∶= [1 → 2 → 3] be a sequence in Shtsch𝕎 (). Then Σ is exact if and only if for
every geometric point �̄�→  , the sequence Σ�̄� is exact. If Σ is already a complex then it suffices to check
exactness on geometric points with closed image in  .

Proof. Sincesch
𝕎 is a Zariski sheaf and since a basis over Spec𝐴 always deforms to a basis over Spec𝕎𝐴,

we may assume that each 𝑖 is free and of constant finite rank. The maps 𝑖 → 𝑗 are now given by matrices
with values in 𝕎𝐴 = 𝐴ℕ (as sets). The map 𝐴 →

∏

�̄�→𝐶�̄� is injective, so one can check on geometric
points that the sequence is a complex.

Once we know the sequence is a complex, exactness can be checked on closed points of Spec𝕎𝐴. As
we vary over geometric points 𝑥→  with closed image, the induced family of maps 𝕎(𝑥)∶ Spec𝕎𝐶 →
Spec𝕎𝐴 covers all closed points of Spec𝕎𝐴. This allows us to conclude. □

To prove an analogue of Proposition 4.6 for 𝔅, we first give a reinterpretation.

Proposition 4.7. The following statements hold.
(1) For all  ∈ PSchaff , BunFF(⋄) ≃ 𝔅() in Cat⊗,ex1,𝐸 .
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(2) 𝔅 ≃ (BunFF)red in (PSchaff,Cat⊗,ex1,𝐸 ).

Proof. Both claims follow formally from the definitions and from Proposition 3.28. □

Remark 4.8. The result of Proposition 4.7 is implicitly proved during the proof of [PR24, Theorem 2.3.8]
when𝐸 is of mixed characteristic. Their approach relied on Sen theory which is a tool that is only available
in mixed characteristic. A previous version of this article also relied on Sen theory and for this reason we
also had to restrict to the mixed characteristic setup.

Proposition 4.9. Let  = Spec𝑅 and Σ ∶= [1 → 2 → 3] ∈ 𝔅() be a sequence such that the
underlying projective modules 𝑖 over 𝕎𝑅[ 1𝜋 ] have constant rank rk.(𝑖) = 𝑟𝑖 and 𝑟1 + 𝑟3 = 𝑟2. The
following statements hold.

(1) The sequence is exact if and only if for every geometric point 𝑥 →  the sequence Σ�̄� ∈ 𝔅(𝑥) is
exact.

(2) Moreover, if the sequence is already assumed to be a complex, then exactness can be checked on
geometric points 𝑥→  whose image is a closed point.

Proof. The forward implication is evident. Assume that for every geometric point of  , the sequence
is exact. By Proposition 4.5 we may test exactness v-locally. Thus, we may assume that  = Spec𝑅
is a comb and by [Iva23, Theorem 6.1] that all the underlying projective modules are free. We write
𝑀1 ∈ M𝑟2×𝑟1 (𝕎(𝑅)[ 1𝜋 ]) and 𝑀2 ∈ M𝑟3×𝑟2 (𝕎(𝑅)[ 1𝜋 ]) the matrices representing the maps 1 → 2 and
2 → 3, respectively. The induced map 1 → 3 is the 0 map if and only if the matrix 𝑀2 ⋅𝑀1 = 0.
This can be tested on geometric points since 𝑅 is perfect and in particular reduced. Exactness can now be
expressed in terms of the rank of 𝑀1 and 𝑀2 at the different points of Spa𝕎(𝑅)[ 1𝜋 ].

The locus where 𝑀1 has rank strictly smaller to 𝑟1 is a Zariski closed subset (cut out by the minors of
𝑀1)𝑍 ⊆ Spa𝕎(𝑅)[ 1𝜋 ]. Moreover, since the map 1 → 2 is 𝜑-equivariant, we have 𝜑(𝑍) = 𝑍. Indeed,
the rank of 𝑀1 equals the rank of 𝜑(𝑀1).

Suppose 𝑍 ≠ ∅ and let 𝑧 ∈ 𝑍. Endow 𝑅 with the discrete topology and consider the projection
map 𝑓 ∶ Spd𝕎(𝑅)[ 1𝜋 ] → Spd(𝑅). By the classification of points in the olivine spectrum either 𝑓 (𝑧) is
𝑑-analytic or it is discrete, see [Gle24, Definition 2.2]. In the following, we will argue that if 𝑍 ≠ ∅ then
there is 𝑧 ∈ 𝑍 such that 𝑓 (𝑧) is algebraic in the sense of [Gle24, Definition 2.2.(1)]. Consider the quotient
𝑔∶ Spd𝕎(𝑅)[ 1𝜋 ] → Spd𝕎(𝑅)[ 1𝜋 ]∕𝜑. By 𝜑-invariance, 𝑍 has the form 𝑔−1(𝑍′) for a closed subset
𝑍′ ⊆ |Spd𝕎(𝑅)[ 1𝜋 ]∕𝜑|. Recall from [FS24, Definition II.1.19] the diamond Div1𝐸 , which parametrizes
degree 1 divisors on the Fargues–Fontaine curve. We have an identification at the level of topological
spaces

𝛼∶ |Spd𝕎(𝑅)[ 1
𝜋
]∕𝜑| ≅ |Spd(𝑅) × (Div1𝐸)|

which fits in the following commutative diagram.

∣ Spd𝑅 × Spd𝐸 ∣ ∣ (Spd𝑅 × Spd𝐸)∕ Frob𝑅 × id𝐸 ∣

∣ Spd𝑅 × Div1𝐸 ∣

∣ Spd𝑅 ∣ ∣ Spd𝑅∕Frob𝑅 ∣ .

∣𝑓 ∣

𝛼

≃

This shows that 𝑓 (𝑍) is the image of 𝑍′ under the projection map |Spd𝑅 × Div1𝐸 | → |Spd𝑅|.
By [FS24, Proposition II.1.21], this image is a closed subset of Spd𝑅. Furthermore, since 𝑍 is stable

under vertical generization, the same is true about 𝑓 (𝑍). If 𝑧 ∈ 𝑓 (𝑍) and it is discrete, then its largest
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vertical generization is already algebraic. Suppose instead that 𝑓 (𝑧) is a 𝑑-analytic point. Recall that
every point 𝑑-analytic point in Spd(𝑅,𝑅) is formal in the sense of [Gle24, Definition 2.2.(4)], and that
formal points have a unique formal specialization [Gle24, Proposition 2.9.(2)]. Since 𝑓 (𝑍) ⊆ Spd(𝑅,𝑅)
is closed, it must contain the formal specialization of 𝑓 (𝑧). In particular, we see that 𝑓 (𝑍) has a discrete
point and by the above an algebraic one as we wanted to show.

We showed above that 𝑓 (𝑍) contains an algebraic point. We fix 𝑥 ∈ 𝑓 (𝑍) that is algebraic, in
particular there is a unique 𝑦 ∈ Spec (𝑅) inducing 𝑥. If 𝑘(𝑦) is the residue field of 𝑦 we obtain a
map Spd 𝑘(𝑦) → Spd𝑅, and the only point of |Spd𝑅| in the image is 𝑥. In this case 𝑓−1(𝑓 (𝑥)) =
Spd 𝑘(𝑦) × Spd𝐸 = Spd𝕎(𝑘(𝑦))[ 1𝜋 ], which consists of one point. In particular, Spd𝕎(𝑘(𝑦))[ 1𝜋 ] ∩𝑍 ≠ ∅
implies Spa𝕎(𝑘(𝑦))[ 1𝜋 ] ⊆ 𝑍. Since 𝕎(𝑘(𝑦))[ 1𝜋 ] is a field, this shows that every 𝑟1-minor in 𝑀1 thought
of as an element in (𝑅ℤ)𝑟2⋅𝑟1 ⊇ M𝑟2×𝑟1 (𝕎(𝑅)[ 1𝜋 ]) vanishes identically when restricted to 𝑘(𝑦)ℤ. The same
must be true for every point in the Zariski closure of Spec (𝑘(𝑦)) ⊆ Spec (𝑅). In particular, we have found
a closed point 𝑥 → Spec (𝑅) for which 1,𝑥 → 2,𝑥 is not injective. This contradicts our assumption, so
𝑍 = ∅. A similar argument proves that 2 → 3 is surjective and by rank considerations the sequence is
also exact in the middle. □

We use the ◊-functor to consider the categories of Dieudonné modules and of isocrystals as analytic
objects.

Definition 4.10. If 𝑆 = Spa(𝑅,𝑅+) we let Sht𝕎(𝑆) ∶= (Shtsch𝕎 )◊pre (𝑆) = Shtsch𝕎 (Spec𝑅). This rule
defines a functor Sht𝕎 ∈ (Perf aff,Cat⊗,ex1,𝑂𝐸

).

Proposition 4.11. The following statements hold.
(1) Sht𝕎 ∈ (Perf aff,Cat⊗,ex1,𝑂𝐸

).
(2) We have a commutative diagram

Sht𝕎 𝕎[ 1𝜋 ] (𝑌 )An

𝕎 𝕎[ 1𝜋 ] × 𝕎[ 1𝜋 ] (𝑌 )An × (𝑌 )An
Δ Δ

(id,𝜑∗)

with Cartesian squares.

Proof. This formally follows from Proposition 4.3, Proposition 3.29, Corollary 3.26 and Remark 3.22. □

Definition 4.12. Let𝑆 = Spa(𝑅,𝑅+) ∈ Perfaff . We let Sht𝕎[ 1𝜋 ](𝑆) ∶= Shtsch𝕎 [ 1𝜋 ](Spec𝑅) and𝔅◊pre (𝑆) =
𝔅(Spec𝑅). These rules organize into objects Sht𝕎[ 1𝜋 ] ∈ (Perf aff,Cat⊗1,𝐸) and𝔅◊pre ∈ (Perf aff,Cat⊗,ex1,𝐸 ).
We let 𝔅◊ be the 𝑣-sheafification of 𝔅◊pre . We call objects of 𝔅◊(𝑆) analytic isocrystals over 𝑆.

Remark 4.13. It follows from Remark 2.11 and Proposition 4.7 that (BunFF)An ≃ 𝔅◊.

Proposition 4.14. Let 𝑆 = Spa(𝑅,𝑅+) ∈ Perfaff , the following hold:
(1) Sht𝕎[ 1𝜋 ] is a v-separated presheaf in (Perf aff,Cat⊗1,𝐸).
(2) The v-sheafification of Sht𝕎[ 1𝜋 ] is equivalent to 𝔅◊ in (Perf aff,Cat⊗1,𝐸).
(3) A sequence in Sht𝕎[ 1𝜋 ] is exact in 𝔅◊ if and only if it is exact in 𝔅◊pre .

Proof. The first two claims follow formally from Corollary 3.26 and Proposition 3.29.
For the third claim let Σ ∶= [1 → 2 → 3] ∈ Sht𝕎[ 1𝜋 ](𝑆) be a sequence i.e. Σ is a sequence in

Shtsch𝕎 [ 1𝜋 ](Spec𝑅). Since 𝔅◊pre (𝑆) → 𝔅◊(𝑆) is a map in Cat⊗,ex1,𝐸 , it is clear that if Σ is exact in 𝔅◊pre
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then it is also exact in 𝔅◊. Assume that Σ is exact in 𝔅◊(𝑆). By definition, this means that Σ is exact
in 𝔅(Spec𝑅′) for a v-cover Spa(𝑅′, 𝑅′+) → Spa(𝑅,𝑅+). Since Sht𝕎[ 1𝜋 ] → 𝔅◊ is fully-faithful, we
deduce that the sequence is a complex. By the second part of Proposition 4.9, we can check exactness on
closed points of Spec𝑅. Since Spa(𝑅′, 𝑅′+) → Spa(𝑅,𝑅+) is a v-cover, every closed point of Spec𝑅 is
in the image of Spec𝑅′ → Spec𝑅. Indeed, closed points of Spec𝑅 support continuous valuations each
of which will lift to a continuous valuation of 𝑅′. We have shown that if a sequence becomes exact in
𝔅(Spec𝑅′), then it was already exact in 𝔅(Spec𝑅). □

Proposition 4.15. Let 𝑆 = Spa(𝑅,𝑅+). Let Σ = [1 → 2 → 3] be a sequence with 𝑖 ∈ 𝔅◊(𝑆), and
each of constant rank rk.(𝑖) = 𝑟𝑖 such that 𝑟1 + 𝑟3 = 𝑟2. The sequence is exact if and only if for every
geometric point 𝑥→ 𝑆 the sequence 𝑥∗Σ with 𝑥∗𝑖 ∈ 𝔅◊(𝑥) is exact.

Proof. The forward implication is evident. Assume that for every geometric point of 𝑆 the sequence
is exact. By the definition of the exact structure on 𝔅◊(𝑆) via sheafification, we may test exactness v-
locally. More precisely, it suffices to find a v-cover 𝑓 ∶ 𝑆′ → 𝑆 with 𝑆′ = Spa(𝑅′, 𝑅′+) such that each
𝑖 ∈ Sht𝕎[ 1𝜋 ](𝑆

′) and such that 𝑔∗Σ is exact in 𝔅◊pre (𝑆′). Without loss of generality, 𝑆 = 𝑆′ and
𝑖 ∈ 𝔅◊pre (𝑆). Since the map 𝑅 →

∏

𝑥∈Spa(𝑅,𝑅+)𝐶𝑥 is injective, we can test on geometric points if the
map is a complex. Once we know it is a complex, by Proposition 4.9 we can test exactness on closed
points of Spec𝑅. As every closed point of Spec𝑅 supports a geometric point of Spa(𝑅,𝑅+), the proof is
complete. □

4.2. Shtukas, isoshtukas and meromorphic vector bundles.
Definition 4.16. Let 𝑆 = Spa(𝑅,𝑅+) ∈ Perf aff . A crystalline shtuka over 𝑆 is a pair ( ,Φ ), where 
is a vector bundle over 𝑆 and Φ is an isomorphism

Φ ∶ (𝜑∗)𝑌𝑆 → 𝑌𝑆
that is meromorphic (cf. [SW20, Definition 5.3.5]) along 𝜋 = 0. Morphisms of these data are 𝜑-
equivariant maps. We declare a sequence of morphisms to be exact if the underlying maps of vector
bundles form an exact sequence. We denote this category by Sht (𝑆) ∈ Cat⊗,ex1,𝑂𝐸

. This induces a functor
Sht ∈ (PSchaff,Cat⊗,ex1,𝑂𝐸

).

Proposition 4.17. The following statements hold.
(1) Sht ∈ (Perf aff,Cat⊗,ex1,𝑂𝐸

).
(2) We have the following commutative diagram with Cartesian squares:

Sht  [
1
𝜋 ] (𝑌 )mer

  [
1
𝜋 ] ×  [

1
𝜋 ] (𝑌 )mer × (𝑌 )mer

Δ Δ

(id,𝜑∗)

Proof. That the left-hand square is Cartesian is a reinterpretation of Definition 4.16. That the right-hand
square is Cartesian follows formally from Corollary 3.34 and Corollary 3.26. □

Definition 4.18. We define Sht [
1
𝜋 ] ∈ (Perf aff,Cat⊗1,𝐸) by requiring that the following is a Cartesian

diagram

Sht [
1
𝜋 ]  [

1
𝜋 ]

 [
1
𝜋 ]  [

1
𝜋 ] ×  [

1
𝜋 ] .

Δ

(id,𝜑∗)
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We call objects of Sht [
1
𝜋 ](𝑆) isoshtukas over 𝑆.

Definition 4.19. We let Bunmer
FF ∶= (BunFF)mer as an object in (Perf aff,Cat⊗,ex1,𝐸 ). For 𝑆 ∈ Perf aff we

call Bunmer
FF (𝑆) the stack of meromorphic vector bundles on the relative Fargues–Fontaine curve over 𝑆.

It follows from Remark 2.11 that we have a correspondence

Bunmer
FF BunFF .

𝔅◊

𝜎

𝛾 (4.1)

We give names to these maps.

Definition 4.20. (1) We call the map 𝜎 ∶ Bunmer
FF → BunFF constructed in (4.1) the special polygon

map.
(2) We call the map 𝛾 ∶ Bunmer

FF → 𝔅◊ constructed in (4.1) the generic polygon map.

We now study basic properties of Bunmer
FF . Let 𝑆 = Spa(𝑅,𝑅+) ∈ Perfaff .

Proposition 4.21. The following statements hold.
(1) Sht [

1
𝜋 ] is a v-separated presheaf in (Perf aff,Cat⊗1,𝐸).

(2) The v-sheafification of Sht [
1
𝜋 ] is equivalent to Bunmer

FF in (Perf aff,Cat⊗1,𝐸).

(3) A sequence in Sht [
1
𝜋 ] is exact in Bunmer

FF if and only if it is exact in Bun
(merpre)
FF .

(4) Exactness in Bunmer
FF can be verified on geometric points.

Proof. The first two claims follow formally from Corollary 3.26 and Corollary 3.34.
Let 𝑆 = Spa(𝑅,𝑅+) ∈ Perf aff . Fix Σ ∶= [1 → 2 → 3] a sequence with 𝑖 ∈ Sht [

1
𝜋 ](𝑆). It

is clear that if Σ is exact in (BunFF)
(merpre)(𝑆) then it is also exact in Bunmer

FF (𝑆). Assume that Σ is exact
in Bunmer

FF (𝑆). By definition, this means that Σ is exact in BunFF(Spd(𝑅′
disc, 𝑅

′+
disc)) for a v-cover 𝑆′ ∶=

Spa(𝑅′, 𝑅′+) → Spa(𝑅,𝑅+), and we need to show that Σ was already exact in BunFF(Spd(𝑅disc, 𝑅+
disc)).

Since Sht [
1
𝜋 ] → Bunmer

FF is fully-faithful, we deduce that the sequence is a complex. Let 𝑇 ′ and 𝑇
denote Spd(𝑅′

disc, 𝑅
′+
disc) and Spd(𝑅disc, 𝑅+

disc). We can verify exactness of Σ on geometric points of 𝑇 . We
warn the reader that although the map 𝑆′ → 𝑆 is a v-cover the map 𝑇 ′ → 𝑇 might no longer be surjective
even at the level of topological spaces. Nevertheless, it is surjective on the loci where 𝜛 is topologically
nilpotent for a pseudo-uniformizer 𝜛 ∈ 𝑅+. Indeed these loci agree with 𝑆′ and 𝑆, respectively. So it
suffices to prove exactness of Σ on the complement of 𝑆 in 𝑇 .

Let 𝑈 = Spd(𝑅disc, 𝑅disc), this is the locus in 𝑇 where |𝜛| ≥ 1. The complement of 𝑆 in 𝑇 , is the
locus in which 𝜛 is not topologically nilpotent. If 𝑥 ∈ 𝑇 ⧵ 𝑆 then there is a vertical generization 𝑦 of 𝑥
for which |𝜛|𝑦 = 1. Indeed, 𝑥 is represented by a geometric point Spa(𝐶,𝐶+) → Spd(𝑅disc, 𝑅+

disc) and 𝑦
is represented by the induced map Spa(𝐶,𝑂𝐶 ) → Spd(𝑅disc, 𝑅+

disc), so we see that 𝜛 maps to 𝑂𝐶 . If 𝜛
lands in the maximal ideal of 𝑂𝐶 then 𝑦 (and consequently 𝑥) are in the locus in which 𝜛 is topologically
nilpotent. Otherwise, the value of |𝜛|𝑦 = 1. This shows that 𝑇 ⧵ 𝑆 ⊆ 𝑈 (where 𝑈 denotes the closure),
and since 𝑆 ⊆ 𝑇 is an open subset, we must have 𝑇 ⧵ 𝑆 = 𝑈 . Moreover, as we argued above 𝑈 ⧵ 𝑈
consists of vertical specializations of elements in 𝑈 , and the same holds for 𝑈 × Spd𝐸 and 𝑈 × Spd𝐸.
We can now conclude that Σ is exact over 𝑈 if and only if it is exact over 𝑈 . Indeed, for any affinoid
perfectoid (𝐴,𝐴+) the restriction functor

(𝑌Spa(𝐴,𝐴+)) → (𝑌Spa(𝐴,𝐴◦))
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is an exact equivalence, so exactness can be verified on rank 1 points and in particular it is insensitive to
passing to vertical generizations.

By hypothesis, Σ is exact when restricted to Spd(𝑅′, 𝑅′). By Proposition 4.7, we may interpret Σ
restricted to 𝑈 as a sequence in 𝔅(Spec𝑅) that becomes exact over 𝔅(Spec𝑅′). By Proposition 4.9,
we can finish verifying exactness on closed points of Spec𝑅. But the map Spec𝑅′ → Spec𝑅 covers
all closed points, since every maximal ideal of 𝑅 supports a valuation that is continuous for the 𝜛-adic
topology. The kernel of any lift of such a valuation to 𝑅′ maps to this maximal ideal.

For the final claim, we wish to prove that a sequence Σ ∶= [1 → 2 → 3] is exact in Bunmer
FF (𝑆) if

and only if for every geometric point 𝑥 → 𝑆 the sequence Σ𝑥 is exact. By definition, exactness can be
verified v-locally. Hence, we may assume that 𝑆 = Spa(𝑅,𝑅+) is a product of points with𝑅+ =

∏

𝑖∈𝐼𝐶
+
𝑖

and that each 𝑗 ∈ Sht [
1
𝜋 ] for 𝑗 ∈ {1, 2, 3}.

Since the map 𝑅 →
∏

𝑖∈𝐼𝐶𝑖 is injective, we can deduce that Σ is a complex. We can argue as above to
show that Σ is exact when interpreted as a sequence in BunFF(Spd(𝑅disc, 𝑅+

disc)). Namely, we show that
Σ is exact on all points of Spd(𝑅disc, 𝑅+

disc). This is clear on the locus where 𝜛 is topologically nilpotent
by our assumption. To verify exactness on Spd(𝑅disc, 𝑅disc) we interpret this as an object in 𝔅(Spec𝑅)
and we may check exactness on closed points. For any closed point, the map induced by the residue field
Spec𝐶 → Spec𝑅 can be promoted to a geometric point Spa𝐶 → Spa(𝑅,𝑅+) and the induced sequence in
𝔅(Spec𝐶) is induced from the corresponding one in Sht [

1
𝜋 ](𝐶,𝑂𝐶 ), which is exact by assumption. □

The following statement will be key for our purposes.

Corollary 4.22. A sequenceΣ∶ [1 → 2 → 3] inBunmer
FF (𝑆) is exact if and only if its image inBunFF(𝑆)

is exact.

Proof. Since both statements are v-local and can be verified at the level of geometric points, we may as-
sume 𝑆 = Spa(𝐶,𝐶+). We observe that if 𝑇 ⊆ 𝑆 is the rank 1 point then Bunmer

FF (𝑇 ) ≃ Bunmer
FF (𝑆) and

BunFF(𝑇 ) ≃ BunFF(𝑆). Indeed, every moduli problem involved in the construction of these categories is
insensitive to the ring of integral elements since [𝜛] is inverted. We assume that 𝑆 = Spa(𝐶,𝑂𝐶 ) and
that 𝑖 ∈ Sht [

1
𝜋 ](𝑆). Fix a pseudo-uniformizer 𝜛 ∈ 𝑂𝐶 . In this case, exactness on Bunmer

FF (𝑆) is equiv-
alent to exactness of underlying vector bundles over Spa𝕎(𝑂𝐶 ){𝜋⋅[𝜛]≠0}, while exactness on BunFF(𝑆)
is equivalent to exactness of underlying vector bundles over 𝑌(0,∞),𝑆 = Spa𝔸inf (𝑂𝐶 ){𝜋⋅[𝜛]≠0}. We can
analyze the behavior on the loci {|[𝜛]| ≤ |𝜋|} and {|𝜋| ≤ |[𝜛]|}. In the former, the two spaces agree so
their categories of vector bundles have the same exact structure. On the latter, we are comparing vector
bundles over Spec𝐵[0,1],𝑆 [

1
𝜋 ] against vector bundles over (0,1],𝑆 .

Recall from [FS24, Theorem II.0.1, Corollary II.1.12] that 𝐵[0,1],𝑆 is a principal ideal domain, and that
the closed ideals give rise to untilts of 𝐶 . The claim now follows from the fact that the map of locally
ringed topological spaces

𝑓 ∶ (0,1],𝑆 → Spec𝐵[0,1],𝑆 [
1
𝜋
]

covers every maximal ideal of the target and that 𝐵[0,1],𝑆 [
1
𝜋 ] → H0((0,1],𝑆 ,) is injective. This implies

that 𝑓 ∗ reflects exactness which is what we needed to show. □

Proposition 4.23. The following diagrams are Cartesian in (Perf aff,Cat⊗,ex1,𝑂𝐸
) and (Perf aff,Cat⊗1,𝐸)

respectively:

Sht Bunmer
FF Sht [

1
𝜋 ] Bunmer

FF

Sht𝕎 𝔅◊ Sht𝕎[ 1𝜋 ] 𝔅◊

(4.2)

Here, the horizontal arrows in the right-hand square are the ones induced by sheafification.
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Proof. The argument is a diagram chase whose key ingredients are Corollary 3.33 and Proposition 3.32.
Since the two arguments are identical, we only provide the details for the first diagram. From Proposi-
tion 4.17 and Proposition 4.11 we have the following Cartesian diagrams

Sht (𝑌 )mer Sht𝕎 (𝑌 )An

 (𝑌 )mer × (𝑌 )mer 𝕎 (𝑌 )An × (𝑌 )An .

Δ Δ (4.3)

Similarly, we obtain Cartesian diagrams

Bunmer
FF (𝑌 )mer 𝔅◊ (𝑌 )An

(𝑌 )mer (𝑌 )mer × (𝑌 )mer (𝑌 )An (𝑌 )An × (𝑌 )An .

(4.4)

Moreover, these four Cartesian diagrams can be organized in a commutative square of Cartesian diagrams.
For any fixed 𝑖 ∈ {𝑙𝑒𝑓 𝑡, 𝑟𝑖𝑔ℎ𝑡} and 𝑗 ∈ {𝑢𝑝𝑝𝑒𝑟, 𝑙𝑜𝑤𝑒𝑟}, their (𝑖, 𝑗)th corners form a commutative diagram,
which we denote 𝐶𝑖,𝑗 . For example, 𝐶𝑙𝑒𝑓 𝑡,𝑢𝑝𝑝𝑒𝑟 is the diagram that we wish to prove is Cartesian. Note
that 𝐶𝑙𝑒𝑓 𝑡,𝑙𝑜𝑤𝑒𝑟 is Cartesian by Corollary 3.33 and that for any 𝑗 ∈ {𝑢𝑝𝑝𝑒𝑟, 𝑙𝑜𝑤𝑒𝑟} the square 𝐶𝑟𝑖𝑔ℎ𝑡,𝑗 is
automatically Cartesian, since the horizontal maps in it are isomorphisms. From this and the fact that
taking limits commutes with each other, it formally follows that 𝐶𝑢𝑝𝑝𝑒𝑟,𝑙𝑒𝑓 𝑡 is also Cartesian. □

5. SEMI-STABLE FILTRATIONS

As we have justified in Proposition 4.21 (resp. Proposition 4.14), given 𝑆 ∈ Perf aff , the category
Sht [

1
𝜋 ](𝑆) (resp. Sht𝕎[ 1𝜋 ](𝑆)) is a full subcategory of Bunmer

FF (𝑆) (resp. 𝔅◊(𝑆)) and it unambigu-
ously inherits an exact structure. From this point on we will treat Sht [

1
𝜋 ] and Sht𝕎[ 1𝜋 ] as objects in

(Perf aff,Cat⊗,ex1,𝐸 ). For fixed 𝑆 ∈ Perf aff , we may think of Sht𝕎[ 1𝜋 ](𝑆) as the full subcategory of those
analytic isocrystals over 𝑆 that admit a lattice. Similarly, we think of Sht [

1
𝜋 ](𝑆) as the full subcategory

of those meromorphic vector bundles over 𝑆 that admit a lattice.

Definition 5.1. Fix 𝑆 ∈ Perf aff with 𝑆 = Spa(𝑅,𝑅+). Given 𝜆 ∈ ℚ with 𝜆 = 𝑚
𝑛 and (𝑚, 𝑛) = 1,

we let (𝜆) ∈ Sht𝕎(𝑆)[ 1𝜋 ] be given by the pair (𝕎(𝑅)[ 1𝜋 ]
𝑛,𝑀), where 𝑀 is the matrix operator with

𝑀 ⋅ 𝑒𝑖 = 𝑒𝑖+1 for 1 ≤ 𝑖 ≤ 𝑛−1 and𝑀 ⋅ 𝑒𝑛 = 𝜋−𝑚𝑒1. We call (𝜆) the simple standard analytic isocrystal
of slope 𝜆.

We say that an object in  ∈ 𝔅◊(𝑆) is standard if it is isomorphic to one of the form
⨁

𝜆∈ℚ
(𝜆)𝑚𝜆 ,

where 𝑚∶ ℚ → ℕ is a multiplicity function with finite support.

Remark 5.2. We warn the reader that our parametrization of standard analytic isocrystals reverses the
signs of the parametrization of “usual” isocrystals used on most classical conventions.

For us a Newton polygon is a function 𝑓 ∶ ℚ → ℤ≥0 with 𝑓−1(ℤ>0) finite. Its slopes are the values
𝑥 ∈ ℚ with 𝑓 (𝑥) ≠ 0 and the multiplicity of the slope 𝑥 is 𝑓 (𝑥). We denote by  the set of all Newton
polygons. Then  is endowed with the partial order 𝑓 ≤ 𝑔 if and only if

∑

𝑥∈ℚ
𝑓 (𝑥)𝑥 =

∑

𝑥∈ℚ
𝑔(𝑥)𝑥
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and for all 𝑥 ∈ ℚ one has
∑

𝑦≥𝑥
𝑓 (𝑦)𝑦 ≤

∑

𝑦≥𝑥
𝑔(𝑦)𝑦 .

We say a Newton polygon is semi-stable if it has a single slope. We let  ss ⊆  denote the subset of
semi-stable polygons, these are the minimal elements in  .

We wish to use to stratifyBunmer
FF . Before we do this, we make the following sanity check. It says that

over geometric points analytic isocrystals and meromorphic vector bundles admit a lattice. Alternatively,
it says that sheafification does not change the naive value on geometric points.

Lemma 5.3. Let 𝑆 = Spa(𝐶,𝐶+) be a geometric point. We have the following equivalences in Cat⊗,ex1,𝐸 :

(1) 𝔅◊(𝑆) ≃ Sht𝕎[ 1𝜋 ](𝑆) ≃ 𝔅(Spec 𝔽 𝑞).
(2) Bunmer

FF (𝑆) ≃ Sht [
1
𝜋 ](𝑆).

Proof. The second claim follows from the first one and Proposition 4.23. By inspection, Sht𝕎[ 1𝜋 ](𝑆) ≃
𝔅(Spec �̄�𝑞) and these categories sit fully-faithfully inside 𝔅◊(𝑆). It suffices to show that Sht𝕎[ 1𝜋 ](𝑆) ⊆
𝔅◊(𝑆) is also essentially surjective. Fix  ∈ 𝔅◊(𝑆). Then there is a v-cover 𝑓 ∶ 𝑆′ → 𝑆 such that
𝑓 ∗ ∈ Sht𝕎[ 1𝜋 ](𝑆

′). We may assume that 𝑆′ = Spa(𝐶 ′, 𝐶 ′+) is a geometric point. In this case, 𝑓 ∗ is of
the form

⨁

𝜆∈ℚ(𝜆)𝑚𝜆 . Moreover,  ∈ Desc.(Sht𝕎[ 1𝜋 ], 𝑆
′∕𝑆). The descent datum can be recorded by an

automorphism of
⨁

𝜆∈ℚ(𝜆)𝑚𝜆 over Spec (𝐶 ′⊗̂𝐶𝐶 ′). Now, this is a connected affine scheme by [Sch17,
Lemma 14.6]. The descent datum is necessarily given by a constant function in

∏

𝜆∈ℚAut((𝜆)𝑚𝜆 ) and
since it has to satisfy the cocycle condition upon pullback to Spec (𝐶 ′⊗̂𝐶𝐶 ′⊗̂𝐶𝐶 ′), this function is nec-
essarily the identity. Consequently,  is isomorphic to

⨁

𝜆∈ℚ(𝜆)𝑚𝜆 already over 𝑆. □

If 𝑆 is a geometric point, then isomorphism classes of objects in BunFF(𝑆) and 𝔅◊(𝑆) are both in
natural bijection with  . Indeed, for analytic isocrystals this is Lemma 5.3, and for vector bundles on the
Fargues–Fontaine curve this is proven in [Far20] and [Ans19, Theorem 3.11]. In other words, we have
canonical bijections

𝜈 ∶ 𝔅◊(𝑆)
≃
←←←←←←←→ 

≃
←←←←←←←← BunFF(𝑆) ∶𝜈 .

Definition 5.4. Given 𝑆 ∈ Perfaff and  ∈ Bunmer
FF (𝑆) we define two functions 𝛾 , 𝜎 ∶ |𝑆| →  which

we call the generic polygon and special polygon, respectively. For 𝑥 ∈ |𝑆| we choose a geometric point
𝑥→ 𝑆 over 𝑥 and we let 𝛾 (𝑥) ∶= 𝜈(𝛾(𝑥)). We define 𝜎 similarly.

Remark 5.5. Using a different language, Kedlaya proves that for any  ∈ Bunmer
FF we have 𝛾 ≥ 𝜎 ,

see [Ked05, Prop. 5.5.1]. This a key step in Kedlaya–Liu’s proof of the semicontinuity theorem [KL13,
Theorem 7.4.5].

Definition 5.6. Let  ∈ Bunmer
FF (𝑆)with constant rank and image ∈ 𝔅◊(𝑆) under the map 𝛾 ∶ Bunmer

FF (𝑆) →
𝔅◊(𝑆).

(1) We say that  is locally standard if its Newton polygon is locally constant.
(2) We say  is generically locally standard if  is locally standard, equivalently if 𝛾 is locally

constant.
We let (Bunmer

FF )loc(𝑆) and (𝔅◊)loc(𝑆) denote the full subcategories described above.

Remark 5.7. The functors
(Bunmer

FF )loc, (𝔅◊)loc ∈ (Perf aff,Cat⊗,ex1,𝐸 )

are still v-sheaves since the condition defining them can be verified v-locally. Indeed, for a v-cover
𝑓 ∶ Spa(𝑅1, 𝑅+

1 ) → Spa(𝑅2, 𝑅+
2 ) and an open and closed decomposition Spa(𝑅1, 𝑅+

1 ) =
∐

𝛾∈ 𝑈𝛾 we
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must have 𝑈𝛾 = 𝑓−1(𝑓 (𝑈𝛾 )) since the generic Newton polygon is an invariant of the geometric points of
Spa(𝑅2, 𝑅+

2 ). Since |𝑓 | is a quotient map, 𝑓 (𝑈𝛾 ) is also closed and open in |Spa(𝑅2, 𝑅+
2 )| so the Newton

polygon on Spa(𝑅2, 𝑅+
2 ) is locally constant.

Definition 5.8. Let 𝑆 = Spa(𝑅,𝑅+). We say that an object ( ,Φ) ∈ Sht𝕎(𝑆) is anti-effective if the
isomorphism Φ−1 ∶  → 𝜑∗ extends to a map Ψ∶  → 𝜑∗ defined over Spec𝕎(𝑅). An object in
 ∈ Sht (𝑆) is anti-effective if its image in Sht𝕎(𝑆) is anti-effective.

Proposition 5.9. Let  ∈ Bunmer
FF (𝑆) such that the function 𝛾 is constant and such that its smallest slope

is 0. Then it lifts v-locally to an anti-effective crystalline shtuka.

Proof. By Proposition 4.23 it suffices to prove that locally standard analytic isocrystals of smallest slope 0
lift v-locally to an anti-effective Dieudonné module. Working v-locally, we may assume 𝛾() ∈ Sht𝕎[ 1𝜋 ](𝑆),
and since 𝛾() is locally standard, we may by [HK22, Theorem 2.11] even assume 𝛾() ≅ ⊕𝑛

𝑖=1(𝜆𝑖)
𝑚𝑖 .

By assumption, 𝜆𝑖 ≥ 0 for 𝑖. The standard models of (𝜆𝑖) already define an anti-effective crystalline
shtuka by inspection of Definition 5.1. □

Lemma 5.10. Suppose that 𝑆 = Spa(𝑅,𝑅+) is a product of points. Let ( ,Φ) ∈ Sht (𝑆) be anti-
effective, then

HomBunmer
FF

(, ) = Hom𝔅◊ (, 𝛾()) .
Moreover, if 𝑓 ∈ Hom𝔅◊ (, 𝛾()) defines a sub-isocrystal  ⊆  , then the corresponding lift also defines
a sub-bundle  ⊆  in Bunmer

FF .

Proof. By Proposition 4.21, we may compute HomBunmer
FF

(, ) in Sht [
1
𝜋 ]. Since 𝐵[0,𝑟],𝑆 ⊆ 𝕎𝑅, the

map
HomBunmer

FF
(, ) → Hom𝔅◊ (, 𝛾())

is injective. To prove surjectivity, we fix a basis of 𝛽 ∶ 𝑛 →  over [0, 𝑞𝑁 ] for some𝑁 ∈ ℕ. This induces

a basis 𝜑∗𝛽 ∶ 𝑛 → 𝜑∗ over [0, 1𝑁 ], let 𝑟 = 1
𝑁 . Since ( ,Φ) is anti-effective, we can think of ( ,Φ)

through 𝛽 and 𝜑∗𝛽 as a matrix 𝑀 ∈ GL𝑛(𝐵𝑅[0,𝑟]) such that

𝑀−1 ∈ GL𝑛(𝐵𝑅[0,𝑟][
1
𝜋
]) ∩𝑀𝑛×𝑛(𝕎𝑅) .

A map 𝑓 ∈ Hom𝔅◊ (, 𝛾()) can then be thought of as a vector 𝑣 ∈ 𝕎(𝑅)[ 1𝜋 ]
𝑛 satisfying the equation

𝑀𝜑𝑣 = 𝑣 .

On the other hand, 𝑣 ∈ HomBunmer
FF

(, ) if and only if 𝑣 ∈ 𝐵[0,𝑠][
1
𝜋 ] for some 𝑠 > 0. Indeed, we can use

𝜑-equivariance to extend this map along ( 𝑠2 ,∞). Replacing 𝑣 by 𝜋𝑁 ⋅ 𝑣, we may assume 𝑣 ∈ 𝕎(𝑅)𝑛.

We fix a norm of | ⋅ |∶ 𝑅 → ℝ inducing the topology of 𝑅 with |𝜛| = 1
𝑞 and define a function

| ⋅ |𝑘 ∶ 𝕎𝑅 → ℝ by the formula
∞
∑

𝑖=0
[𝑎𝑖]𝜋𝑖 ↦ sup0≤𝑖≤𝑘 |𝑎𝑖|.

This definition extends to 𝑀𝑛×𝑛(𝕎𝑅) and (𝕎𝑅)𝑛 by taking supremum over the entries. By the strong
triangle inequality, and because 𝑀−1 ∈ 𝑀𝑛×𝑛(𝕎𝑅), we see that for every 𝑘 ∈ ℕ the inequality |𝑀−1 ⋅
𝑣|𝑘 ≤ |𝑀−1

|𝑘 ⋅ |𝑣|𝑘 holds and by inspection |𝜑𝑣|𝑘 = |𝑣|𝑞𝑘. From this we deduce that |𝑣|𝑞−1𝑘 ≤ |𝑀−1
|𝑘.

Let 𝑚𝑖𝑗 ∈ 𝐵𝑅[0,𝑟] denote the (𝑖, 𝑗) entry of 𝑀−1 and write 𝑚𝑖𝑗 =
∑∞
𝑙=0[𝑚𝑖𝑗𝑙]𝜋

𝑙. The sequences 𝑚𝑖𝑗𝑙 all
satisfy that lim𝑙↦∞ |𝑚𝑖𝑗𝑙| ⋅ (

1
𝑞 )
𝑁 ⋅𝑙 = 0. Now, Lemma 5.11 shows that lim𝑙↦∞ |𝑀−1

|𝑙 ⋅ (
1
𝑞 )
𝑁 ⋅𝑙 = 0 and in

particular that lim𝑙↦∞ |𝑣|𝑙 ⋅ (
1
𝑞 )
𝑁 ⋅(𝑞−1)⋅𝑙 = 0, which implies that 𝑣 ∈ (𝐵𝑅

[0, 1
𝑁 ⋅(𝑞−1) ]

)𝑛 as we needed to show.
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By Proposition 4.21, the last claim can be verified at the level of geometric points. Consider the ideal 𝐼
in 𝐵𝐶[0,1] generated by the entries of 𝑣. Since 𝐵𝐶[0,1] is a principal ideal domain, the zero locus of 𝐼 consists
of finitely many closed points in Spec𝐵𝐶[0,1]. Moreover, the zero locus is 𝜑-equivariant so it is at worst the
ideal cut out by 𝜋, but then it avoids Spec𝐵𝐶[0,1][

1
𝜋 ]. □

Lemma 5.11. Let 𝐼 be a finite set and 𝜌 a number with 0 < 𝜌 < 1. For each 𝑖 ∈ 𝐼 , let (𝑏𝑖,𝑗)𝑗≥0 be
a sequence in ℝ≥0 such that lim𝑗↦∞ 𝑏𝑖,𝑗 ⋅ 𝜌𝑗 = 0. For each 𝑗 ≥ 0, let 𝐵𝑗 = max𝑖∈𝐼,𝑗′≤𝑗{𝑏𝑖,𝑗′}. Then
lim𝑗↦∞ 𝐵𝑗 ⋅ 𝜌𝑗 = 0.

Proof. This easily reduces to the case 𝐼 = {1}. Fix 𝜀 > 0. By assumption, there is some 𝑗𝜀,0 > 0 such
that for all 𝑗 ≥ 𝑗𝜀,0, we have 𝑏𝑗𝜌𝑗 < 𝜀. Put

𝜆 = max𝑗′<𝑗𝜀,0𝑏𝑗′𝜌
𝑗′ .

We now pick a big enough 𝑗𝜀, such that 𝜌𝑗𝜀−𝑗𝜀,0𝜆 < 𝜀. Then for any 𝑗 ≥ 𝑗𝜀 we have

𝐵𝑗𝜌
𝑗 = max𝑗′≤𝑗{𝑏𝑗′𝜌𝑗}

= max{max𝑗′<𝑗𝜀,0{𝑏𝑗′𝜌
𝑗′𝜌𝑗−𝑗

′
},max𝑗𝜀,0≤𝑗′≤𝑗{𝑏𝑗′𝜌

𝑗′𝜌𝑗−𝑗
′
}} < 𝜀 .

Indeed, if 𝑗′ < 𝑗𝜀,0, then 𝑏𝑗′𝜌𝑗
′𝜌𝑗−𝑗′ ≤ 𝜆𝜌𝑗−𝑗′ ≤ 𝜆𝜌𝑗𝜀−𝑗𝜀,0 < 𝜀 (as 𝜌 < 1 and 𝑗 − 𝑗′ ≥ 𝑗𝜀 − 𝑗𝜀,0); and if

𝑗′ > 𝑗𝜀,0, then 𝑏𝑗′𝜌𝑗
′ < 𝜀 and 𝜌𝑗−𝑗′ < 1. □

Definition 5.12. Let 𝑆 ∈ Perfaff . For a fixed 𝜆 ∈ ℚ, we let (Bunmer
FF )𝜆(𝑆) ⊆ (Bunmer

FF )loc(𝑆), (resp.
(𝔅◊)𝜆(𝑆) ⊆ (𝔅◊)loc(𝑆), resp. BunFF(𝑆)𝜆 ⊆ BunFF) denote the full subcategories of objects whose
generic Newton polygon function 𝛾(−) (resp. Newton polygon function 𝜈) attaches to each geometric point
of 𝑆 a constant polygon of slope 𝜆. We call objects in these subcategories semi-stable of slope 𝜆.

Proposition 5.13. For all 𝜆 ∈ ℚ the maps (𝔅◊)𝜆
𝛾
←←←←←←← (Bunmer

FF )𝜆
𝜎
←←←←←←←→ (BunFF)𝜆 are exact equivalences of

sheaves of 𝐸-linear exact categories.

Remark 5.14. We note that the categories (𝔅◊)𝜆, (Bunmer
FF )𝜆, (BunFF)𝜆 are not stable under ⊗-products.

Proof. To prove that 𝛾 and 𝜎 are equivalences, it suffices to show that they are fully-faithful. Indeed, by
[CS17, Proposition 4.3.13] (resp. [FS24, Theorem I.3.4]) every object of (𝔅◊)𝜆 (resp. (BunFF)𝜆) is pro-
étale locally isomorphic to (𝜆)𝑚 which is already in Bunmer

FF (Spd 𝔽 𝑞). Then, Lemma A.2 allows us to
conclude. To show full-faithfulness, we may pass to internal Hom-objects and take global sections which
reduces us to prove that the maps

Hom𝔅◊ (, 𝛾)
𝛾
←←←←←←← HomBunmer

FF
(, )

𝜎
←←←←←←←→ HomBunmer

FF
(, 𝜎)

are isomorphisms for all  ∈ Bunmer
FF (𝑆)0.

Let us show 𝛾 is fully-faithful. We may instead prove fully-faithfulness of the maps Sht [
1
𝜋 ](𝑆) →

Sht𝕎[ 1𝜋 ](𝑆) when restricted to the slope 0-locus, since this will pass to the sheafification. More precisely,
given ( ,Φ) ∈ Sht [

1
𝜋 ](𝑆) with image in (Bunmer

FF )0 ⊂ Bunmer
FF , we have a bijection

HomBunmer
FF

(, ) → Hom𝔅◊ (, 𝛾) .

Indeed, this follows from Proposition 5.9 and Lemma 5.10.
Let 𝐸 − Loc denote the category of pro-étale 𝐸-local systems. By [CS17, Proposition 4.3.13], [FS24,

Theorem I.3.4] and the argument above we get to a commutative diagram in Cat⊗1,𝐸 of the form
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𝐸 − Loc(𝑆)

Bunmer
FF (𝑆)0 BunFF(𝑆)0 .

𝔅◊(𝑆)0

≃

≃
≃

This is enough to conclude that the remaining two arrows are also equivalences.
By Lemma 3.1, Proposition 4.15 and Corollary 4.22, exactness of the equivalences can be checked on

geometric points. By Lemma 5.3, the three categories are equivalent to a semi-simple category over a
geometric point, so the exact structure is the one inherited from the additive structure and any equivalence
preserves it. □

We consider ℚ-filtered meromorphic vector bundles (resp. vector bundles, resp. analytic isocrystals).
That is, we consider sequences of the form {𝑟}𝑟∈ℚ ∈ Bunmer

FF (𝑆) (resp. {𝑟}𝑟∈ℚ ∈ BunFF(𝑆), resp.
{𝑟}𝑟∈ℚ ∈ 𝔅◊(𝑆)) with 𝑟 ⊆ 𝑠 when 𝑟 < 𝑠 such that 𝑟∕<𝑟 = 0 for all but finitely many 𝑟 ∈ ℚ and
such that

0 → 𝑟 → 𝑠 → 𝑟∕𝑠 → 0
is an exact sequence in Bunmer

FF (𝑆) (resp. BunFF(𝑆), resp. 𝔅◊(𝑆)). By hypothesis, there is 𝑁 ≫ 0 such
that 𝑠 = 𝑁 for every 𝑠 > 𝑁 and we call 𝑁 the underlying vector bundle of {𝑟}𝑟∈ℚ.

Definition 5.15. We say that a ℚ-filtered meromorphic vector bundle (resp. a vector bundle, resp. analytic
isocrystal) is a semi-stable filtration if 𝑟∕<𝑟 is semi-stable of slope 𝑟 in the sense of Definition 5.12. We
let 𝑖𝑙mer

ss (𝑆) (resp. 𝑖𝑙𝜎ss(𝑆), resp. 𝑖𝑙𝛾ss(𝑆)) denote the categories whose objects are semi-stable filtrations
and whose morphisms are maps inBunmer

FF (𝑆) (resp.BunFF(𝑆), resp.𝔅◊(𝑆)) that respect the filtration. We
endow these categories with the exact structure inherited from their underlying vector bundle. Moreover,
the tensor product of underlying vector bundles inherits a filtration with

( ⊗  )𝑟 =
∑

𝑟+𝑟=𝑟
𝑟 ⊗ 𝑟

such that
( ⊗  )𝑟∕( ⊗  )<𝑟 =

⨁

𝑟+𝑟=𝑟
𝑟∕<𝑟 ⊗ 𝑟 ∕<𝑟 .

Proposition 5.16. The natural map  𝑖𝑙mer
ss →  𝑖𝑙𝜎ss is a ⊗-exact equivalence of v-stacks.

Proof. Full-faithfulness: Let {𝑟}𝑟∈ℚ and {𝑟}𝑟∈ℚ be in  𝑖𝑙mer
ss (𝑆), with underlying meromorphic vector

bundles  and  . The internal Hom-bundle

 ∶= Hom( , ) = ∨ ⊗ 

is naturally endowed with a ℚ-filtration {𝑟}𝑟∈ℚ. It is not hard to verify that {𝑟}𝑟∈ℚ is a semi-stable
filtration. Moreover, we have an identification

Hom 𝑖𝑙mer
ss

({𝑟}𝑟∈ℚ, {𝑟}𝑟∈ℚ) = HomBunmer
FF

(,≤0) .

Analogously,
Hom 𝑖𝑙ss ({𝑟}𝑟∈ℚ, {𝑟}𝑟∈ℚ) = HomBunFF (,≤0) .

Since {𝑟}𝑟∈ℚ is semistable, one can prove inductively on the support of {𝑟}𝑟∈ℚ that

HomBunmer
FF

(,≤𝑟) = 0 = HomBunFF (,≤𝑟)
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for all 𝑟 < 0. To prove fully-faithfulness it suffices to show that

HomBunmer
FF

(,≤0∕<0) ≅ HomBunFF (,≤0∕<0) .

But since ≤0∕<0 is semi-stable of slope 0, the result follows directly from Proposition 5.13.
Essential surjectivity: Let {𝑟} ∈  𝑖𝑙𝜎ss with underlying vector bundle  of rank 𝑛. If𝐸𝑠 is the degree 𝑠

unramified extension of 𝐸, then objects in BunFF can be constructed by descent from objects in BunFF,𝐸𝑠 ,
and by fully-faithfulness a descent datum in  𝑖𝑙𝜎ss agrees with a descent datum in  𝑖𝑙mer

ss . This reduces
us to show that for a suitable 𝑠, the pullback of the filtered vector bundle {𝑟} to the Fargues–Fontaine
curve associated with 𝐸𝑠 lies in the essential image of  𝑖𝑙mer

ss →  𝑖𝑙𝜎ss. This pullback has the effect of
multiplication by 𝑠 on the slopes. Picking 𝑠 to be the product of all denominators appearing on the slopes
of {𝑟}, we may thus assume that the support of the filtration is contained in ℤ. Since essential surjectivity
can now be proved v-locally by Lemma A.2, we may think of every bundle 𝑟 as a free module 𝑀𝑟 over
𝐵𝑅[1,𝑞] with𝜑-glueing data over𝐵𝑅[1,1]. We may even assume that the graded pieces 𝑁∕<𝑁 are isomorphic
to (𝑁)𝑚𝑁 . We may choose bases for the 𝑀𝑟 over 𝐵𝑅[1,𝑞] compatible with the filtration and in such a way
that after transferring the Frobenius structure to 𝑛, the induced 𝑁-graded pieces are given by diagonal
matrices of the form 𝜋−𝑁 . Thus {𝑟} is represented by an upper block-diagonal matrix𝐴 ∈𝑀𝑛×𝑛(𝐵𝑅[1,1]),
with diagonal blocks of the form 𝜋−𝑁 ⋅ Id𝑚𝑁 ,𝑚𝑁 , describing the Frobenius structure. Let 𝑃 ⊆ GL𝑛 denote
the parabolic subgroup (containing the upper triangular matrices) corresponding to the block-diagonal
shape of 𝐴.

Now it suffices to prove the claim that there is a matrix 𝐴∞ ∈ 𝑃 (𝐵𝑅[0,1][
1
𝜋 ]) and a matrix 𝑈 ∈ 𝑃 (𝐵𝑅[1,𝑞])

with 𝑈−1𝐴∞𝜑(𝑈 ) = 𝐴. Indeed, such 𝑈 defines a (not necessarily meromorphic) isomorphism of the
filtered vector bundle {𝑟} with the filtered vector bundle represented by 𝐴∞; now, 𝜋 is only meromor-
phically inverted in 𝐵𝑅[0,1][

1
𝜋 ], hence 𝐴∞ in fact defines a meromorphic filtered vector bundle. Now our

claim follows from Lemma 5.20 below. □

Before proving the remaining Lemma 5.20, we need some preparations.

Lemma 5.17. We have 𝐵𝑅[1,1] = 𝐵𝑅[0,1][
1
𝜋 ] + [𝜛]𝐵𝑅[1,∞] .

Proof. Let 𝐴1 = 𝕎(𝑅+)[ 𝜋
[𝜛] ], 𝐴2 = 𝕎(𝑅+)[ [𝜛]

𝜋 ] and 𝐴12 = 𝕎(𝑅+)[ 𝜋
[𝜛] ,

[𝜛]
𝜋 ]. We have 𝐵𝑅[1,1] =

(𝐴12)∧𝜋[
1
𝜋 ], 𝐵

𝑅
[0,1] = (𝐴1)∧[𝜛][

1
[𝜛] ] and 𝐵𝑅[1,∞] = (𝐴2)∧𝜋[

1
𝜋 ]. After multiplication with a big enough power

of 𝜋, it suffices to show that any element of (𝐴12)∧𝜋 can be written as a sum of an element of (𝐴1)∧[𝜛] and
an element of [𝜛]

𝜋 ⋅ (𝐴2)∧𝜋 .
For any 𝑛 ≥ 1, let 𝐼𝑛 = {(𝑖, 𝑗) ∈ ℤ2 ∶ 0 ≤ 𝑖 < 𝑛} and let

𝑆𝑛 ⊆
∏

(𝑖,𝑗)∈𝐼𝑛

𝑅+

be the subset of all sequences 𝑎 = (𝑎𝑖𝑗)𝑖𝑗 for which 𝑎𝑖𝑗 = 0 except for finitely many (𝑖, 𝑗) ∈ 𝐼𝑛. Let also
𝑆+
𝑛 ⊆ 𝑆𝑛 (resp. 𝑆−

𝑛 ⊆ 𝑆𝑛) be the subset of all sequences for which 𝑎𝑖𝑗 = 0 unless 𝑗 ≥ 0 (resp. 𝑎𝑖𝑗 = 0
unless 𝑗 < 0). There is a commutative diagram 𝐷𝑛 of sets

𝑆+
𝑛 𝑆𝑛 𝑆−

𝑛

𝐴1∕[𝜛]𝑛𝐴1 𝐴12∕𝜋𝑛𝐴12
[𝜛]
𝜋 ⋅ (𝐴2∕𝜋𝑛𝐴2)
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(note that 𝐴12∕𝜋𝑛𝐴12 = 𝐴12∕[𝜛]𝑛𝐴12), where the upper horizontal maps are the defining inclusions, the
lower horizontal maps are induced by the natural ring maps 𝐴1 → 𝐴12 ← 𝐴2 (and the inclusion of the
ideal [𝜛]

𝜋 𝐴2 ⊆ 𝐴2) and the vertical maps are given by sending (𝑎𝑖𝑗)𝑖𝑗 to
∑

𝑖𝑗[𝑎𝑖𝑗]𝜋𝑖 ⋅ (
𝜋
[𝜛] )

𝑗 .
We make three observations, which immediately follow from the explicit definition of the vertical maps:

first, the middle vertical map is surjective. Second, there is an obvious map 𝐷𝑛+1 → 𝐷𝑛 of commutative
diagrams and the resulting diagram is commutative. Third, when we define the map +∶ 𝑆+

𝑛 × 𝑆−
𝑛 → 𝑆𝑛

by (𝑎 + 𝑏)𝑖𝑗 = 𝑎𝑖𝑗 if 𝑗 ≥ 0 and (𝑎 + 𝑏)𝑖𝑗 = 𝑏𝑖𝑗 if 𝑗 < 0, then the resulting diagram

𝑆+
𝑛 × 𝑆−

𝑛 𝑆𝑛

𝐴1∕[𝜛]𝑛𝐴1 ×
[𝜛]
𝜋 ⋅ (𝐴2∕𝜋𝑛𝐴2) 𝐴12∕𝜋𝑛𝐴12

+

+

is commutative.
Let now𝑆 = lim𝑛 𝑆𝑛 and𝑆± = lim𝑛 𝑆±

𝑛 . Explicitly, 𝑆 ⊆
∏

(𝑖,𝑗)∈ℤ≥0×ℤ𝑅
+ is the subset of all sequences

(𝑎𝑖𝑗)𝑖𝑗 satisfying the following condition: for each 𝑖 there is some 𝑗(𝑖) ≥ 0 such that 𝑎𝑖𝑗 = 0 unless
|𝑗| < 𝑗(𝑖) and 𝑆+ and 𝑆− are corresponding subsets of 𝑆. Passing to the limit over all 𝑛 > 0, we obtain a
commutative diagram

𝑆+ 𝑆 𝑆−

(𝐴1)∧[𝜛] (𝐴12)∧𝜋
[𝜛]
𝜋 ⋅ (𝐴2)∧𝜋 .

Moreover, we also get the commutative diagram

𝑆+ × 𝑆− 𝑆

(𝐴1)∧[𝜛] ×
[𝜛]
𝜋 ⋅ (𝐴2)∧𝜋 (𝐴12)∧𝜋 ,

+

+

where the lower horizontal map is the restriction of the addition map 𝐵[0,1] ×
[𝜛]
𝜋 ⋅𝐵[1,∞] → 𝐵[1,1] and the

upper horizontal map is defined in the same way as 𝑆+
𝑛 × 𝑆−

𝑛 → 𝑆𝑛. Now, one can concretely verify that
𝑆+ × 𝑆− → 𝑆 and 𝑆 → (𝐴12)∧𝜋 are surjective using Lemma 5.18. This implies that the lower horizontal
map in the diagram is surjective as well, which is precisely what we had to show. □

Lemma 5.18. Let 𝐴(−), 𝐵(−) ∶ ℕop → Sets denote two functors and denote by 𝑔𝐴𝑛 ∶ 𝐴𝑛 → 𝐴𝑛−1 and
𝑔𝐵𝑛 ∶ 𝐵𝑛 → 𝐵𝑛−1 the image of the unique morphism (𝑛 − 1) → (𝑛) when we treat the partial order ℕ as
a category. Let 𝑓 ∶ 𝐴 → 𝐵 be a natural transformation that is pointwise surjective. Suppose that for all
triples (𝑛, 𝑎𝑛, 𝑏𝑛+1) with 𝑛 ∈ ℕ, 𝑎𝑛 ∈ 𝐴𝑛, 𝑏𝑛+1 ∈ 𝐵𝑛+1 and 𝑓𝑛(𝑎𝑛) = 𝑔𝐵𝑛+1(𝑏𝑛+1) there exists 𝑎𝑛+1 ∈ 𝐴𝑛+1
with 𝑓𝑛+1(𝑎𝑛+1) = 𝑏𝑛+1 and 𝑔𝐴𝑛+1(𝑎𝑛+1) = 𝑎𝑛. Then 𝑓 ∶ lim

←←←←←←←←←←←
𝐴𝑛 → lim

←←←←←←←←←←←
𝐵𝑛 is surjective.

Proof. An element 𝑏 ∈ lim
←←←←←←←←←←←

𝐵𝑛 is given by a sequence (𝑏𝑛)𝑛∈ℕ with 𝑔𝐵𝑛 (𝑏𝑛) = 𝑏𝑛−1. The hypothesis of
the lemma allows us to inductively define a sequence (𝑎𝑛)𝑛∈ℕ such that 𝑎𝑛 ∈ 𝐴𝑛, 𝑔𝐴𝑛 (𝑎𝑛) = 𝑎𝑛−1 and
𝑓𝑛(𝑎𝑛) = 𝑏𝑛. The sequence (𝑎𝑛)𝑛∈ℕ defines an element of lim

←←←←←←←←←←←
𝐴𝑛 whose image under the limit map is

𝑏𝑛. □
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Recall that the restriction of functions defines an inclusion 𝐵𝑅
[ 1𝑞 ,∞]

⊆ 𝐵𝑅[1,∞] and Frobenius induces an

isomorphism 𝜑∶ 𝐵𝑅[1,∞]
∼
→ 𝐵𝑅

[ 1𝑞 ,∞]
⊆ 𝐵𝑅[1,∞].

Lemma 5.19. Let 𝑘 ∈ ℤ≥0. The image of the map

𝜓𝑘 ∶ 𝐵𝑅[1,∞] → 𝐵𝑅[1,∞], 𝑎↦ 𝜋−𝑘𝑎 − 𝜑(𝑎)

contains [𝜛]𝐵𝑅[1,∞]. If 𝑘 > 0, it contains 𝐵𝑅[1,∞].

Proof. Let 𝐴 = 𝕎(𝑅+)[𝜛𝜋 ]. Recall that 𝐵𝑅[1,∞] = 𝐴∧
𝜋[

1
𝜋 ]. Thus, as 𝜓𝑘(𝜋𝑛𝑥) = 𝜋𝑛𝜓𝑘(𝑥), it suffices to

show that the image contains [𝜛]𝐴∧
𝜋 (resp. 𝐴∧

𝜋 if 𝑘 > 0). Let 𝑥 ∈ [𝜛]𝐴∧
𝜋 if 𝑘 = 0 (resp. 𝑥 ∈ 𝐴∧

𝜋 if
𝑘 > 0). Note that the sequence (𝜋𝑖⋅𝑘𝜑(𝑖−1)(𝑥))𝑖≥1 in 𝐴∧

𝜋 converges 𝜋-adically to 0. (Use that 𝜑(𝐴∧
𝜋) ⊆ 𝐴

∧
𝜋

and 𝜑([𝜛]) = [𝜛]𝑞 .) Thus 𝑦 =
∑∞
𝑖=1 𝜋

𝑖𝑘𝜑(𝑖−1)(𝑥) exists in 𝐴∧
𝜋 . By 𝜋-adic continuity of Frobenius and

hence of 𝜓𝑘, it is immediate that 𝜓𝑘(𝑦) = 𝑥. □

Lemma 5.20. Let 𝑛 ≥ 1 and let 𝐴 ∈ GL𝑛(𝐵𝑅[1,1]) be upper triangular with 𝑖-th diagonal entry 𝜋𝑠𝑖 for
some 𝑠𝑖 ∈ ℤ (with 1 ≤ 𝑖 ≤ 𝑛). Assume that 𝑠1 ≥ 𝑠2 ≥ ⋯ ≥ 𝑠𝑛 holds. Then there exists a unipotent upper
triangular matrix 𝑈 ∈ GL𝑛(𝐵𝑅[1,∞]) such that 𝑈−1𝐴𝜑(𝑈 ) is upper triangular with entries in 𝐵𝑅[0,1][

1
𝜋 ].

Proof. We argue by induction on 𝑛. If 𝑛 = 1, there is nothing to show. Assume 𝑛 is fixed and we know the
claim for all matrices of size (𝑛−1)×(𝑛−1). Let 𝑎𝑖𝑗 denote the (𝑖, 𝑗)-th entry of𝐴. Exploiting the induction
hypothesis for the lower right (𝑛−1)×(𝑛−1)-minor of𝐴, we may assume that 𝑎𝑖𝑗 ∈ 𝐵𝑅[0,1][

1
𝜋 ] for all 𝑖 > 1.

Let now 1 < 𝑗 ≤ 𝑛. Suppose, by induction, that for all 1 < 𝑗′ < 𝑗, one has 𝑎1𝑗′ ∈ 𝐵[0,1][
1
𝜋 ]. It suffices to

find, in this situation, a unipotent upper triangular matrix𝑈 ∈ GL𝑛(𝐵𝑅[1,∞]) such that𝑈−1𝐴𝜑(𝑈 ) has all the
above properties of𝐴 and additionally its (1, 𝑗)-th entry lies in𝐵𝑅[0,1][

1
𝜋 ]. Therefore, write 𝑎1𝑗 = 𝑎mer

1𝑗 +𝑎′1𝑗
with some 𝑎mer

1𝑗 ∈ 𝐵𝑅[0,1][
1
𝜋 ] and 𝑎′1𝑗 ∈ [𝜛]𝐵𝑅[1,∞], according to Lemma 5.17. By Lemma 5.19, there exists

some 𝑦 ∈ 𝐵𝑅[1,∞] with 𝜓𝑠1−𝑠𝑗 (𝑦) = 𝑎′1𝑗 (here we use that 𝑠𝑗 ≤ 𝑠1). Let 𝑈 = (𝑈𝓁𝑚)𝓁𝑚 ∈ GL𝑛(𝐵𝑅[1,∞]) be
such that 𝑈𝓁𝑚 = 𝛿𝓁𝑚 (where 𝛿 denotes the Kronecker-delta), unless (𝓁, 𝑚) = (1, 𝑗) and 𝑈1𝑗 = 𝑦. Then it
is immediate to compute that 𝑈−1𝐴𝜑(𝑈 ) satisfies all the claimed conditions. □

Proposition 5.21. The forgetful functor  𝑖𝑙𝛾ss → 𝔅◊ factors through (𝔅◊)loc and defines a ⊗-exact
equivalence

 𝑖𝑙𝛾ss → (𝔅◊)loc .

Proof. On points, any filtration splits since the category of isocrystals is semi-simple. In particular, the
Newton polygon can be computed on the graded pieces. By the definition of semi-stable filtrations the
Newton polygon is constant on the graded isocrystal.

We now prove fully-faithfulness. Let {𝑟}𝑟∈ℚ and {𝑟}𝑟∈ℚ be two semi-stable filtrations with under-
lying analytic isocrystals  and  . Let  denote the Hom-bundle endowed with its induced semi-stable
filtration {𝑟}𝑟∈ℚ. We need to show that

Hom𝔅◊ (,) = Hom𝔅◊ (,≤0).

We can prove inductively on the support of {𝑟}𝑟∈ℚ that

Hom𝔅◊ (,≤𝑟∕≤0) = 0

for all 𝑟 > 0 since the graded pieces all have slope larger than 0.
Since essential surjectivity can be proved v-locally by Lemma A.2, it suffices to show that the standard

objects can be endowed with a semi-stable filtration, but this is clear. □
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Proposition 5.22. The forgetful functor  𝑖𝑙mer
ss → Bunmer

FF factors through (Bunmer
FF )loc and defines a ⊗-

exact equivalence
 𝑖𝑙mer

ss → (Bunmer
FF )loc .

Proof. It is automatic that the map respects the monoidal structure and exactness, since they are defined
in terms of those of Bunmer

FF . It follows from Proposition 5.21 that the map factors through (Bunmer
FF )loc.

To show fully-faithfulness, we may again pass to Hom-bundles  with semi-stable filtration {𝑟}𝑟∈ℚ as
in the proof of Proposition 5.21. We need to show that

HomBunmer
FF

(,) = HomBunmer
FF

(,≤0),

but as in the proof of Proposition 5.21 we can prove that HomBunmer
FF

(,≤𝑟∕≤0) = 0 for all 𝑟 > 0.
Essential surjectivity can now be proved v-locally by Lemma A.2, hence it suffices to show that every

isoshtuka  ∈ (Sht [
1
𝜋 ])

loc(𝑆) can be endowed with a semi-stable filtration. In other words, we need to
show that the unique semi-stable filtration of 𝛾() lifts to a filtration in Bunmer

FF . Replacing 𝐸 by its degree
𝑠 field extension 𝐸𝑠, and since we have already proved fully-faithfulness, we may assume that the generic
Newton polygon only takes values in ℤ. Twisting by a line bundle, we may even assume that the smallest
slope  is 0. We can now apply Proposition 5.9 and Lemma 5.10 to find a sub-bundle 𝑘 ⊆  , where 𝑘 is
the rank of 𝛾()0 and such that 𝛾()∕𝛾(𝑘) has all slopes greater than 0. By induction on the rank, ∕𝑘
can be endowed with a semi-stable filtration {(∕𝑘)𝑟}𝑟∈ℚ and we can lift this filtration to  . □

6. 𝐺-BUNDLES WITH MEROMORPHIC STRUCTURE

6.1. -structure. Let  be a smooth affine group scheme over Spec𝑂𝐸 . We denote by 𝐺 its generic
fiber over Spec𝐸, which we assume to be reductive. Later on, we will assume that  is a parahoric group
scheme. We denote by Rep (resp. Rep𝐺) the Tannakian category of algebraic representations of  over
𝑂𝐸 (resp. of 𝐺 over 𝐸).

Definition 6.1. We denote by Shtsch ∈ (PSchaff,Grps) the presheaf valued in groupoids defined by

𝑆 ↦ Fun⊗ex(Rep,Sht
sch
𝕎 (𝑆)) ,

where Fun⊗ex denotes the ⊗-compatible 𝑂𝐸-linear exact functors. Analogously, we denote by 𝔅(𝐺) ∈
(PSchaff,Grps) the presheaf valued in groupoids with

𝑆 ↦ Fun⊗ex(Rep𝐺,𝔅(𝑆)) .

Recall the loop group and positive loop group functors 𝐿𝐺,𝐿+∶ PSchaff → Sets given on affine
schemes 𝑆 = Spec𝐴 by the formulas

𝐿𝐺(𝑆) ∶= 𝐺(𝕎(𝐴)[ 1
𝜋
])

and
𝐿+(𝑆) ∶= (𝕎(𝐴)) .

We let 𝐿𝐺 and 𝐿+ act on 𝐿𝐺 by 𝜑-conjugation.

Proposition 6.2. 𝐿𝐺 and 𝐿+ are arc-sheaves.

Proof. As both are ind-schemes and the arc-topology is subcanonical (in fact, canonical) on perfect 𝔽𝑝-
schemes by [BM21, Theorem 5.16], the claim follows. □

Proposition 6.3. The following statements hold:
(1) Shtsch and 𝔅(𝐺) are scheme-theoretic small v-stacks.
(2) The natural maps 𝐿𝐺 → Shtsch and 𝐿𝐺 → 𝔅(𝐺) are v-covers.
(3) We have identities Shtsch = [𝐿𝐺∕∕𝜑𝐿+] and 𝔅(𝐺) = [𝐿𝐺∕∕𝜑𝐿𝐺].
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Proof. The first statement follows from Proposition 4.5. Indeed, Fun⊗ex(Rep,−) (resp. Fun⊗ex(Rep𝐺,−))
is simply the mapping anima in the category Cat⊗,ex1,𝑂𝐸

(resp. Cat⊗,ex1,𝐸 ) and this preserves v-sheaves.
To prove surjectivity of 𝐿𝐺 → Shtsch in the v-topology, it suffices by Remark 2.13 to show that for a

product comb Spec𝑅, any -torsor on Spec𝕎𝑅 is trivial. Such a torsor becomes trivial after some étale
cover of Spec𝕎𝑅, so it suffices to show that any étale cover of Spec𝕎𝑅 splits. As Spec𝕎𝑅 is henselian
along the closed subscheme Spec𝑅, this follows from the same statement for Spec𝑅, which holds true
by Remark 2.13. The surjectivity of 𝐿𝐺 → 𝔅(𝐺) in the v-topology follows from Lemma 6.4 (see [Iva23,
Theorem 6.1] for the case 𝐺 = GL𝑛). The last claim follows directly from the second one by computing
the fiber products 𝐿𝐺 ×Shtsch

𝐿𝐺 and 𝐿𝐺 ×𝔅(𝐺) 𝐿𝐺. □

The following slight generalization of [Ans22, Theorem 11.5] will be useful for our purposes.

Lemma 6.4. If Spec (𝐴) is a comb, then every 𝐺-torsor over Spec𝕎(𝐴)[ 1𝜋 ] is trivial.

Proof. We can follow the proof of [Ans22, Proposition 11.5], by noting that the reduction method in
[Iva23, Section 6.1.1] (which is also used in [Ans22, Proposition 11.5]) works for general combs. □

Definition 6.5. We define the following four presheaves over Perf aff with values in groupoids:
(1) Sht , ∶ 𝑆 ↦ Fun⊗ex(Rep,Sht (𝑆)).
(2) Isoc𝐺 ∶ 𝑆 ↦ Fun⊗ex(Rep,𝔅

◊(𝑆)).
(3) Bunmer

𝐺 ∶ 𝑆 ↦ Fun⊗ex(Rep,Bun
mer
FF (𝑆)).

(4) Sht𝕎, ∶ 𝑆 ↦ Fun⊗ex(Rep,Sht𝕎(𝑆)).

Theorem 6.6. The following statements hold:
(1) Sht, Sht𝕎,, Isoc𝐺 and Bunmer

𝐺 are small v-stacks.
(2) We have a Cartesian diagram

Sht Bunmer
𝐺

Sht𝕎, Isoc𝐺 .

(3) We have identifications

Sht𝕎, = (Shtsch )◊ = [𝐿𝐺◊∕∕𝜑𝐿+◊]
and

Isoc𝐺 = (𝔅(𝐺))◊ = [𝐿𝐺◊∕∕𝜑𝐿𝐺◊] .
(4) The maps Sht𝕎, → Isoc𝐺 and Sht → Bunmer

𝐺 are v-covers.

Proof. Since the application Fun⊗ex(Rep,−) (resp. Fun⊗ex(Rep𝐺,−) commutes with 2-limits withinCat⊗,ex1,𝑂𝐸
(resp. Cat⊗,ex1,𝐸 ) and all of Sht , (Shtsch𝕎 )◊, 𝔅◊ and Bunmer

FF are v-stacks in Cat⊗,ex1,𝑂𝐸
or Cat⊗,ex1,𝐸 , all of the

presheaves of Definition 6.5 are v-sheaves. For the same reason, the second claim follows directly from
Proposition 4.23. Furthermore, Fun⊗ex(Rep,−) commutes with sheafification by Lemma A.8, which im-
plies directly that Sht𝕎, = (Shtsch )◊ and Isoc𝐺 = 𝔅(𝐺)◊. Since the functor (−)◊ commutes with finite
limits, it suffices to prove that the maps 𝐿𝐺◊ → Sht𝕎, and 𝐿𝐺◊ → Isoc𝐺 are surjective to deduce the
formulas from the third assertion. Let  ∈ Isoc𝐺(𝑆), the argument for Sht𝕎, being analogous. By part
(1) of the theorem surjectivity can be shown v-locally, so we may assume 𝑆 = Spa(𝑅,𝑅+) is a product of
points. By Proposition 4.14, we may even assume that for all objects 𝑉 ∈ Rep, the object (𝑉 ) ∈ 𝔅◊(𝑆)
is isomorphic to one in Sht𝕎[ 1𝜋 ](𝑆). We obtain a⊗-exact functor from Rep to the category of projective
𝕎(𝑅)[ 1𝜋 ]-modules, which we interpret as a 𝐺-torsor over Spec𝕎(𝑅)[ 1𝜋 ]. By Lemma 6.4, such torsors
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are trivial over combs, and by Proposition 2.18, Spec𝑅 is a comb. After choosing a trivialization of  ,
the 𝜑-structure corresponds to an element 𝐿𝐺(Spec𝑅) which gives precisely a point 𝐿𝐺◊(𝑆) lifting our
original point. The final claim follows by base change from the third claim and the second claim. □

6.2. Newton strata on Isoc𝐺. We now wish to study the geometry of Isoc𝐺 and Bunmer
𝐺 . Recall the Kot-

twitz set 𝐵(𝐺), which classifies isocrystals with 𝐺-structure over algebraically closed fields, see [Kot97,
§3]. Recall that 𝐵(𝐺) is naturally endowed with a partial order, see for example [RR96] or [Vie20, §3].
For 𝐺 = GL𝑛,  (𝐺) =  with  from Section 5.

Definition 6.7. Let  = Spec𝐴 ∈ PSchaff , and let 𝑏 ∈ 𝐵(𝐺). We let 𝔅(𝐺)≤𝑏() ⊆ 𝔅(𝐺)() denote the
full subcategory of objects  ∈ 𝔅(𝐺)() whose Newton polygon is bounded by 𝑏 at geometric points of
 . We let 𝔅(𝐺)𝑏() ⊆ 𝔅(𝐺)≤𝑏() denote the full subcategory of objects  ∈ 𝔅(𝐺)≤𝑏() whose Newton
polygon is exactly 𝑏 at geometric points of  .

The following theorem due to work of various authors summarizes what we will need about the geom-
etry of 𝔅(𝐺).

Theorem 6.8. For any 𝑏 ∈ 𝐵(𝐺) the map 𝔅(𝐺)≤𝑏 → 𝔅(𝐺) is a perfectly finitely presented closed
immersion. Moreover, 𝔅(𝐺)𝑏 = [∗∕𝐺𝑏(ℚ𝑝)] as scheme-theoretic v-stacks.

Proof. The first statement follows from [RR96, Theorem 3.6 (ii)], whose proof carries over the character-
istic 𝑝 setting, see [HV11, Theorem 7.3]. The last statement follows from [HK22, Theorem 2.11]. □

Proposition 6.9. The elements of | Isoc𝐺 | are in bijection with 𝐵(𝐺).

Proof. By definition, points in | Isoc𝐺 | are in bijection with equivalence classes of Spa(𝐶,𝐶+)-valued
points of Isoc𝐺. By Lemma 5.3, these are the same as isocrystals with 𝐺-structure which are classified by
𝐵(𝐺), see [Kot97, §3]. □

Definition 6.10. Let 𝑆 = Spa(𝑅,𝑅+) ∈ Perf aff . We let Isoc≤𝑏𝐺 (𝑆) ⊆ Isoc𝐺(𝑆) denote the full subcate-
gory of objects  ∈ Isoc𝐺(𝑆) whose Newton polygon is bounded by 𝑏 at geometric points of 𝑆. We let
Isoc𝑏𝐺(𝑆) ⊆ Isoc≤𝑏𝐺 (𝑆) denote the full subcategory of objects  ∈ Isoc≤𝑏𝐺 () whose Newton polygon is
exactly 𝑏 at geometric points of 𝑆.

Proposition 6.11. For any 𝑏 ∈ 𝐵(𝐺), the map Isoc≤𝑏𝐺 → Isoc𝐺 is a closed immersion and agrees with

𝔅(𝐺)◊≤𝑏. The map Isoc𝑏𝐺 → Isoc≤𝑏𝐺 is an open immersion. Moreover, Isoc𝑏𝐺 = 𝔅(𝐺)◊𝑏 = [∗ ∕𝐺𝑏(ℚ𝑝)] as
v-stacks.

Proof. Since ◊ preserves open and closed immersions, it suffices to identify Isoc≤𝑏𝐺 and Isoc𝑏𝐺 with
𝔅(𝐺)◊≤𝑏 and 𝔅(𝐺)◊𝑏 , respectively. Let 𝑆 = Spa(𝑅,𝑅+). By definition, Isoc≤𝑏𝐺 (𝑆) is the subcategory
of objects  ∈ Isoc𝐺(𝑆) whose Newton polygon is pointwise bounded by 𝑏 at every geometric point 𝑆.
On the other hand, 𝔅(𝐺)

◊pre
≤𝑏 (𝑆) corresponds to 𝐺-isocrystals over Spec𝑅 whose polygon is bounded by

𝑏 at every geometric point of Spec𝑅. To prove 𝔅(𝐺)◊≤𝑏 = Isoc≤𝑏𝐺 , it suffices to show that v-locally having
a Newton polygon bounded by 𝑏 for Spa(𝑅,𝑅+) or for Spec𝑅 agree. Of course, the schematic condition
is stronger than the analytic one, since on the analytic side a condition is imposed only on those ideals of
Spec𝑅 that support a continuous valuation. Now, over product of points the two conditions agree. Indeed,
principal connected components of a product of points support a continuous valuation. Moreover, these
components are dense in Spec𝑅.

A similar argument shows 𝔅(𝐺)◊𝑏 = Isoc𝑏𝐺. Indeed, if 𝑆 is a product of points, all of the maximal
ideals of Spec𝑅 support a continuous valuation and the map 𝔅(𝐺)𝑏 → 𝔅(𝐺)≤𝑏 is open.

The last claim follows directly from Proposition 2.19. □
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6.3. Newton strata on Bunmer
𝐺 . Recall the moduli stack  of [FS24, Definition V.3.2]. The connected

components of  are indexed by 𝑏 ∈ 𝐵(𝐺) and the maps 𝑏 → Bun𝐺 are the so-called smooth charts.

Proposition 6.12. The v-stack  is the moduli stack given by the formula

∶ 𝑆 ↦ Fun⊗ex(Rep𝐺, 𝑖𝑙
𝜎
ss(𝑆)) .

Proof. It follows directly from the definition. □

Theorem 6.13. The moduli stack  fits in the Cartesian diagram

 Bunmer
𝐺

∐

𝑏∈𝐵(𝐺) Isoc
𝑏
𝐺 Isoc𝐺

𝛾

of small v-stacks.

Remark 6.14. While this article was in preparation, we learned from a private communication with Z.
Wu that he had proven independently a version of Theorem 6.13 in the language of relative Robba rings.

Proof. Observe that we have the identification
∐

𝑏∈𝐵(𝐺)
Isoc𝑏𝐺(𝑆) = Fun⊗ex(Rep𝐺, (𝔅

◊)loc(𝑆)) .

Since Fun⊗ex(Rep𝐺,−) commutes with limits, it suffices to show that  𝑖𝑙𝜎ss(𝑆) fits in the Cartesian diagram

 𝑖𝑙𝜎ss(𝑆) Bunmer
FF (𝑆)

(𝔅◊)loc(𝑆) 𝔅◊(𝑆) .

By definition, (Bunmer
FF )loc fits as the upper-left entry of the above Cartesian diagram. By Proposition 5.16

and Proposition 5.22,
(Bunmer

FF )loc(𝑆) ≅  𝑖𝑙mer
ss ≅  𝑖𝑙𝜎ss(𝑆) .

□

Corollary 6.15. Let 𝑆 = Spa(𝑅,𝑅+) and let  ∈ BunFF(𝑆). The following hold:
(1) After replacing 𝑆 by a v-cover,  can be lifted to Bunmer

FF (𝑆).
(2) After replacing 𝑆 by a v-cover,  can be lifted to Sht (𝑆).
(3) The map of small v-stacks Bunmer

𝐺 → Bun𝐺 is surjective.
(4) The map of small v-stacks Sht → Bun𝐺 is surjective.

Proof. The first and second claims are particular instances of the third and fourth claim in the case where
𝐺 = GL𝑛. For the third claim, the map  → Bun𝐺 is formally and 𝓁-cohomologically smooth and
surjects onto its image. In particular, it is a surjection of small v-stacks. The result follows since this map
factors through Bunmer

𝐺 → Bun𝐺. The fourth claim follows from Theorem 6.6 and the third claim. □

Definition 6.16. Given two subsets 𝑈1, 𝑈2 ⊆ 𝐵(𝐺) we let 𝜎∈𝑈2
𝛾∈𝑈1

denote 𝛾−1(Isoc𝑈1
𝐺 ) ∩ 𝜎−1(Bun𝑈2

𝐺 ).
Whenever 𝑈𝑖 = 𝐵(𝐺), we omit the subscript or superscript as an abbreviation.

We will mostly use Definition 6.16 when 𝑈1 or 𝑈2 are given by Newton polygon inequalities. In this
case, we use more intuitive notation: for example, 𝜎=𝑏 ∶= 𝜎−1(Bun𝑏𝐺) and𝛾=𝑏 ∶= 𝛾−1(Isoc𝑏𝐺) = 𝑏.
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7. THREE COMPARISON THEOREMS

7.1. The meromorphic comparison. Let 𝐶 be a non-Archimedean algebraically closed field and let
𝑆 = Spa(𝐶,𝑂𝐶 ). One interesting consequence of the classification theorem of vector bundles on the
Fargues–Fontaine curve is that every such vector bundle extends at ∞, i.e. it is isomorphic to one obtained
from a 𝜑-module over 𝑌(0,∞],𝑆 for such 𝑆. In what follows, we will prove that this statement holds in
families when one is allowed to work v-locally.

Definition 7.1. Let 𝑆 = Spa(𝑅,𝑅+) ∈ Perfaff and 𝑇 = Spa(𝑅,𝑅◦).
(1) We let Bun+FF(𝑆) ∈ (Perf aff,Cat⊗,ex1,𝐸 ) be given by the rule that attaches to 𝑆 the category of

pairs ( ,Φ), where  is a vector bundle over 𝑌(0,∞],𝑇 and Φ∶ 𝜑∗ →  is an isomorphism.
(2) We say that  ∈ BunFF(𝑆) extends at ∞ if it is in the essential image of the map Bun+FF(𝑆) →

BunFF(𝑇 ) ≅ BunFF(𝑆).
(3) We denote by (Shtsch𝕎 )†pre ∈ (Perf aff,Cat⊗,ex1,𝑂𝐸

), the presheaf given by the rule

(𝑅,𝑅+) ↦ Shtsch𝕎 (Spec𝑅◦).

(4) We say that  ∈ Sht (𝑆) is a BKF-shtuka if it is in the essential image of the map (Shtsch𝕎 )†pre (𝑆) →
Sht (𝑇 ) ≅ Sht (𝑆).

(5) We denote by (Shtsch𝕎 [ 1𝜋 ])
†pre ∈ (Perf aff,Cat⊗,ex1,𝐸 ), the presheaf given by the rule

(𝑅,𝑅+) ↦ Shtsch𝕎 [ 1
𝜋
](Spec𝑅◦) .

(6) We denote by 𝔅†pre ∈ (Perf aff,Cat⊗,ex1,𝐸 ), the presheaf given by the rule

(𝑅,𝑅+) ↦ 𝔅(Spec𝑅◦) .

We can pass to -objects for all the above.

Definition 7.2. Let 𝑆 = Spa(𝑅,𝑅+) ∈ Perfaff and 𝑇 = Spa(𝑅,𝑅◦).
(1) We let Bun+𝐺(𝑆) ∈ (Perf aff,Grps) be given by Fun⊗ex(Rep𝐺,Bun

+
FF).

(2) We say that  ∈ Bun𝐺(𝑆) extends at ∞ if it is in the essential image of the map Bun+𝐺(𝑆) →
Bun𝐺(𝑆).

(3) We denote (Shtsch )†pre = Fun⊗ex(Rep, (Sht
sch
𝕎 )†pre ).

(4) We say that  ∈ Sht(𝑆) is a BKF--shtuka if it is in the essential image of the map (Shtsch )†pre (𝑆) →
Sht(𝑆).

(5) We let (Shtsch [ 1𝜋 ])
†pre ∈ (Perf aff,Grps) be given by Fun⊗ex(Rep𝐺, (Sht

sch
𝕎 [ 1𝜋 ])

†pre ).
(6) We let 𝔅(𝐺)†pre ∈ (Perf aff,Grps) be given by Fun⊗ex(Rep𝐺, (𝔅)†pre ).

Proposition 7.3. Let 𝑆 = Spa(𝑅,𝑅+) ∈ Perfaff , the following hold.
(1) The map Bun+FF(𝑆) → BunFF(𝑆) is exact and fully-faithful.
(2) The map Bun+𝐺(𝑆) → Bun𝐺(𝑆) is fully-faithful.
(3) If 𝑆 is a product of points, the diagrams

(Shtsch )†pre (𝑆) Shtsch [ 1𝜋 ]
†pre (𝑆) Bun+𝐺(𝑆)

Sht(𝑆) Sht[
1
𝜋 ](𝑆) Bun𝐺(𝑆)

are Cartesian in Grps.
(4) If 𝑆 is a product of points then Shtsch [ 1𝜋 ]

†pre (𝑆) ≅ 𝔅(𝐺)†pre (𝑆).
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(5) The sheafification of Shtsch [ 1𝜋 ]
†pre is 𝔅(𝐺)†.

Proof. The first claim is [PR24, Proposition 2.1.3], whose proof generalizes to general 𝐸 (see [PR24,
Remark 2.1.10]). The second claim follows formally by passing to Fun⊗ex(Rep𝐺,−). For the third claim,
note that by Kedlaya’s GAGA [Ked20, Theorem 3.8], we can identify the category Sht(𝑆) ×Bun𝐺(𝑆)
Bun+𝐺(𝑆) with the category of -bundles over Spec𝕎(𝑅◦) ⧵ ({𝜋 = 0} ∩ {[𝜛] = 0}) together with
𝜑-action defined over Spec𝕎(𝑅◦)[ 1𝜋 ]. We note that to carry [Ked20, Theorem 3.8] over to the equal
characteristic setting, it suffices to generalize [Ked20, Proposition 3.6] to ramified Witt vectors, which is
straightforward since the proof strategy works in this generality. As 𝑆 is a product of points, by [Ans22,
Theorem 1.1]) (see [Gle21, Proposition 2.1.17]), any such -bundle extends uniquely to a -bundle over
Spec𝕎(𝑅◦). This proves that the outer diagram is Cartesian. Moreover, the same argument also applies
to the right square, so this is Cartesian as well. It then follows that the left square is Cartesian.

For the fourth claim, write 𝑆 = Spa(𝑅,𝑅+). In the case that  = GL𝑛, we need to show that any
isocrystal  over 𝕎(𝑅◦)[ 1𝜋 ] contains a 𝕎(𝑅◦)-lattice. As 𝑆 is a product of points, Proposition 2.18 and
[Iva23, Theorem 6.1] imply that  is free as a 𝕎(𝑅◦)[ 1𝜋 ]-module, but then an 𝕎(𝑅◦)-lattice obviously
exists. For more general  this follows from Lemma 6.4. The fifth claim follows from the fourth since
product combs are a basis for the v-topology. □

Remark 7.4. We warn the reader that the maps (Shtsch𝕎 )†pre (𝑆) → Sht (𝑆) andBun+FF(𝑆) → BunFF(𝑆) do
not reflect exactness. For this reason one crucially relies on the in-depth analysis of -torsors for parahoric
, see [Ans22, Theorem 1.1].

The advantage of working with (Shtsch𝕎 )†pre is that its values on product of points are easy to describe.

Proposition 7.5. Let 𝑆 = Spa(𝑅,𝑅+) be a product of points with 𝑅+= 𝑅◦=
∏

𝑖∈𝐼𝑂𝐶𝑖 , then the restric-
tion functor

(Shtsch𝕎 )†pre (𝑆) →
∏

𝑖∈𝐼
Shtsch𝕎 (Spec𝑂𝐶𝑖 )

is fully-faithful, and its essential image is the collection of families of {(𝑖,Φ𝑖)}𝑖∈𝐼 with uniformly bounded
zeros and poles on 𝜋.

Proof. The fully-faithful functor is induced by the isomorphism 𝕎(
∏

𝑂𝐶𝑖 ) =
∏

𝕎(𝑂𝐶𝑖 ). The pole (resp.
zero) at each 𝑖 ∈ 𝐼 of any object in the essential image is bounded by the pole (resp. zero) of its preimage.
Conversely, if we have a uniform bound, then the Frobenius is represented by a matrix with entries in
𝕎(𝑅◦)[ 1𝜋 ] = (

∏

𝕎(𝑂𝐶𝑖 ))[
1
𝜋 ] ⊆

∏

(𝕎(𝑂𝐶𝑖 )[
1
𝜋 ]), whose inverse also has entries in this subring. □

Moreover, at the level of geometric points Sht is also easy to describe. Indeed, the following is the
𝜋 = 𝜉 version of Fargues’ theorem [SW20, Theorem 14.1.1].

Proposition 7.6. Let 𝐶 be a non-Archimedean field, then the following categories are equivalent:
(1) BKF-modules with 𝜉 = 𝜋. In other words, the category pairs (𝑀,Φ), where 𝑀 is a free 𝕎(𝑂𝐶 )-

module and Φ∶ 𝑀[ 1𝜋 ] → 𝕎(𝑂𝐶 )𝜑 ⊗𝕎(𝑂𝐶 ) 𝑀[ 1𝜋 ] is an isomorphism.
(2) (Shtsch𝕎 )†pre (𝐶,𝐶+)
(3) Sht (𝐶,𝐶+).

Proof. By definition (Shtsch𝕎 )†pre (𝐶,𝐶+) = Shtsch𝕎 (𝑂𝐶 ), which is precisely the category of BKF-modules
with 𝜉 = 𝜋, so the first two categories are the same category. The equivalence with the third category is
given in [SW20, §12-14] when 𝜉 ≠ 𝜋. The same proof strategy applies and generalizes to general 𝐸 (see
the proof of Proposition 7.3). □

We wish to extend Proposition 7.6 to the case of product of points. It will be profitable to work with
the stack of shtukas that have their leg away from the trivial untilt. Let us set some notation.
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We let 𝑆 ∈ Perfaff of the form 𝑆 = Spa(𝑅,𝑅+). Recall that an untilt ∞∶ 𝑆 → Spd𝑂𝐸 is given
by a degree 1 Cartier divisor ∞∶ 𝑆♯ ↪ 𝑆 , and that it factors through Spd𝐸 if and only if the Cartier
divisor factors through 𝑌𝑆 . In this circumstance, we let 𝜉𝑆♯ ∈ 𝕎(𝑅+) be a generator of the kernel of
𝕎(𝑅+) → 𝑅♯,+, cf. [SW20, Proposition 11.3.1] and [FS24, Proposition II.1.4].

Definition 7.7. Let 𝑆 ∈ Perfaff be of the form 𝑆 = Spa(𝑅,𝑅+).
(1) A -shtuka is a triple (𝑆♯,  ,Φ), where ∞∶ 𝑆♯ ↪ 𝑆 is an untilt of 𝑆 over Spd(𝑂𝐸),  is a

-bundle over 𝑆 and Φ is an isomorphism

Φ ∶ (𝜑∗)𝑆⧵∞ → 𝑆⧵∞
that is meromorphic (cf. [SW20, Definition 5.3.5]) along ∞ = {𝜉 = 0}.

(2) A BKF--shtuka with leg at ∞ is a triple (𝑆♯,  ,Φ), where  is a -bundle over Spec𝕎(𝑅◦) and
Φ is an isomorphism

Φ ∶ (𝜑∗) → 
defined over Spec𝕎(𝑅◦)[ 1

𝜉𝑆♯
].

(3) We let Sht,𝑂𝐸 denote the v-stack of -shtukas and we let Sht+,𝑂𝐸 denote the prestack of BKF-
-shtukas.

Observe that we have a map
Sht,𝑂𝐸 → Bun𝐺

that sends (𝑆♯,  ,Φ) to the unique -𝜑-module over 𝑌𝑆 that agrees with ( ,Φ) over 𝑌[𝑟,∞),𝑆 for sufficiently
large 𝑟.

Proposition 7.8. If 𝑆 is a product of points we have a Cartesian diagram

Sht+,𝑂𝐸 (𝑆) Bun+𝐺(𝑆)

Sht,𝑂𝐸 (𝑆) Bun𝐺(𝑆)

in Grps.

Proof. The same proof as in Proposition 7.3 works in this generality. □

Recall that the stack of shtukas Sht,𝐸 (i.e. the locus in Sht,𝑂𝐸 where the untilt ∞∶ 𝑆 → Spd𝑂𝐸
factors through Spd𝐸) admits a different description.

Proposition 7.9. Let 𝑆 ∈ Perf aff and consider the groupoid Sht,𝐸(𝑆). It is equivalent to the groupoid
of tuples (𝑆♯, 𝑇 , , 𝛼), where 𝑆♯ is an untilt of 𝑆 over 𝐸, 𝑇 is a quasi-pro-étale (𝑂𝐸)-torsor over 𝑆,
 ∈ Bun𝐺(𝑆) and 𝛼∶ 𝑇 →  is a modification over 𝑋FF,𝑆 , where 𝑇 ∈ Bun1𝐺(𝑆) is the unique 𝐺-
bundle over 𝑋FF,𝑆 specified by the identification Bun1𝐺 ≃ [∗ ∕𝐺(𝐸)]. Under this equivalence the map
Sht,𝐸 → Bun𝐺 is given by

(𝑆♯, 𝑇 , , 𝛼) ↦  .
Moreover, the Beauville–Laszlo uniformization map BL∶ Gr𝐺,𝐸 → Bun𝐺 factors as Gr𝐺,𝐸 → Sht,𝐸 →
Bun𝐺.

Proof. This is [Zha23, Proposition 11.16], whose proof carries over to general 𝐸. □

Lemma 7.10. Let 𝑆 = Spa(𝑅,𝑅+) ∈ Perfaff be a product of points with 𝑅+ =
∏

𝑖∈𝐼𝐶
+
𝑖 and pseudo-

uniformizer 𝜛 ∈ 𝑅+. Then Sht+,𝐸(𝑆) → Sht,𝐸(𝑆) is an equivalence.
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Proof. By Proposition 7.8 the map is fully-faithful. We wish to show it is essentially surjective. Fix
(𝑆♯,  ,Φ) ∈ Sht,𝐸(𝑆). From now on we will omit the untilt from the notation. After fixing an embedding
 → GL𝑛, we see that Φ has uniformly bounded zeroes and poles along ∞.

Let 𝑆𝑖 = Spa(𝐶𝑖, 𝐶+
𝑖 ). Over geometric points, Sht+,𝐸(𝑆𝑖) ≃ Sht,𝐸(𝑆𝑖) by [Ans22, Theorem 1.1]. Let

(𝑖,Φ𝑖) be the BKF--shtuka obtained from ( ,Φ) after restricting to 𝑆𝑖. We may find a trivialization
 ≃ 𝑖 and by transfer of structure obtain a matrix 𝑀𝑖 ∈ (𝕎(𝑂𝐶𝑖 )[

1
𝜉 ]). We consider the product BKF-

-shtuka (∞,Φ∞) obtained from the product matrix 𝑀∞ =
∏

𝑖∈𝐼𝑀𝑖 ∈
∏

𝑖∈𝐼(𝕎(𝑂𝐶𝑖 )[
1
𝜉 ]). Since we

have uniform bounds on poles and zeroes of 𝜉, this matrix lies in ([
∏

𝑖∈𝐼𝕎(𝑂𝐶𝑖 )][
1
𝜉 ]).

We claim that (∞,Φ∞) is isomorphic to ( ,Φ). Let  denote the groupoid of isomorphisms between
( ,Φ) and (∞,Φ∞), we claim that  is proper and quasi-pro-étale over 𝑆.

Indeed, we reinterpret both shtukas in terms of Proposition 7.9, so that we have tuples (𝑇 , , 𝛼) and
(𝑇∞,∞, 𝛼∞). An isomorphism of this data consists of a pair (Θ1,Θ2), where Θ1 ∶ 𝑇 → 𝑇∞ is an (𝑂𝐸)-
equivariant isomorphism while Θ2 ∶  → ∞ is an isomorphism in Bun𝐺(𝑆). This data should fit in the
following commutative diagram

𝑇 𝑇∞

 ∞ ,

Θ1

𝛼 𝛼∞
Θ2

where the solid arrows denote maps over 𝑋FF while the dashed arrows denote modifications. Notice that
Θ1 determines Θ2 (if they exist) and vice versa.

We make two observations. Since 𝑆 is a product of points, every quasi-pro-étale (𝑂𝐸)-torsor is trivial
by Lemma 2.16. This implies that the space of isomorphism between 𝑇 and 𝑇∞ is isomorphic to (𝑂𝐸)
and in particular it is proper and quasi-pro-étale over 𝑆. The second observation is that any isomorphism
Θ1 ∶ 𝑇 → 𝑇∞ gives rise to a unique commutative diagram

𝑇 𝑇∞

 ∞ .

Θ1

𝛼 𝛼∞
Θ2

Indeed, Θ2 = 𝛼∞◦Θ1◦𝛼−1. Moreover, after fixing trivializations (𝑂𝐸) ≃ 𝑇 and (𝑂𝐸) ≃ 𝑇∞, we have
a map

(𝑂𝐸) → Hckloc
,𝑆♯

with Θ1 ↦ [ loc Θ2
←←←←←←←←←←←→  loc

∞ ]

to the local Hecke stack of [FS24, Definition VI.1.6]. Θ1 defines an isomorphism if and only if the induced

map  loc Θ2
←←←←←←←←←←←→  loc

∞ is an isomorphism instead of merely a modification. Since this is a closed condition
within the local Hecke stack, the v-sheaf  of isomorphisms between ( ,Φ) and (∞,Φ∞) is a closed
subsheaf of (𝑂𝐸). In particular,  is proper and quasi-pro-étale over 𝑆.

To show that (∞,Φ∞) is isomorphic to ( ,Φ) it suffices to show that  → 𝑆 admits a section. We note
that it is v-surjective since the map is qcqs and || → |𝑆| is surjective. Indeed, it is a closed map which
by construction maps to every principal component of 𝜋0(𝑆) and these are dense in 𝑆. Using Lemma 2.16
again, we observe that the map  → 𝑆 admits a section. □

Corollary 7.11. Let 𝑆 ∈ Perfaff be a product of points. Then, the following statements hold:
(1) The map Bun+𝐺(𝑆) → Bun𝐺(𝑆) is an equivalence.
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(2) The map Sht+,𝑂𝐸 (𝑆) → Sht,𝑂𝐸 (𝑆) is an equivalence of groupoids.

Proof. In light of Proposition 7.8 it suffices to show the first statement. Recall from [FS24, §III.3] the
Beauville–Laszlo uniformization map

BL∶ Gr𝐺,𝐸 → Bun𝐺

BL(𝛼dR ∶ dR → 𝐺) ∶= 𝛼𝑋FF
∶ 𝑋FF

→ 𝐺

that sends a modification of the trivial 𝐺-torsor over 𝐵dR to a modification of the trivial 𝐺-torsor over
𝑋FF. This map is a pro-étale surjection by [FS24, Proposition III.3.1].

Recall that under the notation of Proposition 7.9, this map factors as

Gr𝐺,𝐸 → Sht,𝐸 → Bun𝐺 .

By Lemma 2.16, any map 𝑆 → Bun𝐺 lifts to a map 𝑆 → Gr𝐺,𝐸 which induces 𝑆 → Sht,𝐸 . By
Lemma 7.10, this comes from an object in Sht+,𝐸 which induces an element in Bun+𝐺 as we wanted to
show. □

Theorem 7.12. The following statements hold:
(1) We have an isomorphism of small v-stacks (Shtsch )† ≅ Sht.
(2) We have an isomorphism of small v-stacks 𝔅(𝐺)† ≅ Bunmer

𝐺 .
(3) The maps (Shtsch )⋄ → Sht and 𝔅(𝐺)⋄ → Bunmer

𝐺 are v-surjective.

Proof. Proposition 7.3 shows that (Shtsch )†pre (𝑆) → Sht(𝑆) is fully-faithful and Corollary 7.11 shows
that it is v-locally surjective since it is an equivalence on products of points. This proves the first claim.
For the second claim, consider the map

Shtsch [ 1
𝜋
]†pre (𝑆) → Sht[

1
𝜋
](𝑆) .

Arguing as above, we see that it is fully-faithful in general and an equivalence when 𝑆 is a product of
points. In particular, their v-sheafifications agree. Nevertheless, by the last part of Proposition 7.3, the
v-sheafification of Shtsch [ 1𝜋 ]

†pre is 𝔅(𝐺)† while the v-sheafification of Sht[
1
𝜋 ] is Bunmer

𝐺 .
For the third claim, it suffices to prove that (Shtsch )⋄ → Sht is surjective since Sht → Bunmer

𝐺 is
surjective and the map (Shtsch )⋄ → Bunmer

𝐺 factors through 𝔅(𝐺)⋄. Since Sht ≅ (Shtsch )†, it suffices
to prove that  ∈ (Shtsch )†pre (𝑆) lifts to an object in (Shtsch )⋄pre (𝑆′) for some v-cover 𝑆′ → 𝑆. We
can reduce this to the case where 𝑆 = Spa(𝑅,𝑅+) is a product of points with 𝑅+ =

∏

𝑖∈𝐼𝐶
+
𝑖 , and  is

given by a matrix 𝑀 ∈ (𝕎(
∏

𝑖∈𝐼𝑂𝐶𝑖 )[
1
𝜋 ]). Any 𝜑-conjugation by a matrix 𝑁 ∈ (𝕎(

∏

𝑖∈𝐼𝑂𝐶𝑖 )) =
∏

𝑖∈𝐼(𝕎(𝑂𝐶𝑖 )) defines an isomorphic object in (Shtsch )†pre (𝑆). This allows us to reduce to the case
where the set 𝐼 is a singleton and we must show that 𝑀 is 𝜑-conjugate by some 𝑁 ∈ (𝕎(𝑂𝐶 )) to a
matrix 𝑀 ′ ∈ (𝕎(𝐶+)[ 1𝜋 ]). Let 𝑘 = 𝑂𝐶∕𝐶◦◦ and 𝑘+ = 𝐶+∕𝐶◦◦ be the residue rings. As 𝕎(𝐶+)[ 1𝜋 ]
is the preimage of 𝕎(𝑘+)[ 1𝜋 ] under 𝕎(𝑂𝐶 )[

1
𝜋 ] → 𝕎(𝑘)[ 1𝜋 ], it suffices to prove the above claim after

replacing 𝑂𝐶 and 𝐶+ by 𝑘 and 𝑘+, respectively. Indeed, if 𝑀 ′ ∈ (𝕎(𝑘+)[ 1𝜋 ]) can be conjugated to
𝑀 ∈ (𝕎(𝑘)[ 1𝜋 ]) through a matrix 𝑁 ∈ (𝕎(𝑘)), then any lift of 𝑁 to 𝑁 ∈ (𝕎(𝑂𝐶 )) would give the
desired conjugation.

The claim is now that for every 𝑀 ∈ (𝕎(𝑘)[ 1𝜋 ]) there is some 𝑁 ∈ (𝕎(𝑘)[ 1𝜋 ]) such that

𝑁
−1
𝑀𝜑(𝑁) ∈ (𝕎(𝑘+)[ 1

𝜋
]) .
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Note that 𝑘 is an algebraically closed field, so that by the classification of isocrystals there are 𝐴 ∈
(𝕎(𝑘)[ 1𝜋 ]) and 𝑇 ∈ (𝕎(𝔽 𝑞)[

1
𝜋 ]) such that 𝐴−1𝑇𝜑(𝐴) = 𝑀 . By ind-properness of the Witt vec-

tor affine Grassmannian, we have 𝐴 = 𝐵 ⋅ 𝐶 for some 𝐵 ∈ (𝕎(𝑘+)[ 1𝜋 ]) and 𝐶 ∈ (𝕎(𝑘)). Letting
𝑁 = 𝐶−1 we get

𝐵−1𝑇𝜑(𝐵) = 𝑁
−1
𝑀𝜑(𝑁) .

Now 𝐵−1𝑇𝜑(𝐵) ∈ (𝕎(𝑘+)[ 1𝜋 ]) as we wanted to show. □

Remark 7.13. This result can be regarded as a version of Fargues’ theorem [Far18, Theorem 1.12] in
families. Recall that Fargues’ theorem states that the category of shtukas over (𝐶,𝑂𝐶 ) is equivalent to
the category of BKF-modules of 𝕎(𝑂𝐶 ). Although this statement is not true for general families, the
theorem above shows that the statement is true v-locally. Indeed, Sht(𝑅,𝑅+) parametrizes -shtukas
over Spa(𝑅,𝑅+) while (Shtsch )† is the sheafification of the functor attaching to (𝑅,𝑅+) the category of
BKF-modules with -structure over 𝕎(𝑅◦).

7.2. The schematic comparison.

Theorem 7.14. Let 𝐺 be a reductive group over 𝐸 and  a parahoric 𝑂𝐸-model of 𝐺.

(1) The natural map 𝔅(𝐺)
≅
←←←←←←←→ (Bun𝐺)red is an isomorphism of scheme-theoretic v-sheaves valued in

groupoids.
(2) The natural map Shtsch

≅
←←←←←←←→ (Sht)red is an isomorphism of scheme-theoretic v-sheaves valued in

groupoids.

Proof. Let 𝑋 ∈ PSchaff . For the first claim we write:
𝔅(𝐺)(𝑋) = Fun⊗ex(Rep𝐺,𝔅(𝑋))

≅ Fun⊗ex(Rep𝐺,BunFF(𝑋
⋄))

= Bun𝐺(𝑋⋄)

= (Bun𝐺)red(𝑋) .

Here, the second isomorphism is Proposition 4.7.
For the second claim, since (Sht)red and Shtsch are v-sheaves (the latter by Proposition 6.3), it suffices

to prove that Shtsch (𝑋)
≅
←←←←←←←→ Sht(𝑋⋄) when𝑋 = Spec𝐴 is a comb. In this case, Shtsch (𝑋) is equivalent to

the category where the objects are elements 𝑀 ∈ (𝕎(𝐴)[ 1𝜋 ]), and morphisms between 𝑀1 and 𝑀2
are elements 𝑁 ∈ (𝕎(𝐴)) with 𝑁−1𝑀1𝜑(𝑁) = 𝑀2 . On the other hand, by Theorem 7.12.(5), an
isomorphism between 𝑀1 and 𝑀2 in Sht(𝑋⋄) corresponds to a functorial choice of elements 𝑁𝑅 ∈
(𝕎(𝑅◦)) with𝑁−1

𝑅 𝑀1𝜑(𝑁𝑅) =𝑀2 ranging over maps Spa(𝑅,𝑅+) → 𝑋⋄, with Spa(𝑅,𝑅+) a product
of points. Recall that the functor

(𝑅,𝑅+) ↦ 𝑅◦

is represented by the closed subsheaf (𝔸1)† ⊆ Spd(𝔽𝑞[𝑇 ], 𝔽𝑞) = (𝔸1
𝔽𝑞
)◊. In particular, 𝐻0(𝑋⋄,◦) ⊆

{𝑋⋄ → 𝔸1
𝔽𝑞
}. By [Gle24, Theorem 2.32], we can conclude that 𝐻0(𝑋⋄,◦) = 𝐴. Since 𝐻0(𝑋⋄,◦) =

𝐴, such a collection of𝑁𝑅 uniquely comes from an element𝑁 ∈ (𝕎(𝐴)). This shows that Shtsch (𝑋) →
Sht(𝑋⋄) is fully-faithful.

To prove essential surjectivity, fix  ∈ Sht(𝑋⋄). This induces elements Bun ∈ Bun𝐺(𝑋⋄) and
𝔅 ∈ 𝔅(𝐺)(𝑋) unique up to isomorphism. Objects in Shtsch (𝑋) lifting 𝔅 correspond to sections of
Shtsch ×𝔅(𝐺) 𝑋 → 𝑋, whereas objects in Sht(𝑋⋄) lifting Bun correspond to sections Sht ×Bun𝐺𝑋

⋄ →
𝑋⋄. The result then follows from Lemma 7.15 below. □
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Lemma 7.15. Let 𝑋 ∈ PSchaff be a comb and 𝑋 → 𝔅(𝐺) be a map, then the natural map

Shtsch ×𝔅(𝐺) 𝑋
≃
←←←←←←←→ (Sht ×Bun𝐺𝑋

⋄)red

induces an isomorphism.

Proof. The argument given in [Gle22, Proposition 2.30] works in this generality. To orient the reader,
we give a summary of the proof of [Gle22, Proposition 2.30] in the more general case we propose here.
Since 𝑋 = Spec𝐴 is a comb, every map 𝑋 → 𝔅(𝐺) is given by a matrix 𝑀 ∈ (𝕎(𝐴)[ 1𝜋 ]), cf. [Iva23,
Theorem 6.1]. The functor

Shtsch ×𝔅(𝐺) 𝑋 ∶ (PSchaff )op∕𝑋 → Sets

parametrizes on 𝑇 = Spec𝑅 triples ( sch,Φsch, 𝜌sch), where  sch is a-torsor over Spec𝕎(𝑅),Φ∶ 𝜑∗ sch →

 sch is an isomorphism defined over Spec𝕎(𝑅)[ 1𝜋 ] and 𝜌∶  sch →  is an isomorphism defined over
Spec𝕎(𝑅)[ 1𝜋 ]. Moreover, these data have to fit in the following commutative diagram

𝜑∗ sch 

 sch  .

𝜑∗𝜌sch

Φsch 𝑀𝑇

𝜌sch

We notice at this point that the data of Φ are completely determined by 𝜌, and for this reason Shtsch ×𝔅(𝐺)
𝑋 ≃ Gr𝑋 , where the latter is the Witt vector Grassmannian which is an ind-scheme.

On the other hand, the functor

Sht ×Bun𝐺𝑋
⋄ ∶ (Perf aff )op∕𝑋⋄ → Sets

parametrizes on 𝑆 = Spa(𝑅,𝑅+) triples ( ,Φ, 𝜌), where  is a -torsor over 𝑆 , the map Φ∶ 𝜑∗ →  is
an isomorphism defined over (0,∞),𝑆 such that Φ is meromorphic along 𝑉 (𝜋) ⊆ 𝑆 , the map 𝜌∶  → 
is an isomorphism defined over 𝑅+

(0,∞) (not necessarily meromorphic), and the data fit in the commutative
diagram

𝜑∗ 

  .

𝜑∗𝜌

Φ 𝑀𝑇

𝜌

Note that in this case, although the data of 𝜌 determine Φ (since Φ = 𝜌−1◦𝑀𝑇 ◦𝜑∗𝜌), it is no longer true
in this context that every choice of 𝜌 defines a Φ which is meromorphic.

Now,
(Sht ×Bun𝐺𝑋

⋄)red ∶ (PSchaff )op → Sets
has the formula

(Sht ×Bun𝐺𝑋
⋄)red(𝑇 ) = Sht ×Bun𝐺𝑋

⋄(𝑇 ⋄)
which is the same as giving a compatible system of maps

Spa(𝑅,𝑅+) → Sht ×Bun𝐺𝑋
⋄

as Spa(𝑅,𝑅+) ranges over over Perf aff∕𝑇 ⋄ .
Given ( sch,Φsch, 𝜌sch) ∈ Shtsch ×𝔅(𝐺)𝑋(𝑇 ) one can construct a compatible systems of maps by pulling

back all data along Spa(𝑅,𝑅+) → Spa𝑇 , and what [Gle22, Proposition 2.30] shows is that every system
of compatible data arises uniquely in this way. The proof of [Gle22, Proposition 2.30] treats the case in
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which 𝑋 = Spec �̄�𝑝, but this hypothesis is not essential to the argument, the only thing that is really used
is that the map 𝑋 → 𝔅(𝐺) has trivial underlying -torsor.

The proof of [Gle22, Proposition 2.30] goes as follows. One first shows that Shtsch ×𝔅(𝐺) 𝑋 →

(Sht ×Bun𝐺𝑋
⋄)red is injective, or that the triple ( sch,Φsch, 𝜌sch) ∈ Shtsch ×𝔅(𝐺)𝑋(𝑇 ) is determined by the

compatible system of data that it induces. To prove surjectivity of Shtsch ×𝔅(𝐺) 𝑋 → (Sht ×Bun𝐺𝑋
⋄)red

the harder part of the argument is showing that given a compatible system of data

(𝑅,Φ𝑅, 𝜌𝑅) ∈ (Sht ×Bun𝐺𝑋
⋄)(𝑅,𝑅+)

with Spa(𝑅,𝑅+) ranging over Perf aff∕𝑇 ⋄ , each of the 𝜌𝑅 defined over 𝑌 𝑅+

(0,∞) is meromorphic along 𝑉 (𝜋) ⊆
𝑌 𝑅+

[0,∞). Once one knows that each 𝜌𝑅 is meromorphic, it is not hard to show it comes from a unique map

𝜌𝑇 ∶  sch → 

defined over 𝑌𝑇 . □

7.3. The topological comparison. Recall from §6.2 that 𝐵(𝐺) is a partially ordered set. We equip 𝐵(𝐺)
with the topology induced by the partial order, i.e. [𝑏] ∈ {[𝑏′]} if and only if [𝑏] ≤ [𝑏′] in the partial
order. Recall that by results of Rapoport–Richartz [RR96] and He [He16, Theorem 2.12],

|𝔅(𝐺)| ≅ 𝐵(𝐺) . (7.1)

Alternatively, by the results of Fargues–Scholze [FS24, Theorem I.4.1.(iii)] and of Viehmann [Vie23,
Theorem 1.1], we also have

|Bun𝐺|op ≅ 𝐵(𝐺) . (7.2)
Here |Bun𝐺|op is the topological space where a subset is open in |Bun𝐺|op if and only if it is closed in
|Bun𝐺|. Combining these two sets of references, we obtain that

|𝔅(𝐺)| ≅ |Bun𝐺|op . (7.3)

In this section we give a direct and new proof of the identity (7.3). As a consequence, we prove that the
identities (7.1) and (7.2) are equivalent statements.

Let us clarify. The statements of the form

𝐵(𝐺) ≅ |𝔅(𝐺)| and 𝐵(𝐺) ≅ |Bun𝐺|op (7.4)

are naturally broken into two complementary statements. The first statement is Grothendieck’s special-
ization theorem (as generalized in [RR96]), which says that the Newton polygon of a family of isocrystals
over a scheme decreases as the family degenerates along a closed subscheme. The analogous statement
for Bun𝐺 is Kedlaya–Liu’s semi-continuity theorem [SW20, Theorem 22.2.1] (as generalized in [FS24,
Theorem I.4.1.(iii)]). The second statement is Grothendieck’s conjecture [RR96, §3.13], which asks if
every specialization of the combinatorially defined partial order in 𝐵(𝐺) can be realized by a geometric
family. This is what [He16, Theorem 2.12] and [Vie23, Theorem 1.1] show in the 𝔅(𝐺) case and Bun𝐺
case, respectively.

Our proof shows that if we assume that Grothendieck’s specialization theorem (in its 𝔅(𝐺) and Bun𝐺
form) already holds, Grothendieck’s conjectures in both setups are equivalent.

Let us set some notation.

Definition 7.16. Let 𝑏1, 𝑏2 ∈ 𝐵(𝐺).
(1) We say that 𝑏1 ⪯𝔅(𝐺) 𝑏2 if 𝑏1 ∈ {𝑏2} in 𝔅(𝐺).
(2) We say that 𝑏1 ⪯Isoc𝐺 𝑏2 if 𝑏1 ∈ {𝑏2} in Isoc𝐺.
(3) We say that 𝑏1 ⪯Bunop𝐺

𝑏2 if 𝑏2 ∈ {𝑏1} in Bun𝐺.
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Moreover, we write 𝑏1 ⪯⋅𝔅(𝐺) 𝑏2, 𝑏1 ⪯⋅Isoc𝐺 𝑏2 or 𝑏1 ⪯⋅Bunop𝐺 𝑏2 whenever 𝑏2 covers 𝑏1 in the respective
partial order.

The following lemma says that the information of the topological spaces in question is completely
determined by the partial order that the closure relations define. In particular, it will suffice to compare
the corresponding partial orders.

Lemma 7.17. Let 𝑈 ⊆ 𝐵(𝐺). For 𝑏 ∈ 𝐵(𝐺) we let 𝑈≤𝑏 ∶= 𝑈 ∩ 𝐵(𝐺)≤𝑏.
(1) 𝑈 is closed in 𝔅(𝐺) ⟺ 𝑈≤𝑏 is closed in 𝔅(𝐺) for all 𝑏 ∈ 𝐵(𝐺).
(2) 𝑈 is closed in Isoc𝐺 ⟺ 𝑈≤𝑏 is closed in Isoc𝐺 for all 𝑏 ∈ 𝐵(𝐺).
(3) 𝑈 is open in Bun𝐺 ⟺ 𝑈≤𝑏 is open in Bun𝐺 for all 𝑏 ∈ 𝐵(𝐺).
(4) |Bun𝐺|op is a topological space.
(5) The topologies on 𝔅(𝐺), Isoc𝐺 and Bun𝐺 are determined by the partial order they induced as in

Definition 7.16. More precisely a set 𝑈 ⊂ 𝔅(𝐺) is closed if and only if for all 𝑏 ∈ 𝑈 the sets
𝔅(𝐺)≤𝑏 = {𝑏′ ∈ 𝔅(𝐺) ∣ 𝑏′ ≤ 𝑏} is a subset of 𝑈 (analogously for Isoc𝐺 and Bun𝐺).

Proof. We prove the first claim, the second and third claim being analogous. The forward implication
is evident since 𝔅(𝐺)≤𝑏 ⊆ 𝔅(𝐺) is a closed immersion. Let 𝑓 ∶ Spec𝑅 → 𝔅(𝐺) be any map. As
Spec𝑅 is quasi-compact, there are a finite number of elements 𝑏𝑓𝑖 ∈ 𝐵(𝐺) such that 𝑓 factors through
⋃𝑛
𝑖=1𝔅(𝐺)≤𝑏𝑓𝑖

. By assumption 𝑈 ∩
⋃𝑛
𝑖=1𝔅(𝐺)≤𝑏𝑓𝑖

is closed in 𝔅(𝐺). Since 𝑓 factors through the set
above, base change of 𝑓 along 𝑈 defines a closed immersion.

The fourth claim follows from the third. Indeed, the only part that needs justification is that an arbitrary
union of open subsets in |Bun𝐺|op is open. This is equivalent to the preservation of open subsets of |Bun𝐺|
under arbitrary intersections, but arbitrary intersections can be expressed as finite intersections when we
restrict them to Bun≤𝑏𝐺 .

The last claim follows from the first three. Indeed, 𝔅(𝐺), Isoc𝐺 and Bun𝐺 have the strong topology
along the inclusion maps from

∐

𝑏∈𝐵(𝐺)𝔅(𝐺)≤𝑏,
∐

𝑏∈𝐵(𝐺) Isoc
≤𝑏
𝐺 and

∐

𝑏∈𝐵(𝐺) Bun
≤𝑏
𝐺 . Moreover, since

these latter ones are finite topological spaces, they are determined by their closure relations. □

The following implications are reformulations of Grothendieck’s specialization theorem in the respec-
tive setup.

(1) 𝑏1 ⪯𝔅(𝐺) 𝑏2 ⟹ 𝑏1 ≤𝐵(𝐺) 𝑏2
(2) 𝑏1 ⪯Isoc𝐺 𝑏2 ⟹ 𝑏1 ≤𝐵(𝐺) 𝑏2
(3) 𝑏1 ⪯Bunop𝐺

𝑏2 ⟹ 𝑏1 ≤𝐵(𝐺) 𝑏2

Theorem 7.18. The partial orders ⪯𝔅(𝐺), ⪯Isoc𝐺 , ⪯Bunop𝐺
agree. In particular, we have natural homeo-

morphisms
|𝔅(𝐺)| ≅ | Isoc𝐺 | ≅ |Bun𝐺|op .

Proof. For the rest of the proof we fix 𝑏1, 𝑏2 ∈ 𝐵(𝐺) with 𝑏1 ≤𝐵(𝐺) 𝑏2. We first prove |𝔅(𝐺)| ≅ | Isoc𝐺 |.
Recall that ◊ preserves closed immersions, consequently:

𝑏1 ⪯Isoc𝐺 𝑏2 ⟹ 𝑏1 ⪯𝔅(𝐺) 𝑏2 .

Now, suppose that 𝑏1 ⪯⋅𝔅(𝐺) 𝑏2. We claim that there is a perfect rank 1 valuation ring 𝑉 and a map
Spec𝑉 → 𝔅(𝐺) such that the induced maps on Spec 𝑘𝑉 (the residue field) and Spec𝐾𝑉 (the fraction field)
factor through 𝔅(𝐺)𝑏1 and 𝔅(𝐺)𝑏2 , respectively. Indeed, since we assumed 𝑏1 ⪯⋅𝔅(𝐺) 𝑏2, we may find a
map 𝑓 ∶ Spec𝑅 → 𝔅(𝐺) with the property that for all 𝑥 ∈ Spec𝑅 the induced map Spec 𝑘𝑥 → 𝔅(𝐺)
factors through either 𝔅(𝐺)𝑏1 or 𝔅(𝐺)𝑏2 and with the property that 𝑓−1(𝔅(𝐺)𝑏2 )∩𝑓

−1(𝔅(𝐺)𝑏1 ) ≠ ∅. We
may replace Spec𝑅 by a v-cover, so we may assume that𝑅 =

∏

𝑖∈𝐼𝑉𝑖 is a product of valuation rings. Since
the inclusion 𝔅(𝐺)≤𝑏1 → 𝔅(𝐺) is perfectly finitely presented, there is 𝑟 ∈ 𝑅 such that Spec𝑅∕(𝑟)perf ⊆
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Spec𝑅 is equal to 𝑓−1(𝔅(𝐺)𝑏1 ). We may write 𝑅 = 𝑅1 × 𝑅2, where 𝑅1 =
∏

{𝑖∈𝐼 ∣𝑟𝑖=0}𝑉𝑖 and 𝑅2 =
∏

{𝑖∈𝐼 ∣𝑟𝑖≠0}𝑉𝑖, and replace 𝑅 by 𝑅2. Let 𝐾𝑉𝑖 denote the fraction field of 𝑉𝑖. Now, Spec
∏

𝑖∈𝐼𝐾𝑉𝑖 ⊆
Spec𝑅 is a pro-open subset lying in 𝑓−1(𝔅(𝐺)𝑏2 ). Since 𝑓−1(𝔅(𝐺)𝑏1 ) is non-empty, there is a connected
component in 𝑥 ∈ 𝛽𝐼 with associated valuation ring 𝑉𝑥 such that that the image of 𝑟 in 𝑉𝑥, which we
denote by 𝑟𝑥, is not identically 0, but is also not a unit. The largest prime ideal contained in ⟨𝑟𝑥⟩ and the
smallest prime ideal containing ⟨𝑟𝑥⟩ define a rank 1 valuation ring with the desired properties.

The map Spec𝑉 → 𝔅(𝐺) induces a map Spd(𝑉 , 𝑉 ) → 𝔅(𝐺)⋄ → Isoc𝐺 such that the corresponding
maps on Spd(𝑘𝑉 , 𝑘𝑉 ) and Spd(𝐾𝑉 , 𝐾𝑉 ) factor through Isoc𝑏1𝐺 and Isoc𝑏2𝐺 , respectively. This implies that
Spd(𝐾𝑉 , 𝑉 ) → Isoc𝐺 factors through Isoc𝑏2𝐺 , but Spd(𝐾𝑉 , 𝑉 ) ⊆ Spd(𝑉 , 𝑉 ) is dense. This proves:

𝑏1 ⪯𝔅(𝐺) 𝑏2 ⟹ 𝑏1 ⪯Isoc𝐺 𝑏2 .

In the same fashion, the map Spec𝑉 → 𝔅(𝐺) induces a map Spd(𝑉 , 𝑉 ) → 𝔅(𝐺)⋄ → Bun𝐺 that
if restricted to Spd(𝑘𝑉 , 𝑘𝑉 ) and Spd(𝐾𝑉 , 𝐾𝑉 ), factors through Bun𝑏1𝐺 and Bun𝑏2𝐺 , respectively. Let 𝜋 ∈
𝑉 be a pseudo-uniformizer, let 𝑉𝜋 be the 𝜋-adic completion of 𝑉 and let 𝐾 = 𝑉𝜋[

1
𝜋 ]. We note that

Spa(𝐾, 𝑉𝜋) is a perfectoid field and that Spd(𝑉𝜋 , 𝑉𝜋) has two points, one corresponding to Spd(𝐾, 𝑉𝜋)
and one corresponding to Spd(𝑘𝑉 , 𝑘𝑉 ). By Theorem 3.15, the map Spd(𝑉𝜋 , 𝑉𝜋) → Bun𝐺 corresponds
to a ⊗-exact functor from Rep𝐺 to the category of 𝜑-equivariant objects in Vect(𝑌 𝐾(0,∞]). Using [PR24,
Proposition 2.1.3] and [FS24, Theorem II.2.14], we conclude that the map Spd(𝑉𝜋 , 𝑉𝜋) → Bun𝐺 factors
through Bun𝑏1𝐺 as Spd(𝑘𝑉 , 𝑘𝑉 ) → Bun𝐺 does. Moreover, Spd(𝑉𝜋 , 𝑉𝜋) ⊆ Spd(𝑉 , 𝑉 ) is an open subsheaf
whose v-sheaf-theoretic closure is Spd(𝑉 , 𝑉 ). This allows us to conclude:

𝑏1 ⪯𝔅(𝐺) 𝑏2 ⟹ 𝑏1 ⪯Bunop𝐺
𝑏2 .

Finally, suppose that 𝑏1 ⪯⋅Bunop𝐺 𝑏2. Using these assumptions we may find a map Spa(𝑅,𝑅+) → Bun𝐺
with the property that for all 𝑥 ∈ Spa(𝑅,𝑅+), the induced map Spa(𝐶𝑥, 𝐶+

𝑥 ) → Bun𝐺 factors through

either Bun𝑏1𝐺 or Bun𝑏2𝐺 and with the property that 𝑓−1(Bun𝑏1𝐺 ) ∩ 𝑓−1(Bun𝑏2𝐺 ) ≠ ∅. Replacing Spa(𝑅,𝑅+)
by a v-cover, we may assume that it is a product of points with 𝑅+ =

∏

𝑖∈𝐼𝐶
+
𝑖 . By shrinking Spa(𝑅,𝑅+)

and ignoring some factors if necessary, we may assume that the principal components of Spa(𝑅,𝑅+) all

factor through Bun𝑏1𝐺 without changing the condition that 𝑓−1(Bun𝑏1𝐺 ) ∩ 𝑓−1(Bun𝑏2𝐺 ) ≠ ∅. This forces
at least one non-principal component to factor through Bun𝑏2𝐺 . Moreover, we may assume 𝐶+

𝑖 = 𝑂𝐶𝑖
for all 𝑖 so that 𝑅+ = 𝑅◦. By Theorem 7.12, we may assume that our map Spa(𝑅,𝑅+) → Bun𝐺 is
induced from a map Spec𝑅+ → 𝔅(𝐺). Let 𝑘𝑖 denote the residue field of 𝑂𝐶𝑖 . By assumption, the map
Spa(𝐶𝑖, 𝑂𝐶𝑖 ) → Bun𝐺 factors through Bun𝑏1𝐺 . In particular, Spec 𝑘𝑖 → 𝔅(𝐺) factors through 𝔅(𝐺)𝑏1 ,
which implies that Spec

∏

𝑖∈𝐼 𝑘𝑖 → 𝔅(𝐺) also factors through𝔅(𝐺)𝑏1 . Indeed, it certainly factors through
𝔅(𝐺)≤𝑏1 , and the locus where it factors through 𝔅(𝐺)𝑏′ with 𝑏′ < 𝑏1 is finitely presented and contains
no principal component of Spec

∏

𝑖∈𝐼 𝑘𝑖, which implies that it is empty. We see that the closed point of
every connected component of Spec𝑅+ factors through 𝔅(𝐺)𝑏1 . Furthermore, there is at least one point
𝑥 ∈ Spec𝑅+ mapping to 𝔅(𝐺)𝑏2 . The connected component containing 𝑥 defines a valuation ring 𝑉𝑥
and a map Spec𝑉𝑥 → 𝔅(𝐺) such that the closed point factors through 𝔅(𝐺)𝑏1 and at least one point of
Spec𝑉𝑥 factors through 𝔅(𝐺)𝑏2 . This allows us to conclude that

𝑏1 ⪯Bunop𝐺
𝑏2 ⟹ 𝑏1 ⪯𝔅(𝐺) 𝑏2 . □

Recall that the groupoid of maps 𝑋 → 𝔅(𝐺) and the groupoid of maps 𝑋⋄ → Bun𝐺 are equivalent.
The following statement explains the relation between the stratifications that such data induces in 𝑋.
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Proposition 7.19. Let𝑋 = Spec𝐴 and let𝑋 → 𝔅(𝐺) be a map. Let𝑍𝑏 ⊆ 𝑋 denote the closed subscheme
that factors through 𝔅(𝐺)≤𝑏 and let 𝑈𝑏 ⊆ 𝑋⋄ denote the open subsheaf that factors through Bun≤𝑏𝐺 . Then
𝑈𝑏 = 𝑋∕𝑍𝑏 with notation as in [Gle24, Definition 4.18] (i.e. 𝑈𝑏 is the formal neighborhood around 𝑍𝑏).

Proof. By definition 𝑈𝑏 is an open subsheaf and since 𝑍𝑏 → 𝑋 is a finitely presented closed immersion,
𝑋∕𝑍𝑏 is also an open subsheaf by [Gle24, Proposition 4.22] . It suffices to show that 𝑈𝑏 and𝑋∕𝑍𝑏 have the
same geometric points and since both of these subsheaves are partially proper over 𝑋⋄, it even suffices to
show that they have the same rank 1 geometric points. Every map of the form Spa(𝐶,𝑂𝐶 ) → 𝑋⋄ factors
uniquely through a map Spd𝑂𝐶 → 𝑋⋄. We let 𝑘 = 𝑂𝐶∕𝐶◦◦ and note that |Spd𝑂𝐶 | consists of two points,
where one corresponds to Spa(𝐶,𝑂𝐶 ) while the other corresponds to Spd 𝑘. Let 𝑏𝑘 ∈ 𝐵(𝐺) be the unique
isomorphism class of the induced map Spd 𝑘 → 𝑋⋄ → Bun𝐺 We claim that Spd𝑂𝐶 → Bun𝐺 factors
through Bun𝑏𝑘𝐺 . Indeed, if 𝑆 = Spa(𝐶,𝑂𝐶 ), by Theorem 3.15 the map Spd𝑂𝐶 → Bun𝐺 corresponds
to a ⊗-exact functor from Rep𝐺 to the category of 𝜑-equivariant objects in (𝑌(0,∞],𝑆 ). The claim then
follows from [SW20, Theorem 13.2.1, Theorem 13.4.1].

In particular, a rank 1 geometric point Spa(𝐶,𝑂𝐶 ) → 𝑋⋄ lies over𝑈𝑏 if and only if its induced Spd 𝑘→

𝑋⋄ point lies overBun𝑏𝑘𝐺 for 𝑏𝑘 ∈ 𝐵(𝐺)≤𝑏. This is the same as saying that its image under the specialization
map

sp∶ |𝑋⋄
| → |𝑋|

lies on |𝑍𝑏| ⊆ |𝑋|. This in turn is the definition of 𝑋∕𝑍𝑏 . □

Corollary 7.20. Let 𝑋 = Spec𝐴 and let 𝑋 → 𝔅(𝐺) be a map. Let 𝑈 ⊆ 𝐵(𝐺) the intersection of a finite
closed subset with an open subset. Let 𝑍𝑈 ⊆ 𝑋 denote the locally closed subscheme that factors through
𝑈 ⊆ |𝔅(𝐺)|. Let 𝑈𝑏 ⊆ 𝑋⋄ denote the locally closed subsheaf that factors through Bun𝑏∈𝑈𝐺 . Then 𝑈𝑏 is
the smallest subsheaf of 𝑋⋄ containing 𝑋⋄

∕𝑍𝑏 and stable under vertical specialization.

Proof. The same argument as in Proposition 7.19 will show that 𝑋⋄
∕𝑍𝑏 and 𝑈𝑏 agree on rank 1 points.

Since we allow 𝑈 to be more general, it is no longer true that 𝑋⋄
∕𝑍𝑏 is partially proper over 𝑋⋄, while it

is still true that 𝑈𝑏 is. The description given above takes this into account. □

APPENDIX A. SHEAVES OF CATEGORIES

Throughout the body of the text, we used the sheafification construction in Cat⊗,ex1,𝐸 . This appendix has
two purposes: 1) to justify why the ∞-category Cat⊗,ex1,𝐸 is presentable and compactly generated so that
sheafification is well defined and 2) to collect some general categorical statements pertaining separated
presheaves that were used in the above. We start with the second purpose. For the rest of the appendix
we let  ∈ {Perfaff,PSchaff}.

Recall that given a complete ∞-category  and a presheaf  ∈ ( ,) we say that  is a sheaf if for
every object 𝑋 ∈  and every covering sieve  ⊆ ∕𝑋 the natural map

 (𝑋) → lim
←←←←←←←←←←←
𝑈∈

 (𝑈 )

is an equivalence. The following statement says that in our categories {Perf aff,PSchaff}, it suffices to
verify that descent holds for specific covering sieves.

Lemma A.1. A presheaf  ∈ ( ,) is a sheaf if and only if for every map [𝑈 → 𝑋] ∈  the map
 (𝑋) → Desc.( , 𝑈∕𝑋)

is an equivalence.

Here Desc.( , 𝑈∕𝑋) denotes the descent category defined in terms of the Čech resolution 𝑈∙ → 𝑋,
where 𝑈𝑖 denotes the 𝑖-fold product 𝑈𝑖 ∶= 𝑈 ×𝑋 ⋯ ×𝑋 𝑈 .
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Proof. This is classical. For a reference, see [HM24, Lemma A.4.8, A.4.6]. □

Lemma A.2. Let 1,2 ∶  → Cat1 be two sheaves of categories on  and suppose that 𝑓 ∶ 1 → 2
is a morphism of sheaves. If 𝑓 is fully-faithful and locally on  essentially surjective, then it is essentially
surjective.

Proof. Let 𝑋 ∈  and let (𝑋𝑖 → 𝑋)𝑖 be a covering in  , such that 𝑓𝑋𝑖 is essentially surjective. For
any 𝐵 ∈ 2(𝑋), let 𝐴𝑖 ∈ 𝐹1(𝑋𝑖) be a preimage under 𝑓𝑋𝑖 of 𝐵|𝑋𝑖 . By the sheaf property of 1 and the
fully-faithfulness of 𝑓𝑋𝑖 and 𝑓𝑋𝑖×𝑋𝑋𝑗 it follows that the 𝐴𝑖 glue to a unique object of 𝐹 (𝑋) mapping to
𝐵. □

Definition A.3. Let  be a presentable category. Let  ∈ ( ,) be a presheaf and let ̃ denote its
sheafification. We call  separated if the natural map  →  ×̃  in ( ,) is an equivalence.

Recall the +-construction (or †-construction) involved in the explicit construction of sheafification
[Lur09, 6.2.2.9-6.2.2.13]. The functor  ↦ + comes with a natural transformation 𝜂(−) ∶ id → (−)+
which satisfies the property that for all  ∈ ( ,) and all  ∈ ( ,) the maps

Hom( ,)(+,) → Hom( ,)( ,)

are equivalences [Lur09, Lemma 6.2.2.14]. In particular, if + is a sheaf the map 𝜂 ∶  → + exhibits
+ as the sheafification of  . We use the following criterion to recognize a separated presheaf.

Proposition A.4. Let  be a presentable and compactly generated category and let  ∈ ( ,). Given
a covering map [𝑓 ∶ 𝑈 → 𝑋] ∈  , we let 𝑈∕𝑋 ∶= Desc.( , 𝑈∕𝑋). The following are equivalent.

(1)  is a separated presheaf.
(2) For all 𝑓 as above, the diagonal Δ ,𝑓 ∶  (𝑋) →  (𝑋) ×𝑈∕𝑋

 (𝑋) is an equivalence.

Moreover, if any of these statements hold, then + is a sheaf.

Proof. We start by showing that (2) already implies that + is a sheaf. Given 𝐴 ∈ 𝜔 we let ℎ𝐴 ∈
( ,Ani) denote the presheaf of mapping anima ℎ𝐴(𝑋) ∶= Hom(𝐴, (𝑋)). We observe that since
𝐴 ∈ 𝜔, we have functorial equivalences (ℎ𝐴)+ ≃ Hom(𝐴,+). By the Yoneda embedding [Lur09,
Proposition 5.1.3.1], the family of functors {Hom(𝐴,−)∶  → Ani}𝐴∈𝜔 is conservative. In particular,
we may test the sheaf condition on + by showing that ℎ+𝐴 is a sheaf for all 𝐴 ∈ 𝜔. The hypothesis show
that for every map [𝑈 → 𝑋] ∈  the diagonal ℎ𝐴(𝑋) → ℎ𝐴(𝑋) ×Desc.(ℎ𝐴,𝑈∕𝑋) ℎ𝐴(𝑋) is an equivalence.
This suffices to conclude that ℎ+𝐴 is a sheaf (see [AS20, Proposition 3.4.22]), and consequently + also is.

Let us show that the two statements are equivalent. We observe that since  is compactly generated,
the sheafification of ℎ𝐴 agrees with Hom(𝐴, ̃ ). Since both assertions, the first being  being separated,
and the second being the condition that Δ ,𝑓 ∶  (𝑋) →  (𝑋) ×𝑈∕𝑋

 (𝑋) is an equivalence, can be
verified on the mapping anima presheaves {ℎ𝐴}𝐴∈𝜔 , we may and do reduce to the case  = Ani and
 = ℎ𝐴. In one direction, arguing as above, if the diagonal ℎ𝐴(𝑋) → ℎ𝐴(𝑋) ×Desc.(ℎ𝐴,𝑈∕𝑋) ℎ𝐴(𝑋) is an
equivalence, then the sheafification of ℎ𝐴 is ℎ+𝐴, one can use the concrete expression of ℎ+𝐴(𝑋) and that in
Ani filtered colimits commute with finite limits to show that ℎ𝐴 → ℎ𝐴 ×ℎ̃𝐴 ℎ𝐴 is also an equivalence.

For the converse, fix a cover [𝑈 → 𝑋] ∈  and consider the diagram

Desc.( , 𝑈∕𝑋) Desc.(̃ , 𝑈∕𝑋)

 (𝑋) ̃ (𝑋) .

𝑠′

𝛼

𝑠

𝛼

We note that for a map 𝑓 ∶ 𝑐 → 𝑑 in an ∞-category, the diagonal Δ𝑓 ∶ 𝑐 → 𝑐 ×𝑑 𝑐 is an equivalence if
and only if 𝑓 is (−1)-truncated if and only if 𝑓 is a monomorphism. In general, 𝑛-truncated morphisms
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have the left cancellation property and we know that 𝑠 and 𝑠′ are monomorphisms by assumption and 𝛼
is even an equivalence. This implies that 𝛼 is also (−1)-truncated.

□

Proposition A.5. Suppose that  is presentable and compactly generated category. Then the subcategory
of ( ,) spanned by separated presheaves  is stable under finite limits.

Proof. Arguing as in the proof of Proposition A.4 we may reduce to the case  = Ani. This case follows
from the fact that sheafification is exact. □

Lemma A.6. Suppose that  ∈ ( ,Cat⊗,ex1,𝐸 ). The following statements are equivalent.
(1)  is separated as an object in ( ,Cat1).
(2)  is separated as an object in ( ,Cat⊗1,𝐸).
(3)  is separated as an object in ( ,Cat⊗,ex1,𝐸 ).

Proof. The claim is easily reduced to showing that a map [𝐴 → 𝐵] ∈ Cat⊗,ex1,𝐸 satisfies that the diagonal
Δ𝑓 ∶ 𝐴 → 𝐴 ×𝐵 𝐴 is an equivalence if and only if Δ (𝑓 ) ∶  (𝐴) →  (𝐴) × (𝐵)  (𝐴) is when we denote
 ∶ Cat⊗,ex1,𝐸 → Cat1 (resp.  ∶ Cat⊗,ex1,𝐸 → Cat⊗1,𝐸) the forgetful functor.

As the forgetful functor commutes with limits, we have Δ (𝑓 ) ≃  (Δ𝑓 ). Moreover, the inverse of
 (Δ𝑓 ) is necessarily given by  (𝜋1), where 𝜋1 ∶ 𝐴 ×𝐵 𝐴 → 𝐴 is the projection onto the first factor. This
shows that  (Δ𝑓 )−1 is automatically 𝐸-linear and exact as we wanted to show. □

The previous considerations allow us to give a complicated but concrete description of the categories
that one obtains from applying sheafification to a separated presheaf with values in Cat⊗,ex1,𝐸 .

Lemma A.7. Suppose that  ∈ ( ,Cat⊗,ex1,𝐸 ) is a separated presheaf. Let ̃ ∈ ( ,Cat⊗,ex1,𝐸 ) be
its sheafification. For all 𝑆 ∈  , the category ̃ (𝑋) ∈ Cat⊗,ex1,𝐸 can be described as follows: Ob-
jects 𝑉 ∈ ̃ (𝑆) can be described as tuples (𝑆′, 𝑉 ′, 𝛼), where [𝑆′ → 𝑆] ∈  is a v-cover and 𝑉 ′ ∈

Desc.( , 𝑆′∕𝑆). If we have a map 𝑆′′ 𝑓
←←←←←←←→ 𝑆′ → 𝑆 with 𝑆′′ → 𝑆 a v-cover, then (𝑆′, 𝑉 ′, 𝛼) is isomorphic

to (𝑆′′, 𝑓 ∗𝑉 ′, 𝑓 ∗𝛼). Given two objects, (𝑆′, 𝑉 ′
1 , 𝛼1) and (𝑆′, 𝑉 ′

2 , 𝛼2) the set of morphisms between them
agrees with the set of morphisms in Desc.( , 𝑆′∕𝑆). A sequence Σ ∶= [(𝑆′, 𝑉 ′

1 , 𝛼1) → (𝑆′, 𝑉 ′
2 , 𝛼2) →

(𝑆′, 𝑉 ′
3 , 𝛼3)] is exact if and only if there is 𝑆′′ 𝑓

←←←←←←←→ 𝑆′ → 𝑆 with 𝑆′′ → 𝑆 a v-cover such that the sequence
𝑓 ∗Σ ∶= [𝑓 ∗𝑉 ′

1 → 𝑓 ∗𝑉 ′
2 → 𝑓 ∗𝑉 ′

3 ] is exact in  (𝑆′′).

Lemma A.8. Let ∈ ( ,Cat⊗,ex1,𝐸 ) be a separated presheaf with sheafification ̃ . Then the sheafification
of Fun⊗,ex𝐸 (Rep𝐺, ) is Fun⊗,ex𝐸 (Rep𝐺, ̃ ).

Proof. The category Rep𝐺 is generated under tensor products by finitely many objects, say {𝑖}𝑛𝑖=1 with
𝐼 finite. We claim that for any 𝑆 ∈ Perfaff and 𝐹 ∈ Fun⊗,ex(Rep𝐺, ̃ )(𝑆), there exists a v-cover 𝑆′ → 𝑆
such that 𝐹 factors through a (exact monoidal) functor Rep𝐺 → Desc.( , 𝑆′∕𝑆). Indeed, according to
Lemma A.7 each of the tensor generators 𝑖 maps to an object of the form (𝑆𝑖, 𝑉𝑖, 𝛼𝑖) and we can take
𝑆′ = 𝑆1 ×𝑆 ⋯ × 𝑆𝑛. Furthermore, since for every other 𝑆′′ → 𝑆′ → 𝑆 the map

Desc.( , 𝑆′∕𝑆) → Desc.( , 𝑆′′∕𝑆)
is fully-faithful, all morphisms between the tensor powers of the 𝑖 must lie in Desc.( , 𝑆′∕𝑆).

With other words, we get the first equality in

Fun⊗,ex(Rep𝐺, ̃ )(𝑆) = colim𝑆′→𝑆Fun⊗,ex(Rep𝐺,Desc.( , 𝑆′∕𝑆))

= colim𝑆′→𝑆Desc.(Fun⊗,ex(Rep𝐺, ), 𝑆′∕𝑆) ,
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where the second equality holds as Desc.(−, 𝑆′∕𝑆) is a limit and Fun commutes with limits. The last
expression is the value of the sheafification of Fun⊗,ex(Rep𝐺, ) on 𝑆, so we are done. □

Remark A.9. One can be much more general in the formulation of Lemma A.8. Indeed, given appro-
priate cut-off cardinals 𝜅 < 𝜆, the categories Perf aff𝜆 and PSchaff𝜆 have enough 𝜅-cofiltered limits. Con-
sequently, Fun⊗,ex(Rep𝐺,−) commutes with sheafification for general  as long as Rep𝐺 is 𝜅-compact.
There is always a 𝜅 for which this holds. To avoid discussing further technicalities, we have settled with
the formulation and proof given above.

A.1. The category Cat⊗,ex1,𝐸 . We verify that Cat⊗,ex1,𝐸 is presentable and compactly generated in several
steps. We will also define Cat⊗,ex1,𝐸 in steps, and at each step we will show that the relevant category is
presentable and compactly generated. Throughout, we will use the following statement.

Theorem A.10 ([RS22, Theorem 1.1]). Let  be a presentable ∞-category and let  ⊆  be a full
subcategory which is closed under limits and 𝜅-filtered colimits for some regular cardinal 𝜅. Then,  is
presentable.

We can combine this with the following useful statement.

Proposition A.11. Let  be a compactly generated presentable ∞-category, let  be a presentable ∞-
category, let  ∶  →  be a conservative functor which commutes with limits and filtered colimits. Then,
 is compactly generated.

Proof. Using the adjoint functor theorem and the hypothesis, we conclude that  ∶  →  admits a left
adjoint 𝐿∶  → . Let {𝐾𝑖}𝑖∈𝐼 ⊆  be a family of compact generators for . We claim that {𝐿(𝐾𝑖)}𝑖∈𝐼
is a family of compact generators for . Indeed, they are compact since  preserves filtered colimits. To
show they generate , consider the full subcategory 0 ⊆  generated under finite colimits by objects of
the form𝐿(𝐾𝑖). By [Lur09, Corollary 5.3.4.15], 0 consists of compact objects. We obtain a fully-faithful
functor 𝜄∶ Ind0 →  that commutes with filtered colimits, and hence commutes with all colimits by
[Lur09, Proposition 5.5.1.9]. By the adjoint functor theorem [Lur09, Corollary 5.5.2.9], we get a right
adjoint 𝐺∶  → Ind0. To show that 𝜄 is an equivalence, it suffices to show that 𝐺 is conservative.
We observe that 𝐿 factors along 𝜄 and consequently  factors along 𝐺. Since  was assumed to be
conservative, 𝐺 is also conservative. □

Corollary A.12. Let  be a compactly generated presentable ∞-category and let  ⊆  be a full subcat-
egory which is closed under limits and filtered colimits. Then,  is presentable and compactly generated.

Proof. By Theorem A.10 above,  is presentable. The claim now follows from Proposition A.11. □

A.1.1. Additive categories.

Definition A.13. An ∞-category  is semiadditive if it is pointed, admits finite products and coproducts,
and for every finite collection {𝐶𝑠 ∈ }𝑠∈𝑆 the norm map

∐

𝑠∈𝑆
𝐶𝑠 →

∏

𝑡∈𝑆
𝐶𝑡

described in [Lur17, Example 6.1.6.11] is an equivalence. An∞-category  is additive if it is semiadditive
and its homotopy category is additive in the classical sense.

Since being semiadditive (or additive) is a property of an ∞-category, we could consider the full sub-
category of Cat∞ spanned by these objects. Nevertheless, this ∞-category will contain too many functors.
Indeed, one is only interested in those functors that respect the semiadditive structure. As it turns out it
suffices to look at functors that preserve finite coproducts.

Definition A.14. We denote by SemiAdd the ∞-category of semiadditive ∞-categories (which is defined
through e.g. [Har20, Corollary 5.4]) and by Add its full subcategory of additive categories.
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Proposition A.15. The ∞-categories Add and SemiAdd are compactly generated.

Proof. Since Add is stable under limits and filtered colimits in SemiAdd, we are reduced to showing
that the ∞-category of semiadditive ∞-categories SemiAdd together with additive functors is compactly
generated by Corollary A.12. By [Har20, Corollary 5.4], we are reduced to showing that Cat(𝐾0) (the
category of categories with finite coproducts and functors preserving them) is compactly generated. By
[Lur17, Lemma 4.8.4.2], Cat(𝐾0) is presentable. We can apply Proposition A.11 to the forgetful functor
Cat(𝐾0) → Cat∞ to conclude thatCat(𝐾0) is compactly generated. Indeed, by [Lur09, Corollary 5.3.6.10]
the forgetful functor admits a left adjoint. Further, given a filtered diagram 𝐼 → Cat(𝐾0), we wish to show
that  = lim

←←←←←←←←←←→𝑖∈𝐼
𝑖 ∈ Cat∞ stays in Cat(𝐾0) and that for every 𝑖 ∈ 𝐼 the projection map 𝑖 →  is functor

in Cat(𝐾0). This can be done as in the proof of [Lur09, Proposition 5.5.7.11]. More precisely, given a
finite collection {𝑜𝑠}𝑠∈𝑆 ⊆ , we may lift it to a finite collection {𝑜𝑠,𝑖}𝑠∈𝑆 for some 𝑖 ∈ 𝐼 . The image of
the coproduct of the {𝑜𝑠,𝑖}𝑠∈𝑆 is a coproduct in . □

Within the category of additive ∞-categories, we have the subcategory Add≤1 ⊆ Add of classical
additive categories. It can be realized as the full subcategory of 1-truncated objects. Since being 1-
truncated is stable under limits and filtered colimits, it follows that Add≤1 is compactly generated and that
the inclusion Add≤1 ⊆ Add has a left adjoint.

A.1.2. Symmetric monoidal additive categories. As justified in [Har20, Proposition 5.6] and [Lur17,
Proposition 4.8.2.7], there is a symmetric monoidal structure SemiAdd⊗ → 𝑁(Fin∗) on the ∞-category
SemiAdd. This product captures the following phenomena: Given categories 1,2, ∈ SemiAdd,
then Fun(1 ⊗ 2,) captures functors 𝐺 ∈ Fun(1 × 2,) that are additive in both variables (i.e.
𝐺(𝑐1 ⊕ 𝑐′1, 𝑐2) ≃ 𝐺(𝑐1, 𝑐2) ⊕ 𝐺(𝑐′1, 𝑐2) and 𝐺(𝑐1, 𝑐2 ⊕ 𝑐2) ≃ 𝐺(𝑐1, 𝑐2) ⊕ 𝐺(𝑐1, 𝑐′2)). One can verify that
both Add≤1 and Add are preserved under ⊗. In particular, we obtain symmetric monoidal structures
Add⊗≤1 and Add⊗ on Add≤1 and Add, respectively.

We know from [Lur17, Lemma 4.8.4.2] that ⊗∶ Add≤1 ×Add≤1 → Add≤1 preserves colimits in each
variable. It follows from [Lur17, Corollary 3.2.3.5] that the categories of commutative algebra objects
CAlg(Add⊗) and CAlg(Add⊗≤1) are again presentable. Moreover, by [HM24, Lemma B.2.4], the forgetful
functor CAlg(Add⊗≤1) → Add≤1 is conservative and commutes with limits and filtered colimits. Using
Proposition A.11, we conclude that CAlg(Add⊗≤1) is compactly generated.

Objects in CAlg(Add⊗≤1) capture the data of an additive category  together with a symmetric monoidal
operation ⊗∶  ×  →  that is additive on both variables, and a ⊗-unit 𝟙 ∈  satisfying the usual
further compatibilities. Functors in CAlg(Add⊗≤1) capture symmetric monoidal additive functors between
such categories. We will now isolate in CAlg(Add⊗≤1) those categories that are rigid.

Definition A.16. Given (, ⊗, 𝟙) a symmetric monoidal ∞-category, we say that an object 𝑜 ∈  is
dualizable if there exists a dual 𝑜∨ together with an evaluation map ev𝑜 ∶ 𝑜× 𝑜∨ → 𝟙, a coevaluation map
coev𝑜 ∶ 𝟙 → 𝑜 ⊗ 𝑜∨ and commutative diagrams

𝑜 𝑜 ⊗ 𝑜∨ ⊗ 𝑜 𝑜∨ 𝑜∨ ⊗ 𝑜⊗ 𝑜∨

𝑜 𝑜∨ .

coev𝑜⊗id

id
id⊗ev𝑜

id⊗coev𝑜

id ev𝑜⊗id

We say that (, ⊗, 𝟙) is rigid if every object of  is dualizable.

One can easily verify that symmetric monoidal functors preserve dualizable objects, in particular we
can form the full subcategory of Cat⊗1 ⊆ CAlg(Add⊗≤1) spanned by those symmetric monoidal categories
that are rigid. It follows from Corollary A.12 that Cat⊗1 is presentable and compactly generated.
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Given a ring𝑅, for example𝑅 ∈ {𝐸,𝑂𝐸}, we let Proj(𝑅) ∈ Cat⊗1 denote the rigid symmetric monoidal
additive category of finite projective𝑅-modules. We let Cat⊗1,𝑅 denote the coslice category of Cat⊗1 under
Proj(𝑅). Since the forgetful functor Cat⊗1,𝑅 → CAlg(Add⊗≤1) commutes with limits and filtered colimits,
applying Theorem A.10 and Proposition A.11, we get thatCat⊗1,𝑅 is also compactly generated. Given a map
of rings𝑅 → 𝑅′ and a category  ∈ Cat⊗1,𝑅, we let ⊗𝑅𝑅′ denote the short hand for ⊗Proj(𝑅) Proj(𝑅′).

A.1.3. Exact categories. In the above, we have justified that Cat⊗1,𝑂𝐸 and Cat⊗1,𝐸 are presentable and
compactly generated. In what follows, we will justify that Cat⊗,ex1,𝑂𝐸

and Cat⊗,ex1,𝐸 are also presentable and
compactly generated.

Recall that Quillen’s definition of an exact category can be rephrased in ∞-categorical language in
terms of Waldhausen and coWaldhausen categories, cf. [Bar15, Example 3.3].

Definition A.17. [Bar15, Definition 3.1] An exact ∞-category consists of a triple (,†,†) such that:
(1) The underlying ∞-category  is additive.
(2) The pair (,†) is a Waldhausen ∞-category.
(3) The pair (,†) is a coWaldhausen ∞-category.
(4) A square in  is an ambigressive pullback if and only if it is an ambigressive pushout.

Here we use the following terminology:
∙ † ⊆  is a wide subcategory and a morphism of † is called ingressive or a cofibration.
∙ † ⊆  is a wide subcategory and a morphism of † is called egressive or a fibration.
∙ A pullback square

𝑋 𝑌

𝑋′ 𝑌 ′

is said to be ambigressive if 𝑋′ ↣ 𝑌 ′ is ingressive and 𝑌 ↠ 𝑌 ′ is egressive. Dually, a pushout
square

𝑋 𝑌

𝑋′ 𝑌 ′

is said to be ambigressive if 𝑋 ↣ 𝑌 is ingressive and 𝑋 ↠ 𝑋′ is egressive.
∙ An exact sequence is fiber/cofiber sequence

𝑋′ 𝑋

0 𝑋′′ .

Proposition A.18. The ∞-category Exact of exact ∞-categories is compactly generated, and the forgetful
functor Exact → Add commutes with limits and filtered colimits.

Proof. By definition, we have a fully faithful embedding Exact ↪ Wald∞×Cat∞ coWald∞. The categories
Wald∞ and coWald∞ are compactly generated by [Bar16, Proposition 4.8]. Moreover, by [Bar16, Proposi-
tions 4.4, 4.5] and the adjoint functor theorem, it follows that the maps Wald∞ → Cat∞ and CoWald∞ →
Cat∞ are maps in Pr𝑅. By [Lur09, Proposition 5.5.7.6], it follows that Wald∞ ×Cat∞ coWald∞ is also
compactly generated. Hence by Corollary A.12, it suffices to show the above embedding preserves limits
and filtered colimits.
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Let 𝑝∶ 𝐼 → Exact be a diagram with the compositions 𝜋1◦𝑝∶ 𝐼 → Wald∞ and 𝜋2◦𝑝∶ 𝐼 → coWald∞,
where 𝜋1(resp. 𝜋2)∶ Exact → Wald∞(resp. coWald∞) are the forgetful functors. Let (,†) = lim

←←←←←←←←←←←
𝜋1◦𝑝

and (,†) = lim
←←←←←←←←←←←

𝜋2◦𝑝. We want to show that (,†,†) is an exact category. By [Bar16, Proposition 4.5],
it follows that (,†) = (lim

←←←←←←←←←←←
𝑖∈𝐼

𝑖, lim←←←←←←←←←←←
𝑖∈𝐼

†,𝑖) and dually (,†) = (lim
←←←←←←←←←←←
𝑖∈𝐼

𝑖, lim←←←←←←←←←←←
𝑖∈𝐼

†
𝑖 ). Since additive categories

are stable under limits, it suffices to show that a square is an ambigressive pullback if and only if it is an
ambigressive pushout. We know this is true for the categories (𝑖,†,𝑖,

†
𝑖 ). We have an isomorphism of

morphism ∞-categories
Morlim

←←←←←←←
𝑖∈𝐼

𝑖 (lim←←←←←←←←←←←
𝑖∈𝐼

𝑥𝑖, lim←←←←←←←←←←←
𝑖∈𝐼

𝑦𝑖) ≃ lim
←←←←←←←←←←←
𝑖∈𝐼

Mor𝑖 (𝑥𝑖, 𝑦𝑖) .

But then, a square is a pullback/pushout square if and only if its projections to the categories 𝑖 are
pullback/pushout squares. To show this, we use [Lur09, Proposition 4.4.2.6] to reduce to the case of
products and fiber products. For products, this follows from [Lur09, Corollary 5.1.2.3] and for fiber
products this follows from [Lur09, Proposition 5.4.5.5]. Similarly, for a filtered ∞-category 𝐼 with
a functor 𝑝′ ∶ 𝐼 → Exact with compositions 𝜋1◦𝑝′ ∶ 𝐼 → Wald∞ and 𝜋2◦𝑝′ ∶ 𝐼 → coWald∞, we
let (,†) = lim

←←←←←←←←←←→
𝜋1◦𝑝′ and (,†) = lim

←←←←←←←←←←→
𝜋2◦𝑝′. We want to show that (,†,†) is an exact cat-

egory. Again using [Bar16, Proposition 4.5], it follows that (,†) = (lim
←←←←←←←←←←→
𝑖∈𝐼

𝑖, lim←←←←←←←←←←→
𝑖∈𝐼

†,𝑖) and dually

(,†) = (lim
←←←←←←←←←←→
𝑖∈𝐼

𝑖, lim←←←←←←←←←←→
𝑖∈𝐼

†
𝑖 ). Now let 𝑥𝑖0 ∈ 𝑖0 and 𝑦𝑖1 ∈ 𝑖1 with their images 𝑥, 𝑦 ∈ . By [Roz12],

there is an isomorphism of morphism ∞-categories

Mor(𝑥, 𝑦) ≃ lim
←←←←←←←←←←→

𝑗∈𝐼(𝑖0 ,𝑖1)∕

Mor𝑗 (𝑥𝑗 , 𝑦𝑗) . (A.1)

We consider an ambigressive pushout

𝑋 𝑌

𝑋′ 𝑌 ′

in . We can pick a finite level 𝑖0 ∈ 𝐼 , and lifts [𝑥𝑖0 → 𝑥′𝑖0 ], [𝑥𝑖0 → 𝑦𝑖0 ] ∈ 𝑖0 of the maps [𝑋 →

𝑌 ], [𝑋 → 𝑋′] such that [𝑥𝑖0 → 𝑦𝑖0 ] is ingressive and 𝑥𝑖0 → 𝑥′𝑖0 is egressive. By [Bar16, Definition
2.7], pushouts of ingressive morphisms exist. We let 𝑦′𝑖0 denote the pushout. Since pushout diagrams of
ingressive morphisms remain ingressive under any functor in Wald∞, we can show that the image of 𝑦′𝑖0
under 𝑖0 →  is equivalent to 𝑌 ′ by using Equation (A.1). Since 𝑖0 is exact, we have an ambigressive
pushout diagram which is also an ambigressive pullback diagram

𝑥𝑖0 𝑦𝑖0

𝑥′𝑖0 𝑦′𝑖0 .

Using Equation (A.1) and that functors in coWald∞ preserve egressive pullbacks, one can show that the
image of the square above in  remains an egressive pullback. This argument shows that if a square in 
is an ambigressive pushout, then it is an ambigressive pullback. One can use the dual argument to show
the converse. □

We can finally define Cat⊗,ex1,𝐸 by considering the Cartesian square in Ĉat∞
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Cat⊗,ex1,𝐸 Exact

Cat⊗1,𝐸 Add .

2

1

Proposition A.19. The category Cat⊗,ex1,𝐸 is presentable and compactly generated.

Proof. Both forgetful functors 1 and 2 are maps in Pr𝑅 as in [Lur09, Definition 5.5.3.1], since they
commute with small limits and filtered colimits. By [Lur09, Theorem 5.5.3.18], Pr𝑅 admits small limits
and they can be computed in Ĉat∞. Moreover, by [Lur09, Proposition 5.5.7.6] for 𝜅 = 𝜔, fiber products
in Pr𝑅 preserve the property of being compactly generated. □
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